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Preface

Have We Got a Deal for You!
Haskell is a deep language; we think learning it is a hugely rewarding experience. We
will focus on three elements as we explain why. The first is novelty: we invite you to
think about programming from a different and valuable perspective. The second is
power: we’ll show you how to create software that is short, fast, and safe. Lastly, we
offer you a lot of enjoyment: the pleasure of applying beautiful programming techniques
to solve real problems.

Novelty
Haskell is most likely quite different from any language you’ve ever used before. Com-
pared to the usual set of concepts in a programmer’s mental toolbox, functional pro-
gramming offers us a profoundly different way to think about software.

In Haskell, we deemphasize code that modifies data. Instead, we focus on functions
that take immutable values as input and produce new values as output. Given the same
inputs, these functions always return the same results. This is a core idea behind func-
tional programming.

Along with not modifying data, our Haskell functions usually don’t talk to the external
world; we call these functions pure. We make a strong distinction between pure code
and the parts of our programs that read or write files, communicate over network con-
nections, or make robot arms move. This makes it easier to organize, reason about, and
test our programs.

We abandon some ideas that might seem fundamental, such as having a for loop built
into the language. We have other, more flexible, ways to perform repetitive tasks.

xxiii



Even the way in which we evaluate expressions is different in Haskell. We defer every
computation until its result is actually needed—Haskell is a lazy language. Laziness is
not merely a matter of moving work around, it profoundly affects how we write
programs.

Power
Throughout this book, we will show you how Haskell’s alternatives to the features of
traditional languages are powerful and flexible and lead to reliable code. Haskell is
positively crammed full of cutting-edge ideas about how to create great software.

Since pure code has no dealings with the outside world, and the data it works with is
never modified, the kind of nasty surprise in which one piece of code invisibly corrupts
data used by another is very rare. Whatever context we use a pure function in, the
function will behave consistently.

Pure code is easier to test than code that deals with the outside world. When a function
responds only to its visible inputs, we can easily state properties of its behavior that
should always be true. We can automatically test that those properties hold for a huge
body of random inputs, and when our tests pass, we move on. We still use traditional
techniques to test code that must interact with files, networks, or exotic hardware.
Since there is much less of this impure code than we would find in a traditional lan-
guage, we gain much more assurance that our software is solid.

Lazy evaluation has some spooky effects. Let’s say we want to find the k least-valued
elements of an unsorted list. In a traditional language, the obvious approach would be
to sort the list and take the first k elements, but this is expensive. For efficiency, we
would instead write a special function that takes these values in one pass, and that
would have to perform some moderately complex bookkeeping. In Haskell, the sort-
then-take approach actually performs well: laziness ensures that the list will only be
sorted enough to find the k minimal elements.

Better yet, our Haskell code that operates so efficiently is tiny and uses standard library
functions:

-- file: ch00/KMinima.hs
-- lines beginning with "--" are comments.

minima k xs = take k (sort xs)

It can take a while to develop an intuitive feel for when lazy evaluation is important,
but when we exploit it, the resulting code is often clean, brief, and efficient.

As the preceding example shows, an important aspect of Haskell’s power lies in the
compactness of the code we write. Compared to working in popular traditional lan-
guages, when we develop in Haskell we often write much less code, in substantially
less time and with fewer bugs.
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Enjoyment
We believe that it is easy to pick up the basics of Haskell programming and that you
will be able to successfully write small programs within a matter of hours or days.

Since effective programming in Haskell differs greatly from other languages, you should
expect that mastering both the language itself and functional programming techniques
will require plenty of thought and practice.

Harking back to our own days of getting started with Haskell, the good news is that
the fun begins early: it’s simply an entertaining challenge to dig into a new language—
in which so many commonplace ideas are different or missing—and to figure out how
to write simple programs.

For us, the initial pleasure lasted as our experience grew and our understanding deep-
ened. In other languages, it’s difficult to see any connection between science and the
nuts-and-bolts of programming. In Haskell, we have imported some ideas from abstract
mathematics and put them to work. Even better, we find that not only are these ideas
easy to pick up, but they also have a practical payoff in helping us to write more com-
pact, reusable code.

Furthermore, we won’t be putting any “brick walls” in your way. There are no especially
difficult or gruesome techniques in this book that you must master in order to be able
to program effectively.

That being said, Haskell is a rigorous language: it will make you perform more of your
thinking up front. It can take a little while to adjust to debugging much of your code
before you ever run it, in response to the compiler telling you that something about
your program does not make sense. Even with years of experience, we remain aston-
ished and pleased by how often our Haskell programs simply work on the first try, once
we fix those compilation errors.

What to Expect from This Book
We started this project because a growing number of people are using Haskell to solve
everyday problems. Because Haskell has its roots in academia, few of the Haskell books
that currently exist focus on the problems and techniques of the typical programming
that we’re interested in.

With this book, we want to show you how to use functional programming and Haskell
to solve realistic problems. We take a hands-on approach: every chapter contains doz-
ens of code samples, and many contain complete applications. Here are a few examples
of the libraries, techniques, and tools that we’ll show you how to develop:
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• Create an application that downloads podcast episodes from the Internet and
stores its history in an SQL database.

• Test your code in an intuitive and powerful way. Describe properties that ought to
be true, and then let the QuickCheck library generate test cases automatically.

• Take a grainy phone camera snapshot of a barcode and turn it into an identifier
that you can use to query a library or bookseller’s website.

• Write code that thrives on the Web. Exchange data with servers and clients written
in other languages using JSON notation. Develop a concurrent link checker.

A Little Bit About You
What will you need to know before reading this book? We expect that you already
know how to program, but if you’ve never used a functional language, that’s fine.

No matter what your level of experience is, we tried to anticipate your needs; we go
out of our way to explain new and potentially tricky ideas in depth, usually with ex-
amples and images to drive our points home.

As a new Haskell programmer, you’ll inevitably start out writing quite a bit of code by
hand for which you could have used a library function or programming technique, had
you just known of its existence. We packed this book with information to help you get
up to speed as quickly as possible.

Of course, there will always be a few bumps along the road. If you start out anticipating
an occasional surprise or difficulty along with the fun stuff, you will have the best
experience. Any rough patches you might hit won’t last long.

As you become a more seasoned Haskell programmer, the way that you write code will
change. Indeed, over the course of this book, the way that we present code will evolve,
as we move from the basics of the language to increasingly powerful and productive
features and techniques.

What to Expect from Haskell
Haskell is a general-purpose programming language. It was designed without any ap-
plication niche in mind. Although it takes a strong stand on how programs should be
written, it does not favor one problem domain over others.

While at its core, the language encourages a pure, lazy style of functional programming,
this is the default, not the only option. Haskell also supports the more traditional mod-
els of procedural code and strict evaluation. Additionally, although the focus of the
language is squarely on writing statically typed programs, it is possible (though rarely
seen) to write Haskell code in a dynamically typed manner.
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Compared to Traditional Static Languages
Languages that use simple static type systems have been the mainstay of the program-
ming world for decades. Haskell is statically typed, but its notion of what types are for
and what we can do with them is much more flexible and powerful than traditional
languages. Types make a major contribution to the brevity, clarity, and efficiency of
Haskell programs.

Although powerful, Haskell’s type system is often also unobtrusive. If we omit explicit
type information, a Haskell compiler will automatically infer the type of an expression
or function. Compared to traditional static languages, to which we must spoon-feed
large amounts of type information, the combination of power and inference in Haskell’s
type system significantly reduces the clutter and redundancy of our code.

Several of Haskell’s other features combine to further increase the amount of work we
can fit into a screenful of text. This brings improvements in development time and
agility; we can create reliable code quickly and easily refactor it in response to changing
requirements.

Sometimes, Haskell programs may run more slowly than similar programs written in
C or C++. For most of the code we write, Haskell’s large advantages in productivity
and reliability outweigh any small performance disadvantage.

Multicore processors are now ubiquitous, but they remain notoriously difficult to pro-
gram using traditional techniques. Haskell provides unique technologies to make
multicore programming more tractable. It supports parallel programming, software
transactional memory for reliable concurrency, and it scales to hundreds of thousands
of concurrent threads.

Compared to Modern Dynamic Languages
Over the past decade, dynamically typed, interpreted languages have become increas-
ingly popular. They offer substantial benefits in developer productivity. Although this
often comes at the cost of a huge performance hit, for many programming tasks pro-
ductivity trumps performance, or performance isn’t a significant factor in any case.

Brevity is one area in which Haskell and dynamically typed languages perform similarly:
in each case, we write much less code to solve a problem than in a traditional language.
Programs are often around the same size in dynamically typed languages and Haskell.

When we consider runtime performance, Haskell almost always has a huge advantage.
Code compiled by the Glasgow Haskell Compiler (GHC) is typically between 20 to 60
times faster than code run through a dynamic language’s interpreter. GHC also pro-
vides an interpreter, so you can run scripts without compiling them.

Another big difference between dynamically typed languages and Haskell lies in their
philosophies around types. A major reason for the popularity of dynamically typed
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languages is that only rarely do we need to explicitly mention types. Through automatic
type inference, Haskell offers the same advantage.

Beyond this surface similarity, the differences run deep. In a dynamically typed
language, we can create constructs that are difficult to express in a statically typed
language. However, the same is true in reverse: with a type system as powerful as Has-
kell’s, we can structure a program in a way that would be unmanageable or infeasible
in a dynamically typed language.

It’s important to recognize that each of these approaches involves trade-offs. Very
briefly put, the Haskell perspective emphasizes safety, while the dynamically typed
outlook favors flexibility. If someone had already discovered one way of thinking about
types that was always best, we imagine that everyone would know about it by now.

Of course, we, the authors, have our own opinions about which trade-offs are more
beneficial. Two of us have years of experience programming in dynamically typed lan-
guages. We love working with them; we still use them every day; but usually, we prefer
Haskell.

Haskell in Industry and Open Source
Here are just a few examples of large software systems that have been created in Haskell.
Some of these are open source, while others are proprietary products:

• ASIC and FPGA design software (Lava, products from Bluespec, Inc.)

• Music composition software (Haskore)

• Compilers and compiler-related tools (most notably GHC)

• Distributed revision control (Darcs)

• Web middleware (HAppS, products from Galois, Inc.)

The following is a sample of some of the companies using Haskell in late 2008, taken
from the Haskell wiki (http://www.haskell.org/haskellwiki/Haskell_in_industry):

ABN AMRO
An international bank. It uses Haskell in investment banking, in order to measure
the counterparty risk on portfolios of financial derivatives.

Anygma
A startup company. It develops multimedia content creation tools using Haskell.

Amgen
A biotech company. It creates mathematical models and other complex applica-
tions in Haskell.

Bluespec
An ASIC and FPGA design software vendor. Its products are developed in Haskell,
and the chip design languages that its products provide are influenced by Haskell.
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Eaton
Uses Haskell for the design and verification of hydraulic hybrid vehicle systems.

Compilation, Debugging, and Performance Analysis
For practical work, almost as important as a language itself is the ecosystem of libraries
and tools around it. Haskell has a strong showing in this area.

The most widely used compiler, GHC, has been actively developed for over 15 years
and provides a mature and stable set of features:

• Compiles to efficient native code on all major modern operating systems and CPU
architectures

• Easy deployment of compiled binaries, unencumbered by licensing restrictions

• Code coverage analysis

• Detailed profiling of performance and memory usage

• Thorough documentation

• Massively scalable support for concurrent and multicore programming

• Interactive interpreter and debugger

Bundled and Third-Party Libraries
The GHC compiler ships with a collection of useful libraries. Here are a few of the
common programming needs that these libraries address:

• File I/O and filesystem traversal and manipulation

• Network client and server programming

• Regular expressions and parsing

• Concurrent programming

• Automated testing

• Sound and graphics

The Hackage package database is the Haskell community’s collection of open source
libraries and applications. Most libraries published on Hackage are licensed under lib-
eral terms that permit both commercial and open source use. Some of the areas covered
by these open source libraries include the following:

• Interfaces to all major open source and commercial databases

• XML, HTML, and XQuery processing

• Network and web client and server development

• Desktop GUIs, including cross-platform toolkits

• Support for Unicode and other text encodings
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A Brief Sketch of Haskell’s History
The development of Haskell is rooted in mathematics and computer science research.

Prehistory
A few decades before modern computers were invented, the mathematician Alonzo
Church developed a language called lambda calculus. He intended it as a tool for in-
vestigating the foundations of mathematics. The first person to realize the practical
connection between programming and lambda calculus was John McCarthy, who cre-
ated Lisp in 1958.

During the 1960s, computer scientists began to recognize and study the importance of
lambda calculus. Peter Landin and Christopher Strachey developed ideas about the
foundations of programming languages: how to reason about what they do (operational
semantics) and how to understand what they mean (denotational semantics).

In the early 1970s, Robin Milner created a more rigorous functional programming lan-
guage named ML. While ML was developed to help with automated proofs of mathe-
matical theorems, it gained a following for more general computing tasks.

The 1970s also saw the emergence of lazy evaluation as a novel strategy. David Turner
developed SASL and KRC, while Rod Burstall and John Darlington developed NPL and
Hope. NPL, KRC, and ML influenced the development of several more languages in
the 1980s, including Lazy ML, Clean, and Miranda.

Early Antiquity
By the late 1980s, the efforts of researchers working on lazy functional languages were
scattered across more than a dozen languages. Concerned by this diffusion of effort, a
number of researchers decided to form a committee to design a common language.
After three years of work, the committee published the Haskell 1.0 specification in
1990. It named the language after Haskell Curry, an influential logician.

Many people are rightfully suspicious of “design by committee,” but the output of the
Haskell committee is a beautiful example of the best work a committee can do. They
produced an elegant, considered language design and succeeded in unifying the frac-
tured efforts of their research community. Of the thicket of lazy functional languages
that existed in 1990, only Haskell is still actively used.

Since its publication in 1990, the Haskell language standard has seen five revisions,
most recently in 1998. A number of Haskell implementations have been written, and
several are still actively developed.
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During the 1990s, Haskell served two main purposes. On one side, it gave language
researchers a stable language in which to experiment with making lazy functional
programs run efficiently and on the other side researchers explored how to construct
programs using lazy functional techniques, and still others used it as a teaching
language.

The Modern Era
While these basic explorations of the 1990s proceeded, Haskell remained firmly an
academic affair. The informal slogan of those inside the community was to “avoid
success at all costs.” Few outsiders had heard of the language at all. Indeed, functional
programming as a field was quite obscure.

During this time, the mainstream programming world experimented with relatively
small tweaks, from programming in C, to C++, to Java. Meanwhile, on the fringes,
programmers were beginning to tinker with new, more dynamic languages. Guido van
Rossum designed Python; Larry Wall created Perl; and Yukihiro Matsumoto developed
Ruby.

As these newer languages began to seep into wider use, they spread some crucial ideas.
The first was that programmers are not merely capable of working in expressive lan-
guages; in fact, they flourish. The second was in part a byproduct of the rapid growth
in raw computing power of that era: it’s often smart to sacrifice some execution per-
formance in exchange for a big increase in programmer productivity. Finally, several
of these languages borrowed from functional programming.

Over the past half decade, Haskell has successfully escaped from academia, buoyed in
part by the visibility of Python, Ruby, and even JavaScript. The language now has a
vibrant and fast-growing culture of open source and commercial users, and researchers
continue to use it to push the boundaries of performance and expressiveness.

Helpful Resources
As you work with Haskell, you’re sure to have questions and want more information
about things. The following paragraphs describe some Internet resources where you
can look up information and interact with other Haskell programmers.

Reference Material
The Haskell Hierarchical Libraries reference

Provides the documentation for the standard library that comes with your com-
piler. This is one of the most valuable online assets for Haskell programmers.

Haskell 98 Report
Describes the Haskell 98 language standard.
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GHC Users’s Guide
Contains detailed documentation on the extensions supported by GHC, as well as
some GHC-specific features.

Hoogle and Hayoo
Haskell API search engines. They can search for functions by name or type.

Applications and Libraries
If you’re looking for a Haskell library to use for a particular task or an application
written in Haskell, check out the following resources:

The Haskell community
Maintains a central repository of open source Haskell libraries called Hackage
(http://hackage.haskell.org/). It lets you search for software to download, or browse
its collection by category.

The Haskell wiki (http://haskell.org/haskellwiki/Applications_and_libraries)
Contains a section dedicated to information about particular Haskell libraries.

The Haskell Community
There are a number of ways you can get in touch with other Haskell programmers, in
order to ask questions, learn what other people are talking about, and simply do some
social networking with your peers:

• The first stop on your search for community resources should be the Haskell web-
site (http://www.haskell.org/). This page contains the most current links to various
communities and information, as well as a huge and actively maintained wiki.

• Haskellers use a number of mailing lists (http://haskell.org/haskellwiki/Mailing
_lists) for topical discussions. Of these, the most generally interesting is named
haskell-cafe. It has a relaxed, friendly atmosphere, where professionals and aca-
demics rub shoulders with casual hackers and beginners.

• For real-time chat, the Haskell IRC channel (http://haskell.org/haskellwiki/IRC
_channel), named #haskell, is large and lively. Like haskell-cafe, the atmosphere
stays friendly and helpful in spite of the huge number of concurrent users.

• There are many local user groups, meetups, academic workshops, and the like;
there is a list of the known user groups and workshops (http://haskell.org/haskell
wiki/User_groups).

• The Haskell Weekly News (http://sequence.complete.org/) is a very-nearly-weekly
summary of activities in the Haskell community. You can find pointers to inter-
esting mailing list discussions, new software releases, and similar things.

• The Haskell Communities and Activities Report (http://haskell.org/communities/)
collects information about people that use Haskell and what they’re doing with it.
It’s been running for years, so it provides a good way to peer into Haskell’s past.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Real World Haskell, by Bryan O’Sullivan,
John Goerzen, and Don Stewart. Copyright 2009 Bryan O’Sullivan, John Goerzen, and
Donald Stewart, 978-0-596-51498-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.
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Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596514983

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com
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CHAPTER 1

Getting Started

As you read the early chapters of this book, keep in mind that we will sometimes
introduce ideas in restricted, simplified form. Haskell is a deep language, and presenting
every aspect of a given subject all at once is likely to prove overwhelming. As we build
a solid foundation in Haskell, we will expand upon these initial explanations.

Your Haskell Environment
Haskell is a language with many implementations, two of which are widely used. Hugs 
is an interpreter that is primarily used for teaching. For real applications, the Glasgow 
Haskell Compiler (GHC) is much more popular. Compared to Hugs, GHC is more
suited to “real work”: it compiles to native code, supports parallel execution, and pro-
vides useful performance analysis and debugging tools. For these reasons, GHC is the
Haskell implementation that we will be using throughout this book.

GHC has three main components:

ghc
An optimizing compiler that generates fast native code

ghci
An interactive interpreter and debugger

runghc
A program for running Haskell programs as scripts, without needing to compile
them first

How we refer to the components of GHC
When we discuss the GHC system as a whole, we will refer to it as
GHC. If we are talking about a specific command, we will mention ghc,
ghci, or runghc by name.
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We assume that you’re using at least version 6.8.2 of GHC, which was released in 2007.
Many of our examples will work unmodified with older versions. However, we recom-
mend using the newest version available for your platform. If you’re using Windows or
Mac OS X, you can get started easily and quickly using a prebuilt installer. To obtain
a copy of GHC for these platforms, visit the GHC download page (http://www.haskell
.org/ghc/download.html) and look for the list of binary packages and installers.

Many Linux distributors and providers of BSD and other Unix variants make custom
binary packages of GHC available. Because these are built specifically for each envi-
ronment, they are much easier to install and use than the generic binary packages that
are available from the GHC download page. You can find a list of distributions that
custom build GHC at the GHC page distribution packages (http://www.haskell.org/ghc/
distribution_packages.html).

For more detailed information about how to install GHC on a variety of popular plat-
forms, we’ve provided some instructions in Appendix A.

Getting Started with ghci, the Interpreter
The interactive interpreter for GHC is a program named ghci. It lets us enter and eval-
uate Haskell expressions, explore modules, and debug our code. If you are familiar with
Python or Ruby, ghci is somewhat similar to python and irb, the interactive Python and
Ruby interpreters.

The ghci command has a narrow focus
We typically cannot copy some code out of a Haskell source file and
paste it into ghci. This does not have a significant effect on debugging
pieces of code, but it can initially be surprising if you are used to, say,
the interactive Python interpreter.

On Unix-like systems, we run ghci as a command in a shell window. On Windows, it’s
available via the Start menu. For example, if you install the program using the GHC
installer on Windows XP, you should go to All Programs, then GHC; you will see
ghci in the list. (See “Windows” on page 641 for a screenshot.)

When we run ghci, it displays a startup banner, followed by a Prelude> prompt. Here,
we’re showing version 6.8.3 on a Linux box:

$ ghci
GHCi, version 6.8.3: http://www.haskell.org/ghc/  :? for help
Loading package base ... linking ... done.
Prelude>

The word Prelude in the prompt indicates that Prelude, a standard library of useful
functions, is loaded and ready to use. When we load other modules or source files, they
will show up in the prompt, too.
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Getting help
If you enter :? at the ghci prompt, it will print a long help message.

The Prelude module is sometimes referred to as “the standard prelude” because its
contents are defined by the Haskell 98 standard. Usually, it’s simply shortened to “the
prelude.”

About the ghci prompt
The prompt displayed by ghci changes frequently depending on what
modules we have loaded. It can often grow long enough to leave little
visual room on a single line for our input.

For brevity and consistency, we replaced ghci’s default prompts
throughout this book with the prompt string ghci>.

If you want to do this yourself, use ghci’s :set prompt directive, as
follows:

Prelude> :set prompt "ghci> "
ghci>

The Prelude is always implicitly available; we don’t need to take any actions to use the
types, values, or functions it defines. To use definitions from other modules, we must
load them into ghci, using the :module command:

ghci> :module + Data.Ratio

We can now use the functionality of the Data.Ratio module, which lets us work with
rational numbers (fractions).

Basic Interaction: Using ghci as a Calculator
In addition to providing a convenient interface for testing code fragments, ghci can
function as a readily accessible desktop calculator. We can easily express any calculator
operation in ghci and, as an added bonus, we can add more complex operations as we
become more familiar with Haskell. Even using the interpreter in this simple way can
help us to become more comfortable with how Haskell works.

Simple Arithmetic
We can immediately start entering expressions, in order to see what ghci will do with
them. Basic arithmetic works similarly to languages such as C and Python—we write
expressions in infix form, where an operator appears between its operands:
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ghci> 2 + 2
4
ghci> 31337 * 101
3165037
ghci> 7.0 / 2.0
3.5

The infix style of writing an expression is just a convenience; we can also write an
expression in prefix form, where the operator precedes its arguments. To do this, we
must enclose the operator in parentheses:

ghci> 2 + 2
4
ghci> (+) 2 2
4

As these expressions imply, Haskell has a notion of integers and floating-point num-
bers. Integers can be arbitrarily large. Here, (^) provides integer exponentiation:

ghci> 313 ^ 15
27112218957718876716220410905036741257

An Arithmetic Quirk: Writing Negative Numbers
Haskell presents us with one peculiarity in how we must write numbers: it’s often
necessary to enclose a negative number in parentheses. This affects us as soon as we
move beyond the simplest expressions.

We’ll start by writing a negative number:

ghci> -3
-3

The - used in the preceding code is a unary operator. In other words, we didn’t write
the single number “-3”; we wrote the number “3” and applied the operator - to it. The
- operator is Haskell’s only unary operator, and we cannot mix it with infix operators:

ghci> 2 + -3

<interactive>:1:0:
    precedence parsing error
        cannot mix `(+)' [infixl 6] and prefix `-' [infixl 6] in the same infix 
                                                              expression

If we want to use the unary minus near an infix operator, we must wrap the expression
that it applies to in parentheses:

ghci> 2 + (-3)
-1
ghci> 3 + (-(13 * 37))
-478

This avoids a parsing ambiguity. When we apply a function in Haskell, we write the
name of the function, followed by its argument—for example, f 3. If we did not need
to wrap a negative number in parentheses, we would have two profoundly different
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ways to read f-3: it could be either “apply the function f to the number -3,” or “subtract
the number 3 from the variable f.”

Most of the time, we can omit whitespace (“blank” characters such as space and tab)
from expressions, and Haskell will parse them as we intended. But not always. Here is
an expression that works:

ghci> 2*3
6

And here is one that seems similar to the previous problematic negative number ex-
ample, but that results in a different error message:

ghci> 2*-3

<interactive>:1:1: Not in scope: `*-'

Here, the Haskell implementation is reading *- as a single operator. Haskell lets us
define new operators (a subject that we will return to later), but we haven’t defined
*-. Once again, a few parentheses get us and ghci looking at the expression in the same
way:

ghci> 2*(-3)
-6

Compared to other languages, this unusual treatment of negative numbers might seem
annoying, but it represents a reasoned trade-off. Haskell lets us define new operators
at any time. This is not some kind of esoteric language feature; we will see quite a few
user-defined operators in the chapters ahead. The language designers chose to accept
a slightly cumbersome syntax for negative numbers in exchange for this expressive
power.

Boolean Logic, Operators, and Value Comparisons
The values of Boolean logic in Haskell are True and False. The capitalization of these
names is important. The language uses C-influenced operators for working with Boo-
lean values: (&&) is logical “and”, and (||) is logical “or”:

ghci> True && False
False
ghci> False || True
True

While some programming languages treat the number zero as synonymous with
False, Haskell does not, nor does it consider a nonzero value to be True:

ghci> True && 1

<interactive>:1:8:
    No instance for (Num Bool)
      arising from the literal `1' at <interactive>:1:8
    Possible fix: add an instance declaration for (Num Bool)
    In the second argument of `(&&)', namely `1'
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    In the expression: True && 1
    In the definition of `it': it = True && 1

Once again, we are faced with a substantial-looking error message. In brief, it tells us
that the Boolean type, Bool, is not a member of the family of numeric types, Num. The
error message is rather long because ghci is pointing out the location of the problem
and hinting at a possible change we could make that might fix it.

Here is a more detailed breakdown of the error message:

No instance for (Num Bool) 
Tells us that ghci is trying to treat the numeric value 1 as having a Bool type, but it
cannot

arising from the literal '1'
Indicates that it was our use of the number 1 that caused the problem

In the definition of 'it'
Refers to a ghci shortcut that we will revisit in a few pages

Remain fearless in the face of error messages
We have an important point to make here, which we will repeat
throughout the early sections of this book. If you run into problems or
error messages that you do not yet understand, don’t panic. Early on, all
you have to do is figure out enough to make progress on a problem. As
you acquire experience, you will find it easier to understand parts of
error messages that initially seem obscure.

The numerous error messages have a purpose: they actually help us
write correct code by making us perform some amount of debugging
“up front,” before we ever run a program. If you come from a back-
ground of working with more permissive languages, this may come as
something of a shock. Bear with us.

Most of Haskell’s comparison operators are similar to those used in C and the many
languages it has influenced:

ghci> 1 == 1
True
ghci> 2 < 3
True
ghci> 4 >= 3.99
True

One operator that differs from its C counterpart is “is not equal to”. In C, this is written
as !=. In Haskell, we write (/=), which resembles the ≠ notation used in mathematics:

ghci> 2 /= 3
True

Also, where C-like languages often use ! for logical negation, Haskell uses the not
function:
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ghci> not True
False

Operator Precedence and Associativity
Like written algebra and other programming languages that use infix operators, Haskell
has a notion of operator precedence. We can use parentheses to explicitly group parts
of an expression, and precedence allows us to omit a few parentheses. For example,
the multiplication operator has a higher precedence than the addition operator, so
Haskell treats the following two expressions as equivalent:

ghci> 1 + (4 * 4)
17
ghci> 1 + 4 * 4
17

Haskell assigns numeric precedence values to operators, with 1 being the lowest prec-
edence and 9 the highest. A higher-precedence operator is applied before a lower-
precedence operator. We can use ghci to inspect the precedence levels of individual
operators, using ghci’s :info command:

ghci> :info (+)
class (Eq a, Show a) => Num a where
  (+) :: a -> a -> a
  ...
      -- Defined in GHC.Num
infixl 6 +
ghci> :info (*)
class (Eq a, Show a) => Num a where
  ...
  (*) :: a -> a -> a
  ...
      -- Defined in GHC.Num
infixl 7 *

The information we seek is in the line infixl 6 +, which indicates that the (+) operator
has a precedence of 6. (We will explain the other output in a later chapter.) infixl 7
* tells us that the (*) operator has a precedence of 7. Since (*) has a higher precedence
than (+), we can now see why 1 + 4 * 4 is evaluated as 1 + (4 * 4), and not (1 + 4)
* 4.

Haskell also defines associativity of operators. This determines whether an expression
containing multiple uses of an operator is evaluated from left to right or right to left.
The (+) and (*) operators are left associative, which is represented as infixl in the
preceding ghci output. A right associative operator is displayed with infixr:

ghci> :info (^)
(^) :: (Num a, Integral b) => a -> b -> a     -- Defined in GHC.Real
infixr 8 ^

The combination of precedence and associativity rules are usually referred to as fixity
rules.
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Undefined Values, and Introducing Variables
Haskell’s Prelude, the standard library we mentioned earlier, defines at least one well-
known mathematical constant for us:

ghci> pi
3.141592653589793

But its coverage of mathematical constants is not comprehensive, as we can quickly
see. Let us look for Euler’s number, e:

ghci> e

<interactive>:1:0: Not in scope: `e'

Oh well. We have to define it ourselves.

Don’t worry about the error message
If the not in scope error message seems a little daunting, do not worry.
All it means is that there is no variable defined with the name e.

Using ghci’s let construct, we can make a temporary definition of e ourselves:

ghci> let e = exp 1

This is an application of the exponential function, exp, and our first example of applying
a function in Haskell. While languages such as Python require parentheses around the
arguments to a function, Haskell does not.

With e defined, we can now use it in arithmetic expressions. The (^) exponentiation
operator that we introduced earlier can only raise a number to an integer power. To
use a floating-point number as the exponent, we use the(**) exponentiation operator:

ghci> (e ** pi) - pi
19.99909997918947

This syntax is ghci-specific
The syntax for let that ghci accepts is not the same as we would use at
the “top level” of a normal Haskell program. We will see the normal
syntax in “Introducing Local Variables” on page 61.

Dealing with Precedence and Associativity Rules
It is sometimes better to leave at least some parentheses in place, even when Haskell
allows us to omit them. Their presence can help future readers (including ourselves) to
understand what we intended.

Even more importantly, complex expressions that rely completely on operator prece-
dence are notorious sources of bugs. A compiler and a human can easily end up with
different notions of what even a short, parenthesis-free expression is supposed to do.

8 | Chapter 1: Getting Started



There is no need to remember all of the precedence and associativity rules numbers: it
is simpler to add parentheses if you are unsure.

Command-Line Editing in ghci
On most systems, ghci has some amount of command-line editing ability. In case you
are not familiar with command-line editing, it’s a huge time saver. The basics are com-
mon to both Unix-like and Windows systems. Pressing the up arrow key on your key-
board recalls the last line of input you entered; pressing up repeatedly cycles through
earlier lines of input. You can use the left and right arrow keys to move around inside
a line of input. On Unix (but not Windows, unfortunately), the Tab key completes
partially entered identifiers.

Where to look for more information
We’ve barely scratched the surface of command-line editing here. Since
you can work more effectively if you’re familiar with the capabilities of
your command-line editing system, you might find it useful to do some
further reading.

On Unix-like systems, ghci uses the GNU readline library (http://tiswww
.case.edu/php/chet/readline/rltop.html#Documentation), which is
powerful and customizable. On Windows, ghci’s command-line editing
capabilities are provided by the doskey command (http://www.microsoft
.com/resources/documentation/windows/xp/all/proddocs/en-us/doskey
.mspx).

Lists
A list is surrounded by square brackets; the elements are separated by commas:

ghci> [1, 2, 3]
[1,2,3]

Commas are separators, not terminators
Some languages permit the last element in a list to be followed by an
optional trailing comma before a closing bracket, but Haskell doesn’t
allow this. If you leave in a trailing comma (e.g., [1,2,]), you’ll get a
parse error.

A list can be of any length. An empty list is written []:

ghci> []
[]
ghci> ["foo", "bar", "baz", "quux", "fnord", "xyzzy"]
["foo","bar","baz","quux","fnord","xyzzy"]
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All elements of a list must be of the same type. Here, we violate this rule. Our list starts
with two Bool values, but ends with a string:

ghci> [True, False, "testing"]

<interactive>:1:14:
    Couldn't match expected type `Bool' against inferred type `[Char]'
    In the expression: "testing"
    In the expression: [True, False, "testing"]
    In the definition of `it': it = [True, False, "testing"]

Once again, ghci’s error message is verbose, but it’s simply telling us that there is no
way to turn the string into a Boolean value, so the list expression isn’t properly typed.

If we write a series of elements using enumeration notation, Haskell will fill in the con-
tents of the list for us:

ghci> [1..10]
[1,2,3,4,5,6,7,8,9,10]

Here, the .. characters denote an enumeration. We can only use this notation for types
whose elements we can enumerate. It makes no sense for text strings, for instance—
there is not any sensible, general way to enumerate ["foo".."quux"].

By the way, notice that the preceding use of range notation gives us a closed interval;
the list contains both endpoints.

When we write an enumeration, we can optionally specify the size of the step to use by
providing the first two elements, followed by the value at which to stop generating the
enumeration:

ghci> [1.0,1.25..2.0]
[1.0,1.25,1.5,1.75,2.0]
ghci> [1,4..15]
[1,4,7,10,13]
ghci> [10,9..1]
[10,9,8,7,6,5,4,3,2,1]

In the second case, the list is quite sensibly missing the endpoint of the enumeration,
because it isn’t an element of the series we defined.

We can omit the endpoint of an enumeration. If a type doesn’t have a natural “upper
bound,” this will produce values indefinitely. For example, if you type [1..] at the
ghci prompt, you’ll have to interrupt or kill ghci to stop it from printing an infinite
succession of ever-larger numbers. If you are tempted to do this, hit Ctrl-C to halt the
enumeration. We will find later on that infinite lists are often useful in Haskell.
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Beware of enumerating floating-point numbers
Here’s a nonintuitive bit of behavior:

ghci> [1.0..1.8]
[1.0,2.0]

Behind the scenes, to avoid floating-point roundoff problems, the Has-
kell implementation enumerates from 1.0 to 1.8+0.5.

Using enumeration notation over floating-point numbers can pack more
than a few surprises, so if you use it at all, be careful. Floating-point
behavior is quirky in all programming languages; there is nothing
unique to Haskell here.

Operators on Lists
There are two ubiquitous operators for working with lists. We concatenate two lists
using the (++) operator:

ghci> [3,1,3] ++ [3,7]
[3,1,3,3,7]
ghci> [] ++ [False,True] ++ [True]
[False,True,True]

More basic is the (:) operator, which adds an element to the front of a list (this is
pronounced “cons” [short for “construct”]):

ghci> 1 : [2,3]
[1,2,3]
ghci> 1 : []
[1]

You might be tempted to try writing [1,2]:3 to add an element to the end of a list, but
ghci will reject this with an error message, because the first argument of (:) must be
an element, and the second must be a list.

Strings and Characters
If you know a language such as Perl or C, you’ll find Haskell’s notations for strings
familiar.

A text string is surrounded by double quotes:

ghci> "This is a string."
"This is a string."

As in many languages, we can represent hard-to-see characters by “escaping” them.
Haskell’s escape characters and escaping rules follow the widely used conventions
established by the C language. For example, '\n' denotes a newline character, and
'\t' is a tab character. For complete details, see Appendix B.
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ghci> putStrLn "Here's a newline -->\n<-- See?"
Here's a newline -->
<-- See?

The putStrLn function prints a string.

Haskell makes a distinction between single characters and text strings. A single char-
acter is enclosed in single quotes:

ghci> 'a'
'a'

In fact, a text string is simply a list of individual characters. Here’s a painful way to
write a short string, which ghci gives back to us in a more familiar form:

ghci> let a = ['l', 'o', 't', 's', ' ', 'o', 'f', ' ', 'w', 'o', 'r', 'k']
ghci> a
"lots of work"
ghci> a == "lots of work"
True

The empty string is written "", and is a synonym for []:

ghci> "" == []
True

Since a string is a list of characters, we can use the regular list operators to construct
new strings:

ghci> 'a':"bc"
"abc"
ghci> "foo" ++ "bar"
"foobar"

First Steps with Types
While we’ve talked a little about types already, our interactions with ghci have so far
been free of much type-related thinking. We haven’t told ghci what types we’ve been
using, and it’s mostly been willing to accept our input.

Haskell requires type names to start with an uppercase letter, and variable names must
start with a lowercase letter. Bear this in mind as you read on; it makes it much easier
to follow the names.

The first thing we can do to start exploring the world of types is to get ghci to tell us
more about what it’s doing. ghci has a command, :set, that lets us change a few of its
default behaviors. We can tell it to print more type information as follows:

ghci> :set +t
ghci> 'c'
'c'
it :: Char
ghci> "foo"
"foo"
it :: [Char]
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What the +t does is tell ghci to print the type of an expression after the expression.
That cryptic it in the output can be very useful: it’s actually the name of a special
variable, in which ghci stores the result of the last expression we evaluated. (This isn’t
a Haskell language feature; it’s specific to ghci alone.) Let’s break down the meaning
of the last line of ghci output:

• It tells us about the special variable it.

• We can read text of the form x :: y as meaning “the expression x has the type y.”

• Here, the expression “it” has the type [Char]. (The name String is often used in-
stead of [Char]. It is simply a synonym for [Char].)

The Joy of it
That it variable is a handy ghci shortcut. It lets us use the result of the expression we
just evaluated in a new expression:

ghci> "foo"
"foo"
it :: [Char]
ghci> it ++ "bar"
"foobar"
it :: [Char]

When evaluating an expression, ghci won’t change the value of it if the evaluation
fails. This lets you write potentially bogus expressions with something of a safety net:

ghci> it
"foobar"
it :: [Char]
ghci> it ++ 3

<interactive>:1:6:
    No instance for (Num [Char])
      arising from the literal `3' at <interactive>:1:6
    Possible fix: add an instance declaration for (Num [Char])
    In the second argument of `(++)', namely `3'
    In the expression: it ++ 3
    In the definition of `it': it = it ++ 3
ghci> it
"foobar"
it :: [Char]
ghci> it ++ "baz"
"foobarbaz"
it :: [Char]

When we couple it with liberal use of the arrow keys to recall and edit the last expres-
sion we typed, we gain a decent way to experiment interactively: the cost of mistakes
is very low. Take advantage of the opportunity to make cheap, plentiful mistakes when
you’re exploring the language!
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Here are a few more of Haskell’s names for types, from expressions of the sort that
we’ve already seen:

ghci> 7 ^ 80
40536215597144386832065866109016673800875222251012083746192454448001
it :: Integer

Haskell’s integer type is named Integer. The size of an Integer value is bounded only
by your system’s memory capacity.

Rational numbers don’t look quite the same as integers. To construct a rational number,
we use the (%) operator. The numerator is on the left, the denominator on the right:

ghci> :m +Data.Ratio
ghci> 11 % 29
11%29
it :: Ratio Integer

For convenience, ghci lets us abbreviate many commands, so we can write :m instead
of :module to load a module.

Notice there are two words on the righthand side of the :: in the preceding code. We
can read this as a “Ratio of Integer.” We might guess that a Ratio must have values of
type Integer as both numerator and denominator. Sure enough, if we try to construct
a Ratio where the numerator and denominator are of different types or of the same
nonintegral type, ghci complains:

ghci> 3.14 % 8

<interactive>:1:0:
    Ambiguous type variable `t' in the constraints:
      `Integral t' arising from a use of `%' at <interactive>:1:0-7
      `Fractional t'
        arising from the literal `3.14' at <interactive>:1:0-3
    Probable fix: add a type signature that fixes these type variable(s)
ghci> 1.2 % 3.4

<interactive>:1:0:
    Ambiguous type variable `t' in the constraints:
      `Integral t' arising from a use of `%' at <interactive>:1:0-8
      `Fractional t'
        arising from the literal `3.4' at <interactive>:1:6-8
    Probable fix: add a type signature that fixes these type variable(s)

Although it is initially useful to have :set +t giving us type information for every ex-
pression we enter, this is a facility we will quickly outgrow. After a while, we will often
know what type we expect an expression to have. We can turn off the extra type
information at any time, using the :unset command:

ghci> :unset +t
ghci> 2
2
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Even with this facility turned off, we can still get that type information easily when we
need it, using another ghci command:

ghci> :type 'a'
'a' :: Char
ghci> "foo"
"foo"
ghci> :type it
it :: [Char]

The :type command will print type information for any expression we give it (including
it, as we see here). It won’t actually evaluate the expression; it checks only its type and
prints that.

Why are the types reported for these two expressions different?

ghci> 3 + 2
5
ghci> :type it
it :: Integer
ghci> :type 3 + 2
3 + 2 :: (Num t) => t

Haskell has several numeric types. For example, a literal number such as 1 could, de-
pending on the context in which it appears, be an integer or a floating-point value.
When we force ghci to evaluate the expression 3 + 2, it has to choose a type so that it
can print the value, and it defaults to Integer. In the second case, we ask ghci to print
the type of the expression without actually evaluating it, so it does not have to be so
specific. It answers, in effect, “its type is numeric.” We will see more of this style of
type annotation in Chapter 6.

A Simple Program
Let’s take a small leap ahead and write a small program that counts the number of lines
in its input. Don’t expect to understand this yet—it’s just fun to get our hands dirty.
In a text editor, enter the following code into a file, and save it as WC.hs:

-- file: ch01/WC.hs
-- lines beginning with "--" are comments.

main = interact wordCount
    where wordCount input = show (length (lines input)) ++ "\n"

Find or create a text file; let’s call it quux.txt:*

$ cat quux.txt
Teignmouth, England
Paris, France
Ulm, Germany
Auxerre, France

* Incidentally, what do these cities have in common?
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Brunswick, Germany
Beaumont-en-Auge, France
Ryazan, Russia

From a shell or command prompt, run the following command:

$ runghc WC < quux.txt
7

We have successfully written a simple program that interacts with the real world! In
the chapters that follow, we will continue to fill the gaps in our understanding until we
can write programs of our own.

E X E R C I S E S

1. Enter the following expressions into ghci. What are their types?

• 5 + 8

• 3 * 5 + 8

• 2 + 4

• (+) 2 4

• sqrt 16

• succ 6

• succ 7

• pred 9

• pred 8

• sin (pi / 2)

• truncate pi

• round 3.5

• round 3.4

• floor 3.7

• ceiling 3.3

2. From ghci, type :? to print some help. Define a variable, such as let x = 1, and
then type :show bindings. What do you see?

3. The words function breaks a string up into a list of words. Modify the WC.hs ex-
ample in order to count the number of words in a file.

4. Modify the WC.hs example again, in order to print the number of characters in a
file.
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CHAPTER 2

Types and Functions

Why Care About Types?
Every expression and function in Haskell has a type. For example, the value True has
the type Bool, while the value "foo" has the type String. The type of a value indicates
that it shares certain properties with other values of the same type. For example, we
can add numbers and concatenate lists; these are properties of those types. We say an
expression has type X, or is of type X.

Before we launch into a deeper discussion of Haskell’s type system, let’s talk about why
we should care about types at all—what are they even for? At the lowest level, a com-
puter is concerned with bytes, with barely any additional structure. What a type system
gives us is abstraction. A type adds meaning to plain bytes: it lets us say “these bytes
are text,” “those bytes are an airline reservation,” and so on. Usually, a type system
goes beyond this to prevent us from accidentally mixing up types. For example, a type
system usually won’t let us treat a hotel reservation as a car rental receipt.

The benefit of introducing abstraction is that it lets us forget or ignore low-level details.
If I know that a value in my program is a string, I don’t have to know the intimate details
of how strings are implemented. I can just assume that my string is going to behave like
all the other strings I’ve worked with.

What makes type systems interesting is that they’re not all equal. In fact, different type
systems are often not even concerned with the same kinds of problems. A programming
language’s type system deeply colors the way we think and write code in that
language.

Haskell’s type system allows us to think at a very abstract level, and it permits us to
write concise, powerful programs.
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Haskell’s Type System
There are three interesting aspects to types in Haskell: they are strong, they are static,
and they can be automatically inferred. Let’s talk in more detail about each of these
ideas. When possible, we’ll present similarities between concepts from Haskell’s type
system and related ideas in other languages. We’ll also touch on the respective strengths
and weaknesses of each of these properties.

Strong Types
When we say that Haskell has a strong type system, we mean that the type system
guarantees that a program cannot contain certain kinds of errors. These errors come
from trying to write expressions that don’t make sense, such as using an integer as a
function. For instance, if a function expects to work with integers and we pass it a
string, a Haskell compiler will reject this.

We call an expression that obeys a language’s type rules well typed. An expression that
disobeys the type rules is ill typed, and it will cause a type error.

Another aspect of Haskell’s view of strong typing is that it will not automatically coerce
values from one type to another. (Coercion is also known as casting or conversion.)
For example, a C compiler will automatically and silently coerce a value of type int
into a float on our behalf if a function expects a parameter of type float, but a Haskell
compiler will raise a compilation error in a similar situation. We must explicitly coerce
types by applying coercion functions.

Strong typing does occasionally make it more difficult to write certain kinds of code.
For example, a classic way to write low-level code in the C language is to be given a
byte array and cast it to treat the bytes as if they’re really a complicated data structure.
This is very efficient, since it doesn’t require us to copy the bytes around. Haskell’s type
system does not allow this sort of coercion. In order to get the same structured view of
the data, we would need to do some copying, which would cost a little in performance.

The huge benefit of strong typing is that it catches real bugs in our code before they
can cause problems. For example, in a strongly typed language, we can’t accidentally
use a string where an integer is expected.

Weaker and Stronger Types
It is useful to be aware that many language communities have their own definitions of
a strong type. Nevertheless, we will speak briefly and in broad terms about the notion
of strength in type systems.

In academic computer science, the meanings of strong and weak have a narrowly tech-
nical meaning. Strength refers to how permissive a type system is, whereas a weaker
type system treats more expressions as valid than a stronger type system does.
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For example, in Perl, the expression "foo" + 2 evaluates to the number 2, but the
expression "13foo" + 2 evaluates to the number 15. Haskell rejects both expressions
as invalid, because the (+) operator requires both of its operands to be numeric. Because
Perl’s type system is more permissive than Haskell’s, we say that it is weaker under this
narrow technical interpretation.

The fireworks around type systems have their roots in ordinary English, where people
attach notions of value to the words “weak” and “strong”—we usually think of strength
as better than weakness. Many more programmers speak plain English than academic
jargon, and quite often academics really are throwing brickbats at whatever type system
doesn’t suit their fancy. The result is often that popular Internet pastime, a flame war.

Static Types
Having a static type system means that the compiler knows the type of every value and
expression at compile time, before any code is executed. A Haskell compiler or inter-
preter will detect when we try to use expressions whose types don’t match, and reject
our code with an error message before we run it:

ghci> True && "false"

<interactive>:1:8:
    Couldn't match expected type `Bool' against inferred type `[Char]'
    In the second argument of `(&&)', namely `"false"'
    In the expression: True && "false"
    In the definition of `it': it = True && "false"

We’ve seen this kind of error message before. The compiler has inferred that the type
of the expression "false" is [Char]. The (&&) operator requires each of its operands to
be of type Bool, and its left operand indeed has this type. Since the actual type of
"false" does not match the required type, the compiler rejects this expression as ill
typed.

Static typing can occasionally make it difficult to write some useful kinds of code. In
languages such as Python, duck typing is common, where an object acts enough like
another to be used as a substitute for it.* Fortunately, Haskell’s system of typeclasses, 
which we will cover in Chapter 6, provides almost all of the benefits of dynamic typing,
in a safe and convenient form. Haskell has some support for programming with truly
dynamic types, though it is not quite as easy as it is in a language that wholeheartedly
embraces the notion.

Haskell’s combination of strong and static typing makes it impossible for type errors
to occur at runtime. While this means that we need to do a little more thinking up front,
it also eliminates many simple errors that can otherwise be devilishly hard to find. It’s
a truism within the Haskell community that once code compiles, it’s more likely to

* “If it walks like a duck, and quacks like a duck, then let’s call it a duck.”
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work correctly than in other languages. (Perhaps a more realistic way of putting this is
that Haskell code often has fewer trivial bugs.)

Programs written in dynamically typed languages require large suites of tests to give
some assurance that simple type errors cannot occur. Test suites cannot offer complete
coverage: some common tasks, such as refactoring a program to make it more modular,
can introduce new type errors that a test suite may not expose.

In Haskell, the compiler proves the absence of type errors for us: a Haskell program
that compiles will not suffer from type errors when it runs. Refactoring is usually a
matter of moving code around, and then recompiling and tidying up a few times until
the compiler gives us the “all clear.”

A helpful analogy to understand the value of static typing is to look at it as putting
pieces into a jigsaw puzzle. In Haskell, if a piece has the wrong shape, it simply won’t
fit. In a dynamically typed language, all the pieces are 1×1 squares and always fit, so
you have to constantly examine the resulting picture and check (through testing)
whether it’s correct.

Type Inference
Finally, a Haskell compiler can automatically deduce the types of almost† all expres-
sions in a program. This process is known as type inference. Haskell allows us to ex-
plicitly declare the type of any value, but the presence of type inference means that this
is almost always optional, not something we are required to do.

What to Expect from the Type System
Our exploration of the major capabilities and benefits of Haskell’s type system will
span a number of chapters. Early on, you may find Haskell’s types to be a chore to deal
with.

For example, instead of simply writing some code and running it to see if it works as
you might expect in Python or Ruby, you’ll first need to make sure that your program
passes the scrutiny of the type checker. Why stick with the learning curve?

While strong, static typing makes Haskell safe, type inference makes it concise. The
result is potent: we end up with a language that’s safer than popular statically typed
languages and often more expressive than dynamically typed languages. This is a strong
claim to make, and we will back it up with evidence throughout the book.

Fixing type errors may initially feel like more work than using a dynamic language. It
might help to look at this as moving much of your debugging up front. The compiler

† Occasionally, we need to give the compiler a little information to help it make a choice in understanding our
code.
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shows you many of the logical flaws in your code, instead of leaving you to stumble
across problems at runtime.

Furthermore, because Haskell can infer the types of your expressions and functions,
you gain the benefits of static typing without the added burden of “finger typing” im-
posed by less powerful statically typed languages. In other languages, the type system
serves the needs of the compiler. In Haskell, it serves you. The trade-off is that you have
to learn to work within the framework it provides.

We will introduce new uses of Haskell’s types throughout this book to help us write
and test practical code. As a result, the complete picture of why the type system is
worthwhile will emerge gradually. While each step should justify itself, the whole will
end up greater than the sum of its parts.

Some Common Basic Types
In “First Steps with Types” on page 12, we introduced a few types. Here are several
more of the most common base types:

A Char value
Represents a Unicode character.

A Bool value
Represents a value in Boolean logic. The possible values of type Bool are True and
False.

The Int type
Used for signed, fixed-width integer values. The exact range of values represented
as Int depends on the system’s longest “native” integer: on a 32-bit machine, an
Int is usually 32 bits wide, while on a 64-bit machine, it is usually 64 bits wide.
The Haskell standard guarantees only that an Int is wider than 28 bits. (Numeric
types exist that are exactly 8, 16, and so on bits wide, in signed and unsigned flavors;
we’ll get to those later.)

An Integer value
A signed integer of unbounded size. Integers are not used as often as Ints, because
they are more expensive both in performance and space consumption. On the other
hand, Integer computations do not silently overflow, so they give more reliably
correct answers.

Values of type Double
Used for floating-point numbers. A Double value is typically 64 bits wide and uses
the system’s native floating-point representation. (A narrower type, Float, also
exists, but its use is discouraged; Haskell compiler writers concentrate more on
making Double efficient, so Float is much slower.)
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We have already briefly seen Haskell’s notation for types earlier in “First Steps with
Types” on page 12. When we write a type explicitly, we use the notation expression ::
MyType to say that expression has the type MyType. If we omit the :: and the type that
follows, a Haskell compiler will infer the type of the expression:

ghci> :type 'a'
'a' :: Char
ghci> 'a' :: Char
'a'
ghci> [1,2,3] :: Int

<interactive>:1:0:
    Couldn't match expected type `Int' against inferred type `[a]'
    In the expression: [1, 2, 3] :: Int
    In the definition of `it': it = [1, 2, 3] :: Int

The combination of :: and the type after it is called a type signature.

Function Application
Now that we’ve had our fill of data types for a while, let’s turn our attention to working
with some of the types we’ve seen, using functions.

To apply a function in Haskell, we write the name of the function followed by its
arguments:

ghci> odd 3
True
ghci> odd 6
False

We don’t use parentheses or commas to group or separate the arguments to a function;
merely writing the name of the function, followed by each argument in turn, is enough.
As an example, let’s apply the compare function, which takes two arguments:

ghci> compare 2 3
LT
ghci> compare 3 3
EQ
ghci> compare 3 2
GT

If you’re used to function call syntax in other languages, this notation can take a little
getting used to, but it’s simple and uniform.

Function application has higher precedence than using operators, so the following two
expressions have the same meaning:

ghci> (compare 2 3) == LT
True
ghci> compare 2 3 == LT
True
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The parentheses in the preceding code don’t do any harm, but they add some visual
noise. Sometimes, however, we must use parentheses to indicate how we want a com-
plicated expression to be parsed:

ghci> compare (sqrt 3) (sqrt 6)
LT

This applies compare to the results of applying sqrt 3 and sqrt 6, respectively. If we
omit the parentheses, it looks like we are trying to pass four arguments to compare,
instead of the two it accepts.

Useful Composite Data Types: Lists and Tuples
A composite data type is constructed from other types. The most common composite
data types in Haskell are lists and tuples.

We’ve already seen the list type mentioned earlier in the “Strings and Characters” on
page 11, where we found that Haskell represents a text string as a list of Char values,
and that the type “list of Char” is written [Char].

The head function returns the first element of a list:

ghci> head [1,2,3,4]
1
ghci> head ['a','b','c']
'a'

Its counterpart, tail, returns all but the head of a list:

ghci> tail [1,2,3,4]
[2,3,4]
ghci> tail [2,3,4]
[3,4]
ghci> tail [True,False]
[False]
ghci> tail "list"
"ist"
ghci> tail []
*** Exception: Prelude.tail: empty list

As you can see, we can apply head and tail to lists of different types. Applying head to
a [Char] value returns a Char value, while applying it to a [Bool] value returns a Bool
value. The head function doesn’t care what type of list it deals with.

Because the values in a list can have any type, we call the list type polymorphic.‡ When
we want to write a polymorphic type, we use a type variable, which must begin with a
lowercase letter. A type variable is a placeholder, where we’ll eventually substitute a
real type.

‡ We’ll talk more about polymorphism in “Polymorphism in Haskell” on page 36.
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We can write the type “list of a” by enclosing the type variable in square brackets:
[a]. This amounts to saying, “I don’t care what type I have; I can make a list with it.”

Distinguishing type names and type variables
We can now see why a type name must start with an uppercase letter:
it makes it distinct from a type variable, which must start with a
lowercase letter.

When we talk about a list with values of a specific type, we substitute that type for our
type variable. So, for example, the type [Int] is a list of values of type Int, because we
substituted Int for a. Similarly, the type [MyPersonalType] is a list of values of type
MyPersonalType. We can perform this substitution recursively, too: [[Int]] is a list of
values of type [Int], i.e., a list of lists of Int.

ghci> :type [[True],[False,False]]
[[True],[False,False]] :: [[Bool]]

The type of this expression is a list of lists of Bool.

Lists are special
Lists are the bread and butter of Haskell collections. In an imperative
language, we might perform a task many times by iterating through a
loop. This is something that we often do in Haskell by traversing a list,
either by recursing or using a function that recurses for us. Lists are the
easiest stepping stone into the idea that we can use data to structure our
program and its control flow. We’ll be spending a lot more time dis-
cussing lists in Chapter 4.

A tuple is a fixed-size collection of values, where each value can have a different type.
This distinguishes them from a list, which can have any length, but whose elements
must all have the same type.

To help understand the difference, let’s say we want to track two pieces of information
about a book: its year of publication—a number—and its a title—a string. We can’t
keep both of these pieces of information in a list, because they have different types.
Instead, we use a tuple:

ghci> (1964, "Labyrinths")
(1964,"Labyrinths")

We write a tuple by enclosing its elements in parentheses and separating them with
commas. We use the same notation for writing its type:

ghci> :type (True, "hello")
(True, "hello") :: (Bool, [Char])
ghci> (4, ['a', 'm'], (16, True))
(4,"am",(16,True))
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There’s a special type, (), that acts as a tuple of zero elements. This type has only one
value, which is also written (). Both the type and the value are usually pronounced
“unit.” If you are familiar with C, () is somewhat similar to void.

Haskell doesn’t have a notion of a one-element tuple. Tuples are often referred to using
the number of elements as a prefix. A 2-tuple has two elements and is usually called a
pair. A 3-tuple (sometimes called a triple) has three elements; a 5-tuple has five; and so
on. In practice, working with tuples that contain more than a handful of elements makes
code unwieldy, so tuples of more than a few elements are rarely used.

A tuple’s type represents the number, positions, and types of its elements. This means
that tuples containing different numbers or types of elements have distinct types, as do
tuples whose types appear in different orders:

ghci> :type (False, 'a')
(False, 'a') :: (Bool, Char)
ghci> :type ('a', False)
('a', False) :: (Char, Bool)

In this example, the expression (False, 'a') has the type (Bool, Char), which is distinct
from the type of ('a', False). Even though the number of elements and their types is
the same, these two types are distinct because the positions of the element types are
different:

ghci> :type (False, 'a', 'b')
(False, 'a', 'b') :: (Bool, Char, Char)

This type, (Bool, Char, Char), is distinct from (Bool, Char) because it contains three
elements, not two.

We often use tuples to return multiple values from a function. We can also use them
any time we need a fixed-size collection of values, if the circumstances don’t require a
custom container type.

E X E R C I S E

1. What are the types of the following expressions?

• False

• (["foo", "bar"], 'a')

• [(True, []), (False, [['a']])]

Functions over Lists and Tuples
Our discussion of lists and tuples mentioned how we can construct them but little about
how we do anything with them afterwards. So far we have only been introduced to two
list functions, head and tail.
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Two related list functions, take and drop, take two arguments. Given a number n and
a list, take returns the first n elements of the list, while drop returns all but the first n
elements of the list. (As these functions take two arguments, notice that we separate
each function and its arguments using whitespace.)

ghci> take 2 [1,2,3,4,5]
[1,2]
ghci> drop 3 [1,2,3,4,5]
[4,5]

For tuples, the fst and snd functions return the first and second element of a pair,
respectively:

ghci> fst (1,'a')
1
ghci> snd (1,'a')
'a'

If your background is in any of a number of other languages, each of these may look
like an application of a function to two arguments. Under Haskell’s convention for
function application, each one is an application of a function to a single pair.

Haskell tuples aren’t immutable lists
If you are coming from the Python world, you’ll probably be used to
lists and tuples being almost interchangeable. Although the elements of
a Python tuple are immutable, it can be indexed and iterated over using
the same methods as a list. This isn’t the case in Haskell, so don’t try to
carry that idea with you into unfamiliar linguistic territory.

As an illustration, take a look at the type signatures of fst and snd:
they’re defined only for pairs and can’t be used with tuples of other sizes.
Haskell’s type system makes it tricky to write a generalized “get the
second element from any tuple, no matter how wide” function.

Passing an Expression to a Function
In Haskell, function application is left-associative. This is best illustrated by example:
the expression a b c d is equivalent to (((a b) c) d). If we want to use one expression
as an argument to another, we have to use explicit parentheses to tell the parser what
we really mean. Here’s an example:

ghci> head (drop 4 "azerty")
't'

We can read this as “pass the expression drop 4 "azerty" as the argument to head.” If
we were to leave out the parentheses, the offending expression would be similar to
passing three arguments to head. Compilation would fail with a type error, as head
requires a single argument, a list.
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Function Types and Purity
Let’s take a look at a function’s type:

ghci> :type lines
lines :: String -> [String]

We can read the -> as “to,” which loosely translates to “returns.” The signature as a
whole thus reads as “lines has the type String to list-of-String”. Let’s try applying the
function:

ghci> lines "the quick\nbrown fox\njumps"
["the quick","brown fox","jumps"]

The lines function splits a string on line boundaries. Notice that its type signature gives
us a hint as to what the function might actually do: it takes one String, and returns
many. This is an incredibly valuable property of types in a functional language.

A side effect introduces a dependency between the global state of the system and the
behavior of a function. For example, let’s step away from Haskell for a moment and
think about an imperative programming language. Consider a function that reads and
returns the value of a global variable. If some other code can modify that global variable,
then the result of a particular application of our function depends on the current value
of the global variable. The function has a side effect, even though it never modifies the
variable itself.

Side effects are essentially invisible inputs to, or outputs from, functions. In Haskell,
the default is for functions to not have side effects: the result of a function depends only
on the inputs that we explicitly provide. We call these functions pure; functions with
side effects are impure.

If a function has side effects, we can tell by reading its type signature—the type of the
function’s result will begin with IO:

ghci> :type readFile
readFile :: FilePath -> IO String

Haskell’s type system prevents us from accidentally mixing pure and impure code.

Haskell Source Files, and Writing Simple Functions
Now that we know how to apply functions, it’s time we turned our attention to writing
them. While we can write functions in ghci, it’s not a good environment for this. It
accepts only a highly restricted subset of Haskell—most importantly, the syntax it uses
for defining functions is not the same as we use in a Haskell source file.§ Instead, we’ll
finally break down and create a source file.

§ The environment in which ghci operates is called the IO monad. In Chapter 7, we will cover the IO monad
in depth, and the seemingly arbitrary restrictions that ghci places on us will make more sense.
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Haskell source files are usually identified with a suffix of .hs. A simple function defi-
nition is to open up a file named add.hs and add these contents to it:

-- file: ch03/add.hs
add a b = a + b

On the lefthand side of the = is the name of the function, followed by the arguments to
the function. On the righthand side is the body of the function. With our source file
saved, we can load it into ghci, and use our new add function straightaway (the prompt
that ghci displays will change after you load your file):

ghci> :load add.hs
[1 of 1] Compiling Main             ( add.hs, interpreted )
Ok, modules loaded: Main.
ghci> add 1 2
3

What if ghci cannot find your source file?
When you run ghci, it may not be able to find your source file. It will
search for source files in whatever directory it was run. If this is not the
directory that your source file is actually in, you can use ghci’s :cd com-
mand to change its working directory:

ghci> :cd /tmp

Alternatively, you can provide the path to your Haskell source file as the
argument to :load. This path can be either absolute or relative to
ghci’s current directory.

When we apply add to the values 1 and 2, the variables a and b on the lefthand side of
our definition are given (or “bound to”) the values 1 and 2, so the result is the expression
1 + 2.

Haskell doesn’t have a return keyword, because a function is a single expression, not
a sequence of statements. The value of the expression is the result of the function.
(Haskell does have a function called return, but we won’t discuss it for a while; it has
a different meaning than in imperative languages.)

When you see an = symbol in Haskell code, it represents “meaning”—the name on the
left is defined to be the expression on the right.

Just What Is a Variable, Anyway?
In Haskell, a variable provides a way to give a name to an expression. Once a variable is
bound to (i.e., associated with) a particular expression, its value does not change: we
can always use the name of the variable instead of writing out the expression, and we
will get the same result either way.
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If you’re used to imperative programming languages, you’re likely to think of a variable
as a way of identifying a memory location (or some equivalent) that can hold different
values at different times. In an imperative language, we can change a variable’s value
at any time, so that examining the memory location repeatedly can potentially give
different results each time.

The critical difference between these two notions of a variable is that in Haskell, once
we’ve bound a variable to an expression, we know that we can always substitute it for
that expression, because it will not change. In an imperative language, this notion of
substitutability does not hold.

For example, if we run the following tiny Python script, it will print the number 11:

x = 10
x = 11
# value of x is now 11
print x

In contrast, trying the equivalent in Haskell results in an error:

-- file: ch02/Assign.hs
x = 10
x = 11

We cannot assign a value to x twice:

ghci> :load Assign
[1 of 1] Compiling Main             ( Assign.hs, interpreted )

Assign.hs:4:0:
    Multiple declarations of `Main.x'
    Declared at: Assign.hs:3:0
                 Assign.hs:4:0
Failed, modules loaded: none.

Conditional Evaluation
Like many other languages, Haskell has an if expression. Let’s see it in action; then
we’ll explain what’s going on. As an example, we’ll write our own version of the stand-
ard drop function. Before we begin, let’s probe a little into how drop behaves, so we can
replicate its behavior:

ghci> drop 2 "foobar"
"obar"
ghci> drop 4 "foobar"
"ar"
ghci> drop 4 [1,2]
[]
ghci> drop 0 [1,2]
[1,2]
ghci> drop 7 []
[]
ghci> drop (-2) "foo"
"foo"
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From this code, it seems that drop returns the original list if the number to remove is
less than or equal to zero. Otherwise, it removes elements until it either runs out or
reaches the given number. Here’s a myDrop function that has the same behavior, and
that uses Haskell’s if expression to decide what to do. The following null function
below checks whether a list is empty:

-- file: ch02/myDrop.hs
myDrop n xs = if n <= 0 || null xs
              then xs
              else myDrop (n - 1) (tail xs)

In Haskell, indentation is important: it continues an existing definition, instead of start-
ing a new one. Don’t omit the indentation!

You might wonder where the variable name xs comes from in the Haskell function.
This is a common naming pattern for lists. You can read the s as a suffix, so the name
is essentially “plural of x.”

Let’s save our Haskell function in a file named myDrop.hs, then load it into ghci:

ghci> :load myDrop.hs
[1 of 1] Compiling Main             ( myDrop.hs, interpreted )
Ok, modules loaded: Main.
ghci> myDrop 2 "foobar"
"obar"
ghci> myDrop 4 "foobar"
"ar"
ghci> myDrop 4 [1,2]
[]
ghci> myDrop 0 [1,2]
[1,2]
ghci> myDrop 7 []
[]
ghci> myDrop (-2) "foo"
"foo"

Now that we’ve seen myDrop in action, let’s return to the source code and look at all the
novelties we’ve introduced.

First of all, we have introduced --, the beginning of a single-line comment. This com-
ment extends to the end of the line.

Next is the if keyword itself. It introduces an expression that has three components:

• An expression of type Bool, immediately following the if. We refer to this as a
predicate.

• A then keyword, followed by another expression. This expression will be used as
the value of the if expression if the predicate evaluates to True.

• An else keyword, followed by another expression. This expression will be used as
the value of the if expression if the predicate evaluates to False.
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We’ll refer to the expressions that follow the then and else keywords as “branches.”
The branches must have the same types; the if expression will also have this type. An
expression such as if True then 1 else "foo" has different types for its branches, so
it is ill typed and a compiler or interpreter will reject it.

Recall that Haskell is an expression-oriented language. In an imperative language, it
can make sense to omit the else branch from an if, because we’re working with
statements, not expressions. However, when we’re working with expressions, an if that
was missing an else wouldn’t have a result or type if the predicate evaluated to False,
so it would be nonsensical.

Our predicate contains a few more novelties. The null function indicates whether a list
is empty, while the (||) operator performs a logical “or” of its Bool-typed arguments:

ghci> :type null
null :: [a] -> Bool
ghci> :type (||)
(||) :: Bool -> Bool -> Bool

Operators are not special
Notice that we were able to find the type of (||) by wrapping it in
parentheses. The (||) operator isn’t built into the language; it’s an or-
dinary function.

The (||) operator “short circuits”: if its left operand evaluates to True,
it doesn’t evaluate its right operand. In most languages, short-circuit
evaluation requires special support, but not in Haskell. We’ll see why
shortly.

Next, our function applies itself recursively. This is our first example of recursion,
which we’ll talk about in some detail soon.

Finally, our if expression spans several lines. We align the then and else branches
under the if for neatness. So long as we use some indentation, the exact amount is not
important. If we wish, we can write the entire expression on a single line:

-- file: ch02/myDrop.hs
myDropX n xs = if n <= 0 || null xs then xs else myDropX (n - 1) (tail xs)

The length of this version makes it more difficult to read. We will usually break an if
expression across several lines to keep the predicate and each of the branches easier to
follow.

For comparison, here is a Python equivalent of the Haskell myDrop. The two are struc-
tured similarly—each decrements a counter while removing an element from the head
of the list:

def myDrop(n, elts):
    while n > 0 and elts:
        n = n - 1
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        elts = elts[1:]
    return elts

Understanding Evaluation by Example
In our description of myDrop, we have so far focused on surface features. We need to go
deeper and develop a useful mental model of how function application works. To do
this, we’ll first work through a few simple examples, until we can walk through the
evaluation of the expression myDrop 2 "abcd".

We’ve talked a lot about substituting an expression for a variable, and we’ll make use
of this capability here. Our procedure will involve rewriting expressions over and over,
substituting expressions for variables until we reach a final result. This would be a good
time to fetch a pencil and paper, so you can follow our descriptions by trying them
yourself.

Lazy Evaluation
We will begin by looking at the definition of a simple, nonrecursive function:

-- file: ch02/RoundToEven.hs
isOdd n = mod n 2 == 1

Here, mod is the standard modulo function. The first big step to understanding how
evaluation works in Haskell is figuring out the result of evaluating the expression isOdd
(1 + 2).

Before we explain how evaluation proceeds in Haskell, let us recap the sort of evaluation
strategy more familiar languages use. First, evaluate the subexpression 1 + 2, to give
3. Then apply the isOdd function with n bound to 3. Finally, evaluate mod 3 2 to give
1, and 1 == 1 to give True.

In a language that uses strict evaluation, the arguments to a function are evaluated
before the function is applied. Haskell chooses another path: nonstrict evaluation.

In Haskell, the subexpression 1 + 2 is not reduced to the value 3. Instead, we create a
“promise” that when the value of the expression isOdd (1 + 2) is needed, we’ll be able
to compute it. The record that we use to track an unevaluated expression is referred to
as a thunk. This is all that happens: we create a thunk and defer the actual evaluation
until it’s really needed. If the result of this expression is never subsequently used, we
will not compute its value at all.

Nonstrict evaluation is often referred to as lazy evaluation.‖

‖ The terms “nonstrict” and “lazy” have slightly different technical meanings, but we won’t go into the details
of the distinction here.
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A More Involved Example
Let us now look at the evaluation of the expression myDrop 2 "abcd", where we use
print to ensure that it will be evaluated:

ghci> print (myDrop 2 "abcd")
"cd"

Our first step is to attempt to apply print, which needs its argument to be evaluated.
To do that, we apply the function myDrop to the values 2 and "abcd". We bind the variable
n to the value 2, and xs to "abcd". If we substitute these values into myDrop’s predicate,
we get the following expression:

ghci> :type  2 <= 0 || null "abcd"
2 <= 0 || null "abcd" :: Bool

We then evaluate enough of the predicate to find out what its value is. This requires
that we evaluate the (||) expression. To determine its value, the (||) operator needs
to examine the value of its left operand first:

ghci> 2 <= 0
False

Substituting that value into the (||) expression leads to the following expression:

ghci> :type  False || null "abcd"
False || null "abcd" :: Bool

If the left operand had evaluated to True, (||) would not need to evaluate its right
operand, since it could not affect the result of the expression. Since it evaluates to False,
(||) must evaluate the right operand:

ghci> null "abcd"
False

We now substitute this value back into the (||) expression. Since both operands eval-
uate to False, the (||) expression does too, and thus the predicate evaluates to False:

ghci> False || False
False

This causes the if expression’s else branch to be evaluated. This branch contains a
recursive application of myDrop.
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Short-circuiting for free
Many languages need to treat the logical-or operator specially so that it
short-circuits if its left operand evaluates to True. In Haskell, (||) is an
ordinary function: nonstrict evaluation builds this capability into the
language.

In Haskell, we can easily define a new function that short-circuits:

-- file: ch02/shortCircuit.hs
newOr a b = if a then a else b

If we write an expression such as newOr True (length [1..] > 0), it will
not evaluate its second argument. (This is just as well: that expression
tries to compute the length of an infinite list. If it were evaluated, it
would hang ghci, looping infinitely until we killed it.)

Were we to write a comparable function in, say, Python, strict evalua-
tion would bite us: both arguments would be evaluated before being
passed to newOr, and we would not be able to avoid the infinite loop on
the second argument.

Recursion
When we apply myDrop recursively, n is bound to the thunk 2 - 1, and xs is bound to
tail "abcd".

We’re now evaluating myDrop from the beginning again. We substitute the new values
of n and xs into the predicate:

ghci> :type (2 - 1) <= 0 || null (tail "abcd")
(2 - 1) <= 0 || null (tail "abcd") :: Bool

Here’s a condensed version of the evaluation of the left operand:

ghci> :type (2 - 1) <= 0
(2 - 1) <= 0 :: Bool
ghci> 2 - 1
1
ghci> 1 <= 0
False

As we should now expect, we didn’t evaluate the expression 2 - 1 until we needed its
value. We also evaluate the right operand lazily, deferring tail "abcd" until we need
its value:

ghci> :type null (tail "abcd")
null (tail "abcd") :: Bool
ghci> tail "abcd"
"bcd"
ghci> null "bcd"
False

The predicate again evaluates to False, causing the else branch to be evaluated once
more.
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Because we’ve had to evaluate the expressions for n and xs to evaluate the predicate,
we now know that in this application of myDrop, n has the value 1 and xs has the value
"bcd".

Ending the Recursion
In the next recursive application of myDrop, we bind n to 1 - 1 and xs to tail "bcd":

ghci> :type (1 - 1) <= 0 || null (tail "bcd")
(1 - 1) <= 0 || null (tail "bcd") :: Bool

Once again, (||) needs to evaluate its left operand first:

ghci> :type (1 - 1) <= 0
(1 - 1) <= 0 :: Bool
ghci> 1 - 1
0
ghci> 0 <= 0
True

Finally, this expression evaluates to True!

ghci> True || null (tail "bcd")
True

Because the right operand cannot affect the result of (||), it is not evaluated, and the
result of the predicate is True. This causes us to evaluate the then branch:

ghci> :type tail "bcd"
tail "bcd" :: [Char]

Returning from the Recursion
Remember, we’re now inside our second recursive application of myDrop. This appli-
cation evaluates to tail "bcd". We return from the application of the function, sub-
stituting this expression for myDrop (1 - 1) (tail "bcd") to become the result of this
application:

ghci> myDrop (1 - 1) (tail "bcd") == tail "bcd"
True

We then return from the first recursive application, substituting the result of the second
recursive application for myDrop (2 - 1) (tail "abcd") to become the result of this
application:

ghci> myDrop (2 - 1) (tail "abcd") == tail "bcd"
True

Finally, we return from our original application, substituting the result of the first re-
cursive application:

ghci> myDrop 2 "abcd" == tail "bcd"
True
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Notice that as we return from each successive recursive application, none of them needs
to evaluate the expression tail "bcd": the final result of evaluating the original expres-
sion is a thunk. The thunk is only evaluated when ghci needs to print it.

ghci> myDrop 2 "abcd"
"cd"
ghci> tail "bcd"
"cd"

What Have We Learned?
We have established several important points:

• It makes sense to use substitution and rewriting to understand the evaluation of a
Haskell expression.

• Laziness leads us to defer evaluation until we need a value and to evaluate just
enough of an expression to establish its value.

• The result of applying a function may be a thunk (a deferred expression).

Polymorphism in Haskell
When we introduced lists, we mentioned that the list type is polymorphic. We’ll talk
about Haskell’s polymorphism in more detail here.

If we want to fetch the last element of a list, we use the last function. The value that
it returns must have the same type as the elements of the list, but last operates in the
same way no matter what type those elements actually are:

ghci> last [1,2,3,4,5]
5
ghci> last "baz"
'z'

To capture this idea, its type signature contains a type variable:

ghci> :type last
last :: [a] -> a

Here, a is the type variable. We can read the signature as “takes a list, all of whose
elements have some type a, and returns a value of the same type a.”
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Identifying a type variable
Type variables always start with a lowercase letter. You can always tell
a type variable from a normal variable by context, because the languages
of types and functions are separate: type variables live in type signatures,
and regular variables live in normal expressions.

It’s common Haskell practice to keep the names of type variables very
short. One letter is overwhelmingly common; longer names show up
infrequently. Type signatures are usually brief; we gain more in
readability by keeping names short than we would by making them
descriptive.

When a function has type variables in its signature, indicating that some of its argu-
ments can be of any type, we call the function polymorphic.

When we want to apply last to, say, a list of Char, the compiler substitutes Char for
each a throughout the type signature. This gives us the type of last with an input of
[Char] as [Char] -> Char.

This kind of polymorphism is called parametric polymorphism. The choice of naming
is easy to understand by analogy: just as a function can have parameters that we can
later bind to real values, a Haskell type can have parameters that we can later bind to
other types.

A little nomenclature
If a type contains type parameters, we say that it is a parameterized
type, or a polymorphic type. If a function or value’s type contains type
parameters, we call it polymorphic.

When we see a parameterized type, we’ve already noted that the code doesn’t care what
the actual type is. However, we can make a stronger statement: it has no way to find
out what the real type is, or to manipulate a value of that type. It can’t create a value;
neither can it inspect one. All it can do is treat it as a fully abstract “black box.” We’ll
cover one reason that this is important soon.

Parametric polymorphism is the most visible kind of polymorphism that Haskell sup-
ports. Haskell’s parametric polymorphism directly influenced the design of the generic
facilities of the Java and C# languages. A parameterized type in Haskell is similar to a
type variable in Java generics. C++ templates also bear a resemblance to parametric
polymorphism.

To make it clearer how Haskell’s polymorphism differs from other languages, here are
a few forms of polymorphism that are common in other languages, but not present in
Haskell.
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In mainstream object-oriented languages, subtype polymorphism is more widespread
than parametric polymorphism. The subclassing mechanisms of C++ and Java give
them subtype polymorphism. A base class defines a set of behaviors that its subclasses
can modify and extend. Since Haskell isn’t an object-oriented language, it doesn’t pro-
vide subtype polymorphism.

Also common is coercion polymorphism, which allows a value of one type to be im-
plicitly converted into a value of another type. Many languages provide some form of
coercion polymorphism; one example is automatic conversion between integers and
floating-point numbers. Haskell deliberately avoids even this kind of simple automatic
coercion.

This is not the whole story of polymorphism in Haskell. We’ll return to the subject in
Chapter 6.

Reasoning About Polymorphic Functions
In “Function Types and Purity” on page 27 we talked about figuring out the behavior
of a function based on its type signature. We can apply the same kind of reasoning to
polymorphic functions. Let’s look again at fst:

ghci> :type fst
fst :: (a, b) -> a

First of all, notice that its argument contains two type variables, a and b, signifying that
the elements of the tuple can be of different types.

The result type of fst is a. We’ve already mentioned that parametric polymorphism
makes the real type inaccessible. fst doesn’t have enough information to construct a
value of type a, nor can it turn an a into a b. So the only possible valid behavior (omitting
infinite loops or crashes) it can have is to return the first element of the pair.

Further Reading
There is a deep mathematical sense in which any nonpathological function of type
(a,b) -> a must do exactly what fst does. Moreover, this line of reasoning extends to
more complicated polymorphic functions. The paper “Theorems for free” by Philip
Wadler (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9875) covers this
procedure in depth.

The Type of a Function of More Than One Argument
So far, we haven’t looked much at signatures for functions that take more than one
argument. We’ve already used a few such functions; let’s look at the signature of one,
take:

38 | Chapter 2: Types and Functions

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9875


ghci> :type take
take :: Int -> [a] -> [a]

It’s pretty clear that there’s something going on with an Int and some lists, but why
are there two -> symbols in the signature? Haskell groups this chain of arrows from
right to left; that is, -> is right-associative. If we introduce parentheses, we can make it
clearer how this type signature is interpreted:

-- file: ch02/Take.hs
take :: Int -> ([a] -> [a])

From this, it looks like we ought to read the type signature as a function that takes one
argument, an Int, and returns another function. That other function also takes one
argument, a list, and returns a list of the same type as its result.

This is correct, but it’s not easy to see what its consequences might be. We’ll return to
this topic in “Partial Function Application and Currying” on page 100, once we’ve
spent a bit of time writing functions. For now, we can treat the type following the last
-> as being the function’s return type, and the preceding types to be those of the func-
tion’s arguments.

We can now write a type signature for the myDrop function that we defined earlier:

-- file: ch02/myDrop.hs
myDrop :: Int -> [a] -> [a]

E X E R C I S E S

1. Haskell provides a standard function, last :: [a] -> a, that returns the last ele-
ment of a list. From reading the type alone, what are the possible valid behaviors
(omitting crashes and infinite loops) that this function could have? What are a few
things that this function clearly cannot do?

2. Write a function, lastButOne, that returns the element before the last.

3. Load your lastButOne function into ghci and try it out on lists of different lengths.
What happens when you pass it a list that’s too short?

Why the Fuss over Purity?
Few programming languages go as far as Haskell in insisting that purity should be the
default. This choice has profound and valuable consequences.

Because the result of applying a pure function can only depend on its arguments, we
can often get a strong hint of what a pure function does by simply reading its name and
understanding its type signature. As an example, let’s look at not:

ghci> :type not
not :: Bool -> Bool
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Even if we don’t know the name of this function, its signature alone limits the possible
valid behaviors it could have:

• Ignore its argument and always return either True or False.

• Return its argument unmodified.

• Negate its argument.

We also know that this function cannot do some things: access files, talk to the network,
and tell what time it is.

Purity makes the job of understanding code easier. The behavior of a pure function
does not depend on the value of a global variable, or the contents of a database, or the
state of a network connection. Pure code is inherently modular: every function is self-
contained and has a well-defined interface.

A nonobvious consequence of purity being the default is that working with impure code
becomes easier. Haskell encourages a style of programming in which we separate code
that must have side effects from code that doesn’t need side effects. In this style, impure
code tends to be simple, with the “heavy lifting” performed in pure code.

Much of the risk in software lies in talking to the outside world, be it coping with bad
or missing data or handling malicious attacks. Because Haskell’s type system tells us
exactly which parts of our code have side effects, we can be appropriately on guard.
Because our favored coding style keeps impure code isolated and simple, our “attack
surface” is small.

Conclusion
In this chapter, we’ve had a whirlwind overview of Haskell’s type system and much of
its syntax. We’ve read about the most common types and discovered how to write
simple functions. We’ve been introduced to polymorphism, conditional expressions,
purity, and lazy evaluation.

This all amounts to a lot of information to absorb. In Chapter 3, we’ll build on this
basic knowledge to further enhance our understanding of Haskell.
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CHAPTER 3

Defining Types, Streamlining
Functions

Defining a New Data Type
Although lists and tuples are useful, we’ll often want to construct new data types of
our own. This allows us to add structure to the values in our programs. Instead of using
an anonymous tuple, we can give a collection of related values a name and a distinct
type. Defining our own types also improves the type safety of our code: Haskell will
not allow us to accidentally mix values of two types that are structurally similar but
have different names.

For motivation, we’ll consider a few kinds of data that a small online bookstore might
need to manage. We won’t make any attempt at complete or realistic data definitions,
but at least we’re tying them to the real world.

We define a new data type using the data keyword:

-- file: ch03/BookStore.hs
data BookInfo = Book Int String [String]
                deriving (Show)

BookInfo after the data keyword is the name of our new type. We call BookInfo a type
constructor. Once we define a type, we will use its type constructor to refer to it. As
we’ve already mentioned, a type name, and hence a type constructor, must start with
a capital letter.

The Book that follows is the name of the value constructor (sometimes called a data
constructor). We use this to create a value of the BookInfo type. A value constructor’s
name must also start with a capital letter.

After Book, the Int, String, and [String] that follow are the components of the type. A
component serves the same purpose in Haskell as a field in a structure or class would
in another language: it’s a “slot” where we keep a value. (We’ll often refer to compo-
nents as fields.)
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In this example, the Int represents a book’s identifier (e.g., in a stock database), String
represents its title, and [String] represents the names of its authors.

To make the link to a concept we’ve already seen, the BookInfo type contains the same
components as a 3-tuple of type (Int, String, [String]), but it has a distinct type.
We can’t accidentally (or deliberately) use one in a context where the other is expected.
For instance, a bookstore is also likely to carry magazines:

-- file: ch03/BookStore.hs
data MagazineInfo = Magazine Int String [String]
                    deriving (Show)

Even though this MagazineInfo type has the same structure as our BookInfo type, Haskell
treats the types as distinct because their type and value constructors have different
names.

Deriving what?
We’ll explain the full meaning of deriving (Show) later, in “Show” on
page 139. For now, it’s enough to know that we need to tack this onto
a type declaration so that ghci will automatically know how to print a
value of this type.

We can create a new value of type BookInfo by treating Book as a function and applying
it with arguments of types Int, String, and [String]:

-- file: ch03/BookStore.hs
myInfo = Book 9780135072455 "Algebra of Programming"
         ["Richard Bird", "Oege de Moor"]

Once we define a type, we can experiment with it in ghci. We begin by using
the :load command to load our source file:

ghci> :load BookStore
[1 of 1] Compiling Main             ( BookStore.hs, interpreted )
Ok, modules loaded: Main.

Remember the myInfo variable that we defined in our source file? Here it is:

ghci> myInfo
Book 9780135072455 "Algebra of Programming" ["Richard Bird","Oege de Moor"]
ghci> :type myInfo
myInfo :: BookInfo

We can construct new values interactively in ghci, too:

ghci> Book 0 "The Book of Imaginary Beings" ["Jorge Luis Borges"]
Book 0 "The Book of Imaginary Beings" ["Jorge Luis Borges"]

The ghci command :type lets us see what the type of an expression is:

ghci> :type Book 1 "Cosmicomics" ["Italo Calvino"]
Book 1 "Cosmicomics" ["Italo Calvino"] :: BookInfo
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Remember that if we want to define a new variable inside ghci, the syntax is slightly
different from that of a Haskell source file—we need to put a let in front:

ghci> let cities = Book 173 "Use of Weapons" ["Iain M. Banks"]

To find out more about a type, we can use some of ghci’s browsing capabilities.
The :info command gets ghci to tell us everything it knows about a name:

ghci> :info BookInfo
data BookInfo = Book Int String [String]
      -- Defined at BookStore.hs:4:5-12
instance Show BookInfo -- Defined at BookStore.hs:4:5-12

We can also find out why we use Book to construct a new value of type BookInfo:

ghci> :type Book
Book :: Int -> String -> [String] -> BookInfo

We can treat a value constructor as just another function—one that happens to create
and return a new value of the type we desire.

Naming Types and Values
When we introduced the type BookInfo, we deliberately chose to give the type con-
structor BookInfo a different name from the value constructor Book, purely to make it
obvious which was which.

However, in Haskell, the names of types and values are independent of each other. We
use a type constructor (i.e., the type’s name) only in a type declaration or a type sig-
nature. We use a value constructor only in actual code. Because these uses are distinct,
there is no ambiguity if we give a type constructor and a value constructor the same
name. If we are writing a type signature, we must be referring to a type constructor. If
we are writing an expression, we must be using the value constructor:

-- file: ch03/BookStore.hs
-- We will introduce the CustomerID type shortly.

data BookReview = BookReview BookInfo CustomerID String

This definition says that the type named BookReview has a value constructor that is also
named BookReview.

Not only is it legal for a value constructor to have the same name as its type constructor,
it’s normal. You’ll see this all the time in regular Haskell code.

Type Synonyms
We can introduce a synonym for an existing type at any time, in order to give a type a
more descriptive name. For example, the String in our BookReview type doesn’t tell us
what the string is for, but we can clarify this:
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-- file: ch03/BookStore.hs
type CustomerID = Int
type ReviewBody = String

data BetterReview = BetterReview BookInfo CustomerID ReviewBody

The type keyword introduces a type synonym. The new name is on the left of the =,
with the existing name on the right. The two names identify the same type, so type
synonyms are purely for making code more readable.

We can also use a type synonym to create a shorter name for a verbose type:

-- file: ch03/BookStore.hs
type BookRecord = (BookInfo, BookReview)

This states that we can use BookRecord as a synonym for the tuple (BookInfo,
BookReview). A type synonym creates only a new name that refers to an existing type.*

We still use the same value constructors to create a value of the type.

Algebraic Data Types
The familiar Bool is the simplest common example of a category of type called an
algebraic data type. An algebraic data type can have more than one value constructor:

-- file: ch03/Bool.hs
data Bool = False | True

The Bool type has two value constructors, True and False. Each value constructor is
separated in the definition by a | character, which we can read as “or”—we can con-
struct a Bool that has the value True, or the value False. When a type has more than
one value constructor, they are usually referred to as alternatives or cases. We can use
any one of the alternatives to create a value of that type.

A note about naming
Although the phrase “algebraic data type” is long, we’re being careful
to avoid using the acronym “ADT,” which is already widely understood
to stand for “abstract data type.” Since Haskell supports both algebraic
and abstract data types, we’ll be explicit and avoid the acronym entirely.

Each of an algebraic data type’s value constructors can take zero or more arguments.
As an example, here’s one way we might represent billing information:

-- file: ch03/BookStore.hs
type CardHolder = String
type CardNumber = String
type Address = [String]

* If you are familiar with C or C++, it is analogous to a typedef.
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data BillingInfo = CreditCard CardNumber CardHolder Address
                 | CashOnDelivery
                 | Invoice CustomerID
                   deriving (Show)

Here, we’re saying that we support three ways to bill our customers. If they want to
pay by credit card, they must supply a card number, the holder’s name, and the holder’s
billing address as arguments to the CreditCard value constructor. Alternatively, they
can pay the person who delivers their shipment. Since we don’t need to store any extra
information about this, we specify no arguments for the CashOnDelivery constructor.
Finally, we can send an invoice to the specified customer, in which case, we need her
CustomerID as an argument to the Invoice constructor.

When we use a value constructor to create a value of type BillingInfo, we must supply
the arguments that it requires:

ghci> :type CreditCard
CreditCard :: CardNumber -> CardHolder -> Address -> BillingInfo
ghci> CreditCard "2901650221064486" "Thomas Gradgrind" ["Dickens", "England"]
CreditCard "2901650221064486" "Thomas Gradgrind" ["Dickens","England"]
ghci> :type it
it :: BillingInfo
ghci> Invoice

<interactive>:1:0:
    No instance for (Show (CustomerID -> BillingInfo))
      arising from a use of `print' at <interactive>:1:0-6
    Possible fix:
      add an instance declaration for (Show (CustomerID -> BillingInfo))
    In the expression: print it
    In a stmt of a 'do' expression: print it

The No instance error message arose because we did not supply an argument to the
Invoice constructor. As a result, we were trying to print the Invoice constructor itself.
That constructor requires an argument and returns a value, so it is a function. We
cannot print functions in Haskell, which is ultimately why the interpreter complained.

Tuples, Algebraic Data Types, and When to Use Each
There is some overlap between tuples and user-defined algebraic data types. If we want,
we can represent our BookInfo type from earlier as an (Int, String, [String]) tuple:

ghci> Book 2 "The Wealth of Networks" ["Yochai Benkler"]
Book 2 "The Wealth of Networks" ["Yochai Benkler"]
ghci> (2, "The Wealth of Networks", ["Yochai Benkler"])
(2,"The Wealth of Networks",["Yochai Benkler"])

Algebraic data types allow us to distinguish between otherwise identical pieces of
information. Two tuples with elements of the same type are structurally identical, so
they have the same type:
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-- file: ch03/Distinction.hs
a = ("Porpoise", "Grey")
b = ("Table", "Oak")

Since they have different names, two algebraic data types have distinct types even if
they are otherwise structurally equivalent:

-- file: ch03/Distinction.hs
data Cetacean = Cetacean String String
data Furniture = Furniture String String

c = Cetacean "Porpoise" "Grey"
d = Furniture "Table" "Oak"

This lets us bring the type system to bear in writing programs with fewer bugs. With
the tuples we just defined, we could conceivably pass a description of a whale to a
function expecting a chair, and the type system could not help us. With the algebraic
data types, there is no such possibility of confusion.

Here is a more subtle example. Consider the following representations of a two-
dimensional vector:

-- file: ch03/AlgebraicVector.hs
-- x and y coordinates or lengths.
data Cartesian2D = Cartesian2D Double Double
                   deriving (Eq, Show)

-- Angle and distance (magnitude).
data Polar2D = Polar2D Double Double
               deriving (Eq, Show)

The Cartesian and polar forms use the same types for their two elements. However, the
meanings of the elements are different. Because Cartesian2D and Polar2D are distinct
types, the type system will not let us accidentally use a Cartesian2D value where a
Polar2D is expected, or vice versa.

ghci> Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

<interactive>:1:33:
    Couldn't match expected type `Cartesian2D'
           against inferred type `Polar2D'
    In the second argument of `(==)', namely `Polar2D (pi / 4) 2'
    In the expression:
          Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2
    In the definition of `it':
        it = Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

The (==) operator requires its arguments to have the same type.

Comparing for equality
Notice that in the deriving clause for our vector types, we added another
word, Eq. This causes the Haskell implementation to generate code that
lets us compare the values for equality.
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If we use tuples to represent these values, we could quickly land ourselves in hot water
by mixing the two representations inappropriately:

ghci> (1, 2) == (1, 2)
True

The type system can’t rescue us here: as far as it’s concerned, we’re comparing two
(Double, Double) pairs, which is a perfectly valid thing to do. Indeed, we cannot tell
by inspection which of these values is supposed to be polar or Cartesian, but (1,2) has
a different meaning in each representation.

There is no hard and fast rule for deciding when it’s better to use a tuple or a distinct
data type, but here’s a rule of thumb. If you’re using compound values widely in your
code (as almost all nontrivial programs do), adding data declarations will benefit you
in both type safety and readability. For smaller, localized uses, a tuple is usually fine.

Analogues to Algebraic Data Types in Other Languages
Algebraic data types provide a single powerful way to describe data types. Other lan-
guages often need several different features to achieve the same degree of expressive-
ness. Here are some analogues from C and C++, which might make what we can do
with algebraic data types and how they relate to concepts that might be more familiar
or easier to understand.

The structure

With just one constructor, an algebraic data type is similar to a tuple: it groups related
values together into a compound value. It corresponds to a struct in C or C++, and
its components correspond to the fields of a struct. Here’s a C equivalent of the
BookInfo type that we defined earlier:

struct book_info {
    int id;
    char *name;
    char **authors;
};

The main difference between the two is that the fields in the Haskell type are anony-
mous and positional:

-- file: ch03/BookStore.hs
data BookInfo = Book Int String [String]
                deriving (Show)

By positional, we mean that the section number is in the first field of the Haskell type
and the title is in the second. We refer to them by location, not by name.

Later in this chapter in “Pattern Matching” on page 50, we’ll see how to access the
fields of a BookInfo value. In “Record Syntax” on page 55, also in this chapter, we’ll
introduce an alternate syntax for defining data types that looks a little more C-like.
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The enumeration

Algebraic data types also serve where we’d use an enum in C or C++ to represent a range
of symbolic values. Such algebraic data types are sometimes referred to as enumeration
types. Here’s an example from C:

enum roygbiv {
    red,
    orange,
    yellow,
    green,
    blue,
    indigo,
    violet,
};

And here’s a Haskell equivalent:

-- file: ch03/Roygbiv.hs

data Roygbiv = Red
             | Orange
             | Yellow
             | Green
             | Blue
             | Indigo
             | Violet
               deriving (Eq, Show)

We can try these out in ghci:

ghci> :type Yellow
Yellow :: Roygbiv
ghci> :type Red
Red :: Roygbiv
ghci> Red == Yellow
False
ghci> Green == Green
True

In C, the elements of an enum are integers. We can use an integer in a context where an
enum is expected and vice versa—a C compiler will automatically convert values be-
tween the two types. This can be a source of nasty bugs. In Haskell, this kind of problem
does not occur. For example, we cannot use a Roygbiv value where an Int is expected:

ghci> take 3 "foobar"
"foo"
ghci> take Red "foobar"

<interactive>:1:5:
    Couldn't match expected type `Int' against inferred type `Roygbiv'
    In the first argument of `take', namely `Red'
    In the expression: take Red "foobar"
    In the definition of `it': it = take Red "foobar"
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The discriminated union

If an algebraic data type has multiple alternatives, we can think of it as similar to a
union in C or C++. A big difference between the two is that a union doesn’t tell us
which alternative is actually present; we have to explicitly and manually track which
alternative we’re using, usually in another field of an enclosing struct. This means that
unions can be sources of nasty bugs, where our notion of which alternative we should
be using is incorrect:

enum shape_type {
    shape_circle,
    shape_poly,
};

struct circle {
    struct vector centre;
    float radius;
};

struct poly {
    size_t num_vertices;
    struct vector *vertices;
};

struct shape 
{
    enum shape_type type;
    union {
    struct circle circle;
    struct poly poly;
    } shape;
};

In this example, the union can contain valid data for either a struct circle or a struct
poly. We have to use the enum shape_type by hand to indicate which kind of value is
currently stored in the union.

The Haskell version of this code is both dramatically shorter and safer than the C
equivalent:

-- file: ch03/ShapeUnion.hs
type Vector = (Double, Double)

data Shape = Circle Vector Double
           | Poly [Vector]

If we create a Shape value using the Circle constructor, the fact that we created a
Circle is stored. When we later use a Circle, we can’t accidentally treat it as a
Square. We will see why in the next section “Pattern Matching” on page 50.
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A few notes
After reading the preceding sections, it should now be clear that all of
the data types that we define with the data keyword are algebraic data
types. Some may have just one alternative, while others have several,
but they’re all using the same machinery.

Pattern Matching
Now that we’ve seen how to construct values with algebraic data types, let’s discuss
how we work with these values. If we have a value of some type, there are two things
we would like to be able to do:

• If the type has more than one value constructor, we need to be able to tell which
value constructor was used to create the value.

• If the value constructor has data components, we need to be able to extract those
values.

Haskell has a simple, but tremendously useful, pattern matching facility that lets us do
both of these things.

A pattern lets us look inside a value and bind variables to the data it contains. Here’s
an example of pattern matching in action on a Bool value; we’re going to reproduce the
not function:

-- file: ch03/add.hs
myNot True  = False
myNot False = True

It might seem that we have two functions named myNot here, but Haskell lets us define
a function as a series of equations: these two clauses are defining the behavior of the
same function for different patterns of input. On each line, the patterns are the items
following the function name, up until the = sign.

To understand how pattern matching works, let’s step through an example—say, myNot
False.

When we apply myNot, the Haskell runtime checks the value we supply against the value
constructor in the first pattern. This does not match, so it tries against the second
pattern. That match succeeds, so it uses the righthand side of that equation as the result
of the function application.

Here is a slightly more extended example. This function adds together the elements of
a list:

-- file: ch03/add.hs
sumList (x:xs) = x + sumList xs
sumList []     = 0
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Let us step through the evaluation of sumList [1,2]. The list notation [1,2] is shorthand
for the expression (1:(2:[])). We begin by trying to match the pattern in the first
equation of the definition of sumList. In the (x:xs) pattern, the : is the familiar list
constructor, (:). We are now using it to match against a value, not to construct one.
The value (1:(2:[])) was constructed with (:), so the constructor in the value matches
the constructor in the pattern. We say that the pattern matches or that the match
succeeds.

The variables x and xs are now “bound to” the constructor’s arguments, so x is given
the value 1, and xs the value 2:[].

The expression we are now evaluating is 1 + sumList (2:[]). We must recursively apply
sumList to the value 2:[]. Once again, this was constructed using (:), so the match
succeeds. In our recursive application of sumList, x is now bound to 2, and xs to [].

We are now evaluating 1 + (2 + sumList []). In this recursive application of
sumList, the value we are matching against is []. The value’s constructor does not match
the constructor in the first pattern, so we skip this equation. Instead, we “fall
through” to the next pattern, which matches. The righthand side of this equation is
thus chosen as the result of this application.

The result of sumList [1,2] is thus 1 + (2 + (0)), or 3.

Ordering is important
As we already mentioned, a Haskell implementation checks patterns for
matches in the order in which we specify them in our equations. Match-
ing proceeds from top to bottom and stops at the first success. Equations
that are below a successful match have no effect.

As a final note, there is a standard function, sum, that performs this sum-of-a-list for us.
Our sumList is purely for illustration.

Construction and Deconstruction
Let’s step back and take a look at the relationship between constructing a value and
pattern matching on it.

We apply a value constructor to build a value. The expression Book 9 "Close Calls"
["John Long"] applies the Book constructor to the values 9, "Close Calls", and ["John
Long"] in order to produce a new value of type BookInfo.

When we pattern match against the Book constructor, we reverse the construction
process. First of all, we check to see if the value was created using that constructor. If
it was, we inspect it to obtain the individual values that we originally supplied to the
constructor when we created the value.
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Let’s consider what happens if we match the pattern (Book id name authors) against
our example expression:

• The match will succeed, because the constructor in the value matches the one in
our pattern.

• The variable id will be bound to 9.

• The variable name will be bound to "Close Calls".

• The variable authors will be bound to ["John Long"].

Because pattern matching acts as the inverse of construction, it’s sometimes referred
to as deconstruction.

Deconstruction doesn’t destroy anything
If you’re steeped in object-oriented programming jargon, don’t confuse
deconstruction with destruction! Matching a pattern has no effect on
the value we’re examining: it just lets us “look inside” it.

Further Adventures
The syntax for pattern matching on a tuple is similar to the syntax for constructing a
tuple. Here’s a function that returns the last element of a 3-tuple:

-- file: ch03/Tuple.hs
third (a, b, c) = c

There’s no limit on how “deep” within a value a pattern can look. This definition looks
both inside a tuple and inside a list within that tuple:

-- file: ch03/Tuple.hs
complicated (True, a, x:xs, 5) = (a, xs)

We can try this out interactively:

ghci> :load Tuple.hs
[1 of 1] Compiling Main             ( Tuple.hs, interpreted )
Ok, modules loaded: Main.
ghci> complicated (True, 1, [1,2,3], 5)
(1,[2,3])

Wherever a literal value is present in a pattern (True and 5 in the preceding pattern),
that value must match exactly for the pattern match to succeed. If every pattern within
a series of equations fails to match, we get a runtime error:

ghci> complicated (False, 1, [1,2,3], 5)
*** Exception: Tuple.hs:10:0-39: Non-exhaustive patterns in function complicated

For an explanation of this error message, skip forward to the section “Exhaustive Pat-
terns and Wild Cards” on page 54.
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We can pattern match on an algebraic data type using its value constructors. Recall the
BookInfo type we defined earlier; we can extract the values from a BookInfo as follows:

-- file: ch03/BookStore.hs
bookID      (Book id title authors) = id
bookTitle   (Book id title authors) = title
bookAuthors (Book id title authors) = authors

Let’s see it in action:

ghci> bookID (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
3
ghci> bookTitle (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
"Probability Theory"
ghci> bookAuthors (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
["E.T.H. Jaynes"]

The compiler can infer the types of the accessor functions based on the constructor
that we’re using in our pattern:

ghci> :type bookID
bookID :: BookInfo -> Int
ghci> :type bookTitle
bookTitle :: BookInfo -> String
ghci> :type bookAuthors
bookAuthors :: BookInfo -> [String]

If we use a literal value in a pattern, the corresponding part of the value that we’re
matching against must contain an identical value. For instance, the pattern (3:xs) first
checks that a value is a nonempty list, by matching against the (:) constructor. It also
ensures that the head of the list has the exact value 3. If both of these conditions hold,
the tail of the list will be bound to the variable xs.

Variable Naming in Patterns
As you read functions that match on lists, you’ll frequently find that the names of the
variables inside a pattern resemble (x:xs) or (d:ds). This is a popular naming conven-
tion. The idea is that the name xs has an s on the end of its name as if it’s the “plural”
of x, because x contains the head of the list, and xs contains the remaining elements.

The Wild Card Pattern
We can indicate that we don’t care what is present in part of a pattern. The notation
for this is the underscore character (_), which we call a wild card. We use it as follows:

-- file: ch03/BookStore.hs
nicerID      (Book id _     _      ) = id
nicerTitle   (Book _  title _      ) = title
nicerAuthors (Book _  _     authors) = authors

Here, we have tidier versions of the accessor functions that we introduced earlier. Now,
there’s no question about which element we’re using in each function.
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In a pattern, a wild card acts similarly to a variable, but it doesn’t bind a new variable.
As the previous examples indicate, we can use more than one wild card in a single
pattern.

Another advantage of wild cards is that a Haskell compiler can warn us if we introduce
a variable name in a pattern, but then not use it in a function’s body. Defining a variable
but forgetting to use it can often indicate the presence of a bug, so this is a helpful
feature. If we use a wild card instead of a variable that we do not intend to use, the
compiler won’t complain.

Exhaustive Patterns and Wild Cards
When writing a series of patterns, it’s important to cover all of a type’s constructors.
For example, if we’re inspecting a list, we should have one equation that matches the
non-empty constructor (:) and one that matches the empty-list constructor [].

Let’s see what happens if we fail to cover all the cases. Here, we deliberately omit a
check for the [] constructor:

-- file: ch03/BadPattern.hs
badExample (x:xs) = x + badExample xs

If we apply this to a value that it cannot match, we’ll get an error at runtime—our
software has a bug!

ghci> badExample []
*** Exception: BadPattern.hs:4:0-36: Non-exhaustive patterns in function badExample

In this example, no equation in the function’s definition matches the value [].

Warning about incomplete patterns
GHC provides a helpful compilation option, -fwarn-incomplete-
patterns, that will cause it to print a warning during compilation if a
sequence of patterns doesn’t match all of a type’s value constructors.

If we need to provide a default behavior in cases where we don’t care about specific
constructors, we can use a wild card pattern:

-- file: ch03/BadPattern.hs
goodExample (x:xs) = x + goodExample xs
goodExample _      = 0

The wild card shown in the preceding code will match the [] constructor, so applying
this function does not lead to a crash:

ghci> goodExample []
0
ghci> goodExample [1,2]
3
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Record Syntax
Writing accessor functions for each of a data type’s components can be repetitive and
tedious:

-- file: ch03/BookStore.hs
nicerID      (Book id _     _      ) = id
nicerTitle   (Book _  title _      ) = title
nicerAuthors (Book _  _     authors) = authors

We call this kind of code boilerplate—necessary,but bulky and irksome. Haskell pro-
grammers don’t like boilerplate. Fortunately, the language addresses this particular
boilerplate problem: we can define a data type, and accessors for each of its compo-
nents, simultaneously. (The positions of the commas here is a matter of preference. If
you like, put them at the end of a line instead of the beginning.)

-- file: ch03/BookStore.hs
data Customer = Customer {
      customerID      :: CustomerID
    , customerName    :: String
    , customerAddress :: Address
    } deriving (Show)

This is almost exactly identical in meaning to the following, more familiar form:

-- file: ch03/AltCustomer.hs
data Customer = Customer Int String [String]
                deriving (Show)

customerID :: Customer -> Int
customerID (Customer id _ _) = id

customerName :: Customer -> String
customerName (Customer _ name _) = name

customerAddress :: Customer -> [String]
customerAddress (Customer _ _ address) = address

For each of the fields that we name in our type definition, Haskell creates an accessor
function of that name:

ghci> :type customerID
customerID :: Customer -> CustomerID

We can still use the usual application syntax to create a value of this type:

-- file: ch03/BookStore.hs
customer1 = Customer 271828 "J.R. Hacker"
            ["255 Syntax Ct",
             "Milpitas, CA 95134",
             "USA"]
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Record syntax adds a more verbose notation for creating a value. This can sometimes
make code more readable:

-- file: ch03/BookStore.hs
customer2 = Customer {
              customerID = 271828
            , customerAddress = ["1048576 Disk Drive",
                                 "Milpitas, CA 95134",
                                 "USA"]
            , customerName = "Jane Q. Citizen"
            }

If we use this form, we can vary the order in which we list fields. Here, we moved the
name and address fields from their positions in the declaration of the type.

When we define a type using record syntax, it also changes the way the type’s values
are printed:

ghci> customer1
Customer {customerID = 271828, customerName = "J.R. Hacker", customerAddress = 
["255 Syntax Ct","Milpitas, CA 95134","USA"]}

For comparison, let’s look at a BookInfo value; we defined this type without record
syntax:

ghci> cities
Book 173 "Use of Weapons" ["Iain M. Banks"]

The accessor functions that we get “for free” when we use record syntax really are
normal Haskell functions:

ghci> :type customerName
customerName :: Customer -> String
ghci> customerName customer1
"J.R. Hacker"

The standard System.Time module makes good use of record syntax. Here’s a type
defined in that module:

data CalendarTime = CalendarTime {
  ctYear                      :: Int,
  ctMonth                     :: Month,
  ctDay, ctHour, ctMin, ctSec :: Int,
  ctPicosec                   :: Integer,
  ctWDay                      :: Day,
  ctYDay                      :: Int,
  ctTZName                    :: String,
  ctTZ                        :: Int,
  ctIsDST                     :: Bool
}

In the absence of record syntax, it would be painful to extract specific fields from a type
such as this. The notation makes it easier to work with large structures.
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Parameterized Types
We’ve repeatedly mentioned that the list type is polymorphic: the elements of a list can
be of any type. We can also add polymorphism to our own types. To do this, we
introduce type variables into a type declaration. The Prelude defines a type named
Maybe, which we can use to represent a value that could be either present or missing,
for example, a field in a database row that could be null:

-- file: ch03/Nullable.hs
data Maybe a = Just a
             | Nothing

Here, the variable a is not a regular variable—it’s a type variable. It indicates that the
Maybe type takes another type as its parameter. This lets us use Maybe on values of any
type:

-- file: ch03/Nullable.hs
someBool = Just True

someString = Just "something"

As usual, we can experiment with this type in ghci:

ghci> Just 1.5
Just 1.5
ghci> Nothing
Nothing
ghci> :type Just "invisible bike"
Just "invisible bike" :: Maybe [Char]

Maybe is a polymorphic, or generic, type. We give the Maybe type constructor a parameter
to create a specific type, such as Maybe Int or Maybe [Bool]. As we might expect, these
types are distinct.

We can nest uses of parameterized types inside each other, but when we do, we may
need to use parentheses to tell the Haskell compiler how to parse our expression:

-- file: ch03/Nullable.hs
wrapped = Just (Just "wrapped")

To once again extend an analogy to more familiar languages, parameterized types bear
some resemblance to templates in C++ and to generics in Java. Just be aware that this
is a shallow analogy. Templates and generics were added to their respective languages
long after the languages were initially defined, and they have an awkward feel. Haskell’s
parameterized types are simpler and easier to use, as the language was designed with
them from the beginning.
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Recursive Types
The familiar list type is recursive: it’s defined in terms of itself. To understand this, let’s
create our own list-like type. We’ll use Cons in place of the (:) constructor, and Nil in
place of []:

-- file: ch03/ListADT.hs
data List a = Cons a (List a)
            | Nil
              deriving (Show)

Because List a appears on both the left and the right of the = sign, the type’s definition
refers to itself. If we want to use the Cons constructor to create a new value, we must
supply one value of type a and another of type List a. Let’s see where this leads us in
practice.

The simplest value of type List a that we can create is Nil. Save the type definition in
a file, and then load it into ghci:

ghci> Nil
Nil

Because Nil has a List type, we can use it as a parameter to Cons:

ghci> Cons 0 Nil
Cons 0 Nil

And because Cons 0 Nil has the type List a, we can use this as a parameter to Cons:

ghci> Cons 1 it
Cons 1 (Cons 0 Nil)
ghci> Cons 2 it
Cons 2 (Cons 1 (Cons 0 Nil))
ghci> Cons 3 it
Cons 3 (Cons 2 (Cons 1 (Cons 0 Nil)))

We could continue in this fashion indefinitely, creating ever-longer Cons chains, each
with a single Nil at the end.

For a third example of what a recursive type is, here is a definition of a binary tree type:

-- file: ch03/Tree.hs
data Tree a = Node a (Tree a) (Tree a)
            | Empty
              deriving (Show)

A binary tree is either a node with two children—which are themselves binary trees—
or an empty value.
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Is List an acceptable list?
We can easily prove to ourselves that our List a type has the same shape
as the built-in list type [a]. To do this, we write a function that takes
any value of type [a] and produces a value of type List a:

-- file: ch03/ListADT.hs
fromList (x:xs) = Cons x (fromList xs)
fromList []     = Nil

By inspection, this clearly substitutes a Cons for every (:) and a Nil for
each []. This covers both of the built-in list type’s constructors. The two
types are isomorphic—they have the same shape:

ghci> fromList "durian"
Cons 'd' (Cons 'u' (Cons 'r' (Cons 'i' (Cons 'a' (Cons 'n' Nil)))))
ghci> fromList [Just True, Nothing, Just False]
Cons (Just True) (Cons Nothing (Cons (Just False) Nil))

This time, let’s search for insight by comparing our definition with one from a more
familiar language. Here’s a similar class definition in Java:

class Tree<A>
{
    A value;
    Tree<A> left;
    Tree<A> right;

    public Tree(A v, Tree<A> l, Tree<A> r)
    {
    value = v;
    left = l;
    right = r;
    }
}

The one significant difference is that Java lets us use the special value null anywhere
to indicate “nothing,” so we can use null to indicate that a node is missing a left or
right child. Here’s a small function that constructs a tree with two leaves (a leaf, by
convention, has no children):

class Example 
{
    static Tree<String> simpleTree()
    {
    return new Tree<String>(
            "parent",
        new Tree<String>("left leaf", null, null),
        new Tree<String>("right leaf", null, null));
    }
}

In Haskell, we don’t have an equivalent of null. We could use the Maybe type to provide
a similar effect, but that would bloat the pattern matching. Instead, we’ve decided to
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use a no-argument Empty constructor. Where the Java example provides null to the
Tree constructor, we supply Empty in Haskell:

-- file: ch03/Tree.hs
simpleTree = Node "parent" (Node "left child" Empty Empty)
                           (Node "right child" Empty Empty)

E X E R C I S E S

1. Write the converse of fromList for the List type: a function that takes a List a and
generates a [a].

2. Define a tree type that has only one constructor, like our Java example. Instead of
the Empty constructor, use the Maybe type to refer to a node’s children.

Reporting Errors
Haskell provides a standard function, error :: String -> a, that we can call when
something has gone terribly wrong in our code. We give it a string parameter, which is
the error message to display. Its type signature looks peculiar: how can it produce a
value of any type a given only a string?

It has a result type of a so that we can call it anywhere and it will always have the right
type. However, it does not return a value like a normal function. Instead, it immediately
aborts evaluation and prints the error message we give it.

The mySecond function returns the second element of its input list but fails if its input
list isn’t long enough:

-- file: ch03/MySecond.hs
mySecond :: [a] -> a

mySecond xs = if null (tail xs)
              then error "list too short"
              else head (tail xs)

As usual, we can see how this works in practice in ghci:

ghci> mySecond "xi"
'i'
ghci> mySecond [2]
*** Exception: list too short
ghci> head (mySecond [[9]])
*** Exception: list too short

Notice the third case, where we try to use the result of the call to mySecond as the
argument to another function. Evaluation still terminates and drops us back to the
ghci prompt. This is the major weakness of using error: it doesn’t let our caller distin-
guish between a recoverable error and a problem so severe that it really should terminate
our program.

As we have already seen, a pattern matching failure causes a similar unrecoverable error:
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ghci> mySecond []
*** Exception: Prelude.tail: empty list

A More Controlled Approach
We can use the Maybe type to represent the possibility of an error.

If we want to indicate that an operation has failed, we can use the Nothing constructor.
Otherwise, we wrap our value with the Just constructor.

Let’s see how our mySecond function changes if we return a Maybe value instead of calling
error:

-- file: ch03/MySecond.hs
safeSecond :: [a] -> Maybe a

safeSecond [] = Nothing
safeSecond xs = if null (tail xs)
                then Nothing
                else Just (head (tail xs))

If the list we’re passed is too short, we return Nothing to our caller. This lets them decide
what to do, while a call to error would force a crash:

ghci> safeSecond []
Nothing
ghci> safeSecond [1]
Nothing
ghci> safeSecond [1,2]
Just 2
ghci> safeSecond [1,2,3]
Just 2

To return to an earlier topic, we can further improve the readability of this function
with pattern matching:

-- file: ch03/MySecond.hs
tidySecond :: [a] -> Maybe a

tidySecond (_:x:_) = Just x
tidySecond _       = Nothing

The first pattern matches only if the list is at least two elements long (it contains two
list constructors), and it binds the variable x to the list’s second element. The second
pattern is matched if the first fails.

Introducing Local Variables
Within the body of a function, we can introduce new local variables whenever we need
them, using a let expression. Here is a simple function that determines whether we
should lend some money to a customer. We meet a money reserve of at least 100, and
we return our new balance after subtracting the amount we have loaned:
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-- file: ch03/Lending.hs
lend amount balance = let reserve    = 100
                          newBalance = balance - amount
                      in if balance < reserve
                         then Nothing
                         else Just newBalance

The keywords to look out for here are let, which starts a block of variable declarations,
and in, which ends it. Each line introduces a new variable. The name is on the left of
the =, and the expression to which it is bound is on the right.

Special notes
Let us reemphasize our wording: a name in a let block is bound to an
expression, not to a value. Because Haskell is a lazy language, the ex-
pression associated with a name won’t actually be evaluated until it’s
needed. In the previous example, we could not compute the value of
newBalance if we did not meet our reserve.

When we define a variable in a let block, we refer to it as a let-bound
variable. This simply means what it says: we have bound the variable in
a let block.

Also, our use of whitespace here is important. We’ll talk in more detail
about the layout rules later in this chapter in “The Offside Rule and
Whitespace in an Expression” on page 64.

We can use the names of a variable in a let block both within the block of declarations
and in the expression that follows the in keyword.

In general, we’ll refer to the places within our code where we can use a name as the
name’s scope. If we can use a name, it’s in scope; otherwise, it’s out of scope. If a name
is visible throughout a source file, we say it’s at the top level.

Shadowing
We can “nest” multiple let blocks inside each other in an expression:

-- file: ch03/NestedLets.hs
foo = let a = 1
      in let b = 2
         in a + b

It’s perfectly legal, but not exactly wise, to repeat a variable name in a nested let
expression:

-- file: ch03/NestedLets.hs
bar = let x = 1
      in ((let x = "foo" in x), x)

Here, the inner x is hiding, or shadowing, the outer x. It has the same name, but a
different type and value:
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ghci> bar
("foo",1)

We can also shadow a function’s parameters, leading to even stranger results. What is 
the type of this function?

-- file: ch03/NestedLets.hs
quux a = let a = "foo"
         in a ++ "eek!"

Because the function’s argument a is never used in the body of the function, due to
being shadowed by the let-bound a, the argument can have any type at all:

ghci> :type quux
quux :: t -> [Char]

Compiler warnings are your friends
Shadowing can obviously lead to confusion and nasty bugs, so GHC
has a helpful -fwarn-name-shadowing option. When enabled, GHC will
print a warning message any time we shadow a name.

The where Clause
We can use another mechanism to introduce local variables: the where clause. The
definitions in a where clause apply to the code that precedes it. Here’s a similar function
to lend, using where instead of let:

-- file: ch03/Lending.hs
lend2 amount balance = if amount < reserve * 0.5
                       then Just newBalance
                       else Nothing
    where reserve    = 100
          newBalance = balance - amount

While a where clause may seem weird initially, it offers a wonderful aid to readability.
It lets us direct our reader’s focus to the important details of an expression, with the
supporting definitions following afterwards. After a while, you may find yourself miss-
ing where clauses when using languages that lack them.

As with let expressions, whitespace is significant in where clauses. We will talk more
about the layout rules shortly in “The Offside Rule and Whitespace in an Expression”
on page 64.

Local Functions, Global Variables
You’ll have noticed that Haskell’s syntax for defining a variable looks very similar to
its syntax for defining a function. This symmetry is preserved in let and where blocks;
we can define local functions just as easily as local variables:
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-- file: ch03/LocalFunction.hs
pluralise :: String -> [Int] -> [String]
pluralise word counts = map plural counts
    where plural 0 = "no " ++ word ++ "s"
          plural 1 = "one " ++ word
          plural n = show n ++ " " ++ word ++ "s"

We have defined a local function, plural, that consists of several equations. Local
functions can freely use variables from the scopes that enclose them; here, we use
word from the definition of the outer function pluralise. In the definition of
pluralise, the map function (which we’ll be revisiting in the next chapter) applies the
local function plural to every element of the counts list.

We can also define variables, as well as functions, at the top level of a source file:

-- file: ch03/GlobalVariable.hs
itemName = "Weighted Companion Cube"

The Offside Rule and Whitespace in an Expression
In our definitions of lend and lend2, the left margin of our text wandered around quite
a bit. This was not an accident; in Haskell, whitespace has meaning.

Haskell uses indentation as a cue to parse sections of code. This use of layout to convey
structure is sometimes called the offside rule. At the beginning of a source file, the first
top-level declaration or definition can start in any column, and the Haskell compiler
or interpreter remembers that indentation level. Every subsequent top-level declaration
must have the same indentation.

Here’s an illustration of the top-level indentation rule; our first file, GoodIndent.hs, is
well-behaved:

-- file: ch03/GoodIndent.hs
-- This is the leftmost column.

  -- It's fine for top-level declarations to start in any column...
  firstGoodIndentation = 1

  -- ...provided all subsequent declarations do, too!
  secondGoodIndentation = 2

Our second, BadIndent.hs, doesn’t play by the rules:

-- file: ch03/BadIndent.hs
-- This is the leftmost column.

    -- Our first declaration is in column 4.
    firstBadIndentation = 1

  -- Our second is left of the first, which is illegal!
  secondBadIndentation = 2

Here’s what happens when we try to load the two files into ghci:
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ghci> :load GoodIndent.hs
[1 of 1] Compiling Main             ( GoodIndent.hs, interpreted )
Ok, modules loaded: Main.
ghci> :load BadIndent.hs
[1 of 1] Compiling Main             ( BadIndent.hs, interpreted )

BadIndent.hs:8:2: parse error on input `secondBadIndentation'
Failed, modules loaded: none.

An empty following line is treated as a continuation of the current item, as is a following
line indented further to the right.

The rules for let expressions and where clauses are similar. After a let or where keyword,
the Haskell compiler or interpreter remembers the indentation of the next token it sees.
If the line that follows is empty, or its indentation is further to the right, it is considered
as a continuation of the previous line. If the indentation is the same as the start of the
preceding item, it is treated as beginning a new item in the same block:

-- file: ch03/Indentation.hs
foo = let firstDefinition = blah blah
          -- a comment-only line is treated as empty
                              continuation blah

          -- we reduce the indentation, so this is a new definition
          secondDefinition = yada yada

                             continuation yada
      in whatever

Here are nested uses of let and where:

-- file: ch03/letwhere.hs
bar = let b = 2
          c = True
      in let a = b
         in (a, c)

The name a is only visible within the inner let expression—it’s not visible in the outer
let. If we try to use the name a there, we’ll get a compilation error. The indentation
gives both us and the compiler a visual cue as to what is currently in scope:

-- file: ch03/letwhere.hs
foo = x
    where x = y
              where y = 2

Similarly, the scope of the first where clause is the definition of foo, but the scope of the
second is just the first where clause.

The indentation we use for the let and where clauses makes our intentions easy to figure
out.
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A Note About Tabs Versus Spaces
If you use a Haskell-aware text editor (e.g., Emacs), it is probably already configured
to use space characters for all whitespace when you edit Haskell source files. If your
editor is not Haskell-aware, you should configure it to use only space characters.

The reason for this is portability. In an editor that uses a fixed-width font, tab stops are
by convention placed at different intervals on Unix-like systems (every eight characters)
than on Windows (every four characters). This means that no matter what your per-
sonal beliefs are about where tabs belong, you can’t rely on someone else’s editor
honoring your preferences. Any indentation that uses tabs is going to look broken under
someone’s configuration. In fact, this could lead to compilation problems, as the Haskell
language standard requires implementations to use the Unix tab width convention.
Using space characters avoids this problem entirely.

The Offside Rule Is Not Mandatory
We can use explicit structuring instead of layout to indicate what we mean. To do so,
we start a block of equations with an opening curly brace, separate each item with a
semicolon, and finish the block with a closing curly brace. The following two uses of
let have the same meanings:

-- file: ch03/Braces.hs
bar = let a = 1
          b = 2
          c = 3
      in a + b + c

foo = let { a = 1;  b = 2;
        c = 3 }
      in a + b + c

When we use explicit structuring, the normal layout rules don’t apply, which is why
we can get away with unusual indentation in the second let expression.

We can use explicit structuring anywhere that we’d normally use layout. It’s valid for
where clauses and even for top-level declarations. Just remember that although the
facility exists, explicit structuring is hardly ever actually used in Haskell programs.

The case Expression
Function definitions are not the only place where we can use pattern matching. The
case construct lets us match patterns within an expression. Here’s what it looks like.
This function (defined for us in Data.Maybe) unwraps a Maybe value, using a default if
the value is Nothing:

-- file: ch03/Guard.hs
fromMaybe defval wrapped =
    case wrapped of
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      Nothing     -> defval
      Just value  -> value

The case keyword is followed by an arbitrary expression; the pattern match is per-
formed against the result of this expression. The of keyword signifies the end of the
expression and the beginning of the block of patterns and expressions.

Each item in the block consists of a pattern, followed by an arrow (->), followed by an
expression to evaluate if that pattern matches. These expressions must all have the same
type. The result of the case expression is the result of the expression associated with
the first pattern to match. Matches are attempted from top to bottom.

To express “here’s the expression to evaluate if none of the other patterns matches,”
we just use the wild card pattern _ as the last in our list of patterns. If a pattern match
fails, we will get the same kind of runtime error that we saw earlier.

Common Beginner Mistakes with Patterns
There are a few ways in which new Haskell programmers can misunderstand or misuse
patterns. The following are some attempts at pattern matching gone awry. Depending
on what you expect one of these examples to do, there may be some surprises.

Incorrectly Matching Against a Variable
Take a look at the following code:

-- file: ch03/BogusPattern.hs
data Fruit = Apple | Orange

apple = "apple"

orange = "orange"        

whichFruit :: String -> Fruit

whichFruit f = case f of
                 apple  -> Apple
                 orange -> Orange

A naive glance suggests that this code is trying to check the value f to see whether it
matches the value apple or orange.

It is easier to spot the mistake if we rewrite the code in an equational style:

-- file: ch03/BogusPattern.hs
equational apple = Apple
equational orange = Orange

Now can you see the problem? Here, it is more obvious apple does not refer to the top-
level value named apple—it is a local pattern variable.
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Irrefutable patterns
We refer to a pattern that always succeeds as irrefutable. Plain variable
names and the wild card _ (underscore) are examples of irrefutable
patterns.

Here’s a corrected version of this function:

-- file: ch03/BogusPattern.hs
betterFruit f = case f of
                  "apple"  -> Apple
                  "orange" -> Orange

We fixed the problem by matching against the literal values "apple" and "orange".

Incorrectly Trying to Compare for Equality
What if we want to compare the values stored in two nodes of type Tree, and then
return one of them if they’re equal? Here’s an attempt:

-- file: ch03/BadTree.hs
bad_nodesAreSame (Node a _ _) (Node a _ _) = Just a
bad_nodesAreSame _            _            = Nothing

A name can appear only once in a set of pattern bindings. We cannot place a variable
in multiple positions to express the notion “this value and that should be identical.”
Instead, we’ll solve this problem using guards, another invaluable Haskell feature.

Conditional Evaluation with Guards
Pattern matching limits us to performing fixed tests of a value’s shape. Although this
is useful, we will often want to make a more expressive check before evaluating a func-
tion’s body. Haskell provides a feature called guards that give us this ability. We’ll
introduce the idea with a modification of the function we wrote to compare two nodes
of a tree:

-- file: ch03/BadTree.hs
nodesAreSame (Node a _ _) (Node b _ _)
    | a == b     = Just a
nodesAreSame _ _ = Nothing

In this example, we use pattern matching to ensure that we are looking at values of the
right shape, and a guard to compare pieces of them.

A pattern can be followed by zero or more guards, each an expression of type Bool. A
guard is introduced by a | symbol. This is followed by the guard expression, then an
= symbol (or -> if we’re in a case expression), then the body to use if the guard expression
evaluates to True. If a pattern matches, each guard associated with that pattern is eval-
uated in the order in which they are written. If a guard succeeds, the body affiliated
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with it is used as the result of the function. If no guard succeeds, pattern matching
moves on to the next pattern.

When a guard expression is evaluated, all of the variables mentioned in the pattern
with which it is associated are bound and can be used.

Here is a reworked version of our lend function that uses guard:

-- file: ch03/Lending.hs
lend3 amount balance
     | amount <= 0            = Nothing
     | amount > reserve * 0.5 = Nothing
     | otherwise              = Just newBalance
    where reserve    = 100
          newBalance = balance - amount

The special-looking guard expression otherwise is simply a variable bound to the value
True that aids readability.

We can use guards anywhere that we can use patterns. Writing a function as a series
of equations using pattern matching and guards can make it much clearer. Remember
the myDrop function we defined in “Conditional Evaluation” on page 29?

-- file: ch02/myDrop.hs
myDrop n xs = if n <= 0 || null xs
              then xs
              else myDrop (n - 1) (tail xs)

Here is a reformulation that uses patterns and guards:

-- file: ch02/myDrop.hs
niceDrop n xs | n <= 0 = xs
niceDrop _ []          = []
niceDrop n (_:xs)      = niceDrop (n - 1) xs

This change in style lets us enumerate up front the cases in which we expect a function
to behave differently. If we bury the decisions inside a function as if expressions, the
code becomes harder to read.

E X E R C I S E S

1. Write a function that computes the number of elements in a list. To test it, ensure
that it gives the same answers as the standard length function.

2. Add a type signature for your function to your source file. To test it, load the source
file into ghci again.

3. Write a function that computes the mean of a list, i.e., the sum of all elements in
the list divided by its length. (You may need to use the fromIntegral function to
convert the length of the list from an integer into a floating-point number.)

4. Turn a list into a palindrome; i.e., it should read the same both backward and
forward. For example, given the list [1,2,3], your function should return
[1,2,3,3,2,1].

5. Write a function that determines whether its input list is a palindrome.
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6. Create a function that sorts a list of lists based on the length of each sublist. (You
may want to look at the sortBy function from the Data.List module.)

7. Define a function that joins a list of lists together using a separator value:

-- file: ch03/Intersperse.hs
intersperse :: a -> [[a]] -> [a]

The separator should appear between elements of the list, but it should not follow
the last element. Your function should behave as follows:

ghci> :load Intersperse
[1 of 1] Compiling Main             ( Intersperse.hs, interpreted )
Ok, modules loaded: Main.
ghci> intersperse ',' []
""
ghci> intersperse ',' ["foo"]
"foo"
ghci> intersperse ',' ["foo","bar","baz","quux"]
"foo,bar,baz,quux"

8. Using the binary tree type that we defined earlier in this chapter, write a function
that will determine the height of the tree. The height is the largest number of hops
from the root to an Empty. For example, the tree Empty has height zero; Node "x"
Empty Empty has height one; Node "x" Empty (Node "y" Empty Empty) has height
two; and so on.

9. Consider three two-dimensional points, a, b, and c. If we look at the angle formed
by the line segment from a to b and the line segment from b to c, it turns left, turns
right, or forms a straight line. Define a Direction data type that lets you represent
these possibilities.

10. Write a function that calculates the turn made by three two-dimensional points
and returns a Direction.

11. Define a function that takes a list of two-dimensional points and computes the
direction of each successive triple. Given a list of points [a,b,c,d,e], it should
begin by computing the turn made by [a,b,c], then the turn made by [b,c,d],
then [c,d,e]. Your function should return a list of Direction.

12. Using the code from the preceding three exercises, implement Graham’s scan al-
gorithm for the convex hull of a set of 2D points. You can find good description
of what a convex hull (http://en.wikipedia.org/wiki/Convex_hull) is, and how the
Graham scan algorithm (http://en.wikipedia.org/wiki/Graham_scan) should work,
on Wikipedia (http://en.wikipedia.org/).
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CHAPTER 4

Functional Programming

Thinking in Haskell
Our early learning of Haskell has two distinct obstacles. The first is coming to terms
with the shift in mindset from imperative programming to functional: we have to re-
place our programming habits from other languages. We do this not because imperative
techniques are bad, but because in a functional language other techniques work better.

Our second challenge is learning our way around the standard Haskell libraries. As in
any language, the libraries act as a lever, enabling us to multiply our problem-solving
ability. Haskell libraries tend to operate at a higher level of abstraction than those in
many other languages. We’ll need to work a little harder to learn to use the libraries,
but in exchange they offer a lot of power.

In this chapter, we’ll introduce a number of common functional programming techni-
ques. We’ll draw upon examples from imperative languages in order to highlight the
shift in thinking that we’ll need to make. As we do so, we’ll walk through some of the
fundamentals of Haskell’s standard libraries. We’ll also intermittently cover a few more
language features along the way.

A Simple Command-Line Framework
In most of this chapter, we will concern ourselves with code that has no interaction
with the outside world. To maintain our focus on practical code, we will begin by
developing a gateway between our “pure” code and the outside world. Our framework
simply reads the contents of one file, applies a function to the file, and writes the result
to another file:

-- file: ch04/InteractWith.hs
-- Save this in a source file, e.g., Interact.hs

import System.Environment (getArgs)

interactWith function inputFile outputFile = do
  input <- readFile inputFile
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  writeFile outputFile (function input)

main = mainWith myFunction
  where mainWith function = do
          args <- getArgs
          case args of
            [input,output] -> interactWith function input output
            _ -> putStrLn "error: exactly two arguments needed"

        -- replace "id" with the name of our function below
        myFunction = id

This is all we need to write simple, but complete, file-processing programs. This is a
complete program, and we can compile it to an executable named InteractWith as
follows:

$ ghc --make InteractWith
[1 of 1] Compiling Main             ( InteractWith.hs, InteractWith.o )
Linking InteractWith ...

If we run this program from the shell or command prompt, it will accept two filenames,
the name of a file to read, and the name of a file to write:

$ ./Interact
error: exactly two arguments needed
$ ./Interact hello-in.txt hello-out.txt
$ cat hello-in.txt
hello world
$ cat hello-out.txt
hello world

Some of the notation in our source file is new. The do keyword introduces a block of
actions that can cause effects in the real world, such as reading or writing a file. The
<- operator is the equivalent of assignment inside a do block. This is enough explanation
to get us started. We will talk in much more depth about these details of notation, and
I/O in general, in Chapter 7.

When we want to test a function that cannot talk to the outside world, we simply replace
the name id in the preceding code with the name of the function we want to test.
Whatever our function does, it will need to have the type String -> String; in other
words, it must accept a string and return a string.

Warming Up: Portably Splitting Lines of Text
Haskell provides a built-in function, lines, that lets us split a text string on line boun-
daries. It returns a list of strings with line termination characters omitted:

ghci> :type lines
lines :: String -> [String]
ghci> lines "line 1\nline 2"
["line 1","line 2"]
ghci> lines "foo\n\nbar\n"
["foo","","bar"]
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While lines looks useful, it relies on us reading a file in “text mode” in order to work.
Text mode is a feature common to many programming languages; it provides a special
behavior when we read and write files on Windows. When we read a file in text mode,
the file I/O library translates the line-ending sequence "\r\n" (carriage return followed
by newline) to "\n" (newline alone), and it does the reverse when we write a file. On
Unix-like systems, text mode does not perform any translation. As a result of this dif-
ference, if we read a file on one platform that was written on the other, the line endings
are likely to become a mess. (Both readFile and writeFile operate in text mode.)

ghci> lines "a\r\nb"
["a\r","b"]

The lines function splits only on newline characters, leaving carriage returns dangling
at the ends of lines. If we read a Windows-generated text file on a Linux or Unix box,
we’ll get trailing carriage returns at the end of each line.

We have comfortably used Python’s “universal newline” support for years; this trans-
parently handles Unix and Windows line-ending conventions for us. We would like to
provide something similar in Haskell.

Since we are still early in our career of reading Haskell code, we will discuss our Haskell
implementation in some detail:

-- file: ch04/SplitLines.hs
splitLines :: String -> [String]

Our function’s type signature indicates that it accepts a single string, the contents of a
file with some unknown line-ending convention. It returns a list of strings, representing
each line from the file:

-- file: ch04/SplitLines.hs
splitLines [] = []
splitLines cs =
    let (pre, suf) = break isLineTerminator cs
    in  pre : case suf of 
                ('\r':'\n':rest) -> splitLines rest
                ('\r':rest)      -> splitLines rest
                ('\n':rest)      -> splitLines rest
                _                -> []

isLineTerminator c = c == '\r' || c == '\n'

Before we dive into detail, notice first how we organized our code. We presented the
important pieces of code first, keeping the definition of isLineTerminator until later.
Because we have given the helper function a readable name, we can guess what it does
even before we’ve read it, which eases the smooth “flow” of reading the code.

The Prelude defines a function named break that we can use to partition a list into two
parts. It takes a function as its first parameter. That function must examine an element
of the list and return a Bool to indicate whether to break the list at that point. The
break function returns a pair, which consists of the sublist consumed before the pred-
icate returned True (the prefix) and the rest of the list (the suffix):
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ghci> break odd [2,4,5,6,8]
([2,4],[5,6,8])
ghci> :module +Data.Char
ghci> break isUpper "isUpper"
("is","Upper")

Since we need only to match a single carriage return or newline at a time, examining
each element of the list one by one is good enough for our needs.

The first equation of splitLines indicates that if we match an empty string, we have
no further work to do.

In the second equation, we first apply break to our input string. The prefix is the sub-
string before a line terminator, and the suffix is the remainder of the string. The suffix
will include the line terminator, if any is present.

The pre : expression tells us that we should add the pre value to the front of the list of
lines. We then use a case expression to inspect the suffix, so we can decide what to do
next. The result of the case expression will be used as the second argument to the (:)
list constructor.

The first pattern matches a string that begins with a carriage return, followed by a
newline. The variable rest is bound to the remainder of the string. The other patterns
are similar, so they ought to be easy to follow.

A prose description of a Haskell function isn’t necessarily easy to follow. We can gain
a better understanding by stepping into ghci and observing the behavior of the function
in different circumstances.

Let’s start by partitioning a string that doesn’t contain any line terminators:

ghci> splitLines "foo"
["foo"]

Here, our application of break never finds a line terminator, so the suffix it returns is
empty:

ghci> break isLineTerminator "foo"
("foo","")

The case expression in splitLines must thus be matching on the fourth branch, and
we’re finished. What about a slightly more interesting case?

ghci> splitLines "foo\r\nbar"
["foo","bar"]

Our first application of break gives us a nonempty suffix:

ghci> break isLineTerminator "foo\r\nbar"
("foo","\r\nbar")

Because the suffix begins with a carriage return followed by a newline, we match on
the first branch of the case expression. This gives us pre bound to "foo", and suf bound
to "bar". We apply splitLines recursively, this time on "bar" alone:
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ghci> splitLines "bar"
["bar"]

The result is that we construct a list whose head is "foo" and whose tail is ["bar"]:

ghci> "foo" : ["bar"]
["foo","bar"]

This sort of experimenting with ghci is a helpful way to understand and debug the
behavior of a piece of code. It has an even more important benefit that is almost acci-
dental in nature. It can be tricky to test complicated code from ghci, so we will tend to
write smaller functions, which can further help the readability of our code.

This style of creating and reusing small, powerful pieces of code is a fundamental part
of functional programming.

A Line-Ending Conversion Program
Let’s hook our splitLines function into the little framework that we wrote earlier. Make
a copy of the InteractWith.hs source file; let’s call the new file FixLines.hs. Add the
splitLines function to the new source file. Since our function must produce a single
String, we must stitch the list of lines back together. The Prelude provides an
unlines function that concatenates a list of strings, adding a newline to the end of each:

-- file: ch04/SplitLines.hs
fixLines :: String -> String
fixLines input = unlines (splitLines input)

If we replace the id function with fixLines, we can compile an executable that will
convert a text file to our system’s native line ending:

$ ghc --make FixLines
[1 of 1] Compiling Main             ( FixLines.hs, FixLines.o )
Linking FixLines ...

If you are on a Windows system, find and download a text file that was created on a
Unix system (for example, gpl-3.0.txt [http://www.gnu.org/licenses/gpl-3.0.txt]). Open
it in the standard Notepad text editor. The lines should all run together, making the
file almost unreadable. Process the file using the FixLines command you just created,
and open the output file in Notepad. The line endings should now be fixed up.

On Unix-like systems, the standard pagers and editors hide Windows line endings,
making it more difficult to verify that FixLines is actually eliminating them. Here are a
few commands that should help:

$ file gpl-3.0.txt
gpl-3.0.txt: ASCII English text
$ unix2dos gpl-3.0.txt
unix2dos: converting file gpl-3.0.txt to DOS format ...
$ file gpl-3.0.txt
gpl-3.0.txt: ASCII English text, with CRLF line terminators
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Infix Functions
Usually, when we define or apply a function in Haskell, we write the name of the
function, followed by its arguments. This notation is referred to as prefix, because the
name of the function comes before its arguments.

If a function or constructor takes two or more arguments, we have the option of using
it in infix form, where we place it between its first and second arguments. This allows
us to use functions as infix operators.

To define or apply a function or value constructor using infix notation, we enclose its
name in backtick characters (sometimes known as backquotes). Here are simple infix
definitions of a function and a type:

-- file: ch04/Plus.hs
a `plus` b = a + b

data a `Pair` b = a `Pair` b
                  deriving (Show)

-- we can use the constructor either prefix or infix
foo = Pair 1 2
bar = True `Pair` "quux"

Since infix notation is purely a syntactic convenience, it does not change a function’s
behavior:

ghci> 1 `plus` 2
3
ghci> plus 1 2
3
ghci> True `Pair` "something"
True `Pair` "something"
ghci> Pair True "something"
True `Pair` "something"

Infix notation can often help readability. For instance, the Prelude defines a function,
elem, that indicates whether a value is present in a list. If we employ elem using prefix
notation, it is fairly easy to read:

ghci> elem 'a' "camogie"
True

If we switch to infix notation, the code becomes even easier to understand. It is now
clear that we’re checking to see if the value on the left is present in the list on the right:

ghci> 3 `elem` [1,2,4,8]
False

We see a more pronounced improvement with some useful functions from the
Data.List module. The isPrefixOf function tells us if one list matches the beginning
of another:

76 | Chapter 4: Functional Programming



ghci> :module +Data.List
ghci> "foo" `isPrefixOf` "foobar"
True

The isInfixOf and isSuffixOf functions match anywhere in a list and at its end,
respectively:

ghci> "needle" `isInfixOf` "haystack full of needle thingies"
True
ghci> "end" `isSuffixOf` "the end"
True

There is no hard-and-fast rule that dictates when you ought to use infix versus prefix
notation, although prefix notation is far more common. It’s best to choose whichever
makes your code more readable in a specific situation.

Beware familiar notation in an unfamiliar language
A few other programming languages use backticks, but in spite of the
visual similarities, the purpose of backticks in Haskell does not remotely
resemble their meaning in, for example, Perl, Python, or Unix shell
scripts.

The only legal thing we can do with backticks in Haskell is wrap them
around the name of a function. We can’t, for example, use them to
enclose a complex expression whose value is a function. It might be
convenient if we could, but that’s not how the language is today.

Working with Lists
As the bread and butter of functional programming, lists deserve some serious atten-
tion. The standard Prelude defines dozens of functions for dealing with lists. Many of
these will be indispensable tools, so it’s important that we learn them early on.

For better or worse, this section is going to read a bit like a laundry list of functions.
Why present so many functions at once? Because they are both easy to learn and ab-
solutely ubiquitous. If we don’t have this toolbox at our fingertips, we’ll end up wasting
time by reinventing simple functions that are already present in the standard libraries.
So bear with us as we go through the list; the effort you’ll save will be huge.

The Data.List module is the “real” logical home of all standard list functions. The
Prelude merely re-exports a large subset of the functions exported by Data.List. Several
useful functions in Data.List are not re-exported by the standard Prelude. As we walk
through list functions in the sections that follow, we will explicitly mention those that
are only in Data.List:

ghci> :module +Data.List

Working with Lists | 77



Because none of these functions is complex or takes more than about three lines of
Haskell to write, we’ll be brief in our descriptions of each. In fact, a quick and useful
learning exercise is to write a definition of each function after you’ve read about it.

Basic List Manipulation
The length function tells us how many elements are in a list:

ghci> :type length
length :: [a] -> Int
ghci> length []
0
ghci> length [1,2,3]
3
ghci> length "strings are lists, too"
22

If you need to determine whether a list is empty, use the null function:

ghci> :type null
null :: [a] -> Bool
ghci> null []
True
ghci> null "plugh"
False

To access the first element of a list, use the head function:

ghci> :type head
head :: [a] -> a
ghci> head [1,2,3]
1

The converse, tail, returns all but the head of a list:

ghci> :type tail
tail :: [a] -> [a]
ghci> tail "foo"
"oo"

Another function, last, returns the very last element of a list:

ghci> :type last
last :: [a] -> a
ghci> last "bar"
'r'

The converse of last is init, which returns a list of all but the last element of its input:

ghci> :type init
init :: [a] -> [a]
ghci> init "bar"
"ba"

Several of the preceding functions behave poorly on empty lists, so be careful if you
don’t know whether or not a list is empty. What form does their misbehavior take?
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ghci> head []
*** Exception: Prelude.head: empty list

Try each of the previous functions in ghci. Which ones crash when given an empty list?

Safely and Sanely Working with Crashy Functions
When we want to use a function such as head, where we know that it might blow up
on us if we pass in an empty list, there initially might be a strong temptation to check
the length of the list before we call head. Let’s construct an artificial example to illustrate
our point:

-- file: ch04/EfficientList.hs
myDumbExample xs = if length xs > 0
                   then head xs
                   else 'Z'

If we’re coming from a language such as Perl or Python, this might seem like a perfectly
natural way to write this test. Behind the scenes, Python lists are arrays, and Perl arrays
are, well, arrays. So we necessarily know how long they are, and calling len(foo) or
scalar(@foo) is a perfectly natural thing to do. But as with many other things, it’s not
a good idea to blindly transplant such an assumption into Haskell.

We’ve already seen the definition of the list algebraic data type many times, and we
know that a list doesn’t store its own length explicitly. Thus, the only way that
length can operate is to walk the entire list.

Therefore, when we care only whether or not a list is empty, calling length isn’t a good
strategy. It can potentially do a lot more work than we want, if the list we’re working
with is finite. Since Haskell lets us easily create infinite lists, a careless use of length
may even result in an infinite loop.

A more appropriate function to call here instead is null, which runs in constant time.
Better yet, using null makes our code indicate what property of the list we really care
about. Here are two improved ways of expressing myDumbExample:

-- file: ch04/EfficientList.hs
mySmartExample xs = if not (null xs)
                    then head xs
                    else 'Z'

myOtherExample (x:_) = x
myOtherExample [] = 'Z'

Partial and Total Functions
Functions that have only return values defined for a subset of valid inputs are called
partial functions (calling error doesn’t qualify as returning a value!). We call functions
that return valid results over their entire input domains total functions.
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It’s always a good idea to know whether a function you’re using is partial or total.
Calling a partial function with an input that it can’t handle is probably the single biggest
source of straightforward, avoidable bugs in Haskell programs.

Some Haskell programmers go so far as to give partial functions names that begin with
a prefix such as unsafe so that they can’t shoot themselves in the foot accidentally.

It’s arguably a deficiency of the standard Prelude that it defines quite a few “unsafe”
partial functions, such as head, without also providing “safe” total equivalents.

More Simple List Manipulations
Haskell’s name for the append function is (++):

ghci> :type (++)
(++) :: [a] -> [a] -> [a]
ghci> "foo" ++ "bar"
"foobar"
ghci> [] ++ [1,2,3]
[1,2,3]
ghci> [True] ++ []
[True]

The concat function takes a list of lists, all of the same type, and concatenates them
into a single list:

ghci> :type concat
concat :: [[a]] -> [a]
ghci> concat [[1,2,3], [4,5,6]]
[1,2,3,4,5,6]

It removes one level of nesting:

ghci> concat [[[1,2],[3]], [[4],[5],[6]]]
[[1,2],[3],[4],[5],[6]]
ghci> concat (concat [[[1,2],[3]], [[4],[5],[6]]])
[1,2,3,4,5,6]

The reverse function returns the elements of a list in reverse order:

ghci> :type reverse
reverse :: [a] -> [a]
ghci> reverse "foo"
"oof"

For lists of Bool, the and and or functions generalize their two-argument cous-
ins, (&&) and (||), over lists:

ghci> :type and
and :: [Bool] -> Bool
ghci> and [True,False,True]
False
ghci> and []
True
ghci> :type or
or :: [Bool] -> Bool
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ghci> or [False,False,False,True,False]
True
ghci> or []
False

They have more useful cousins, all and any, which operate on lists of any type. Each
one takes a predicate as its first argument; all returns True if that predicate succeeds
on every element of the list, while any returns True if the predicate succeeds on at least
one element of the list:

ghci> :type all
all :: (a -> Bool) -> [a] -> Bool
ghci> all odd [1,3,5]
True
ghci> all odd [3,1,4,1,5,9,2,6,5]
False
ghci> all odd []
True
ghci> :type any
any :: (a -> Bool) -> [a] -> Bool
ghci> any even [3,1,4,1,5,9,2,6,5]
True
ghci> any even []
False

Working with Sublists
The take function, which we already discussed in “Function Application” on page
22, returns a sublist consisting of the first k elements from a list. Its converse, drop,
drops k elements from the start of the list:

ghci> :type take
take :: Int -> [a] -> [a]
ghci> take 3 "foobar"
"foo"
ghci> take 2 [1]
[1]
ghci> :type drop
drop :: Int -> [a] -> [a]
ghci> drop 3 "xyzzy"
"zy"
ghci> drop 1 []
[]

The splitAt function combines the functions take and drop, returning a pair of the
input lists, split at the given index:

ghci> :type splitAt
splitAt :: Int -> [a] -> ([a], [a])
ghci> splitAt 3 "foobar"
("foo","bar")
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The takeWhile and dropWhile functions take predicates. takeWhile takes elements from
the beginning of a list as long as the predicate returns True, while dropWhile drops
elements from the list as long as the predicate returns True:

ghci> :type takeWhile
takeWhile :: (a -> Bool) -> [a] -> [a]
ghci> takeWhile odd [1,3,5,6,8,9,11]
[1,3,5]
ghci> :type dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]
ghci> dropWhile even [2,4,6,7,9,10,12]
[7,9,10,12]

Just as splitAt “tuples up” the results of take and drop, the functions break (which we
already saw in “Warming Up: Portably Splitting Lines of Text” on page 72) and span
tuple up the results of takeWhile and dropWhile.

Each function takes a predicate; break consumes its input while its predicate fails, and
span consumes while its predicate succeeds:

ghci> :type span
span :: (a -> Bool) -> [a] -> ([a], [a])
ghci> span even [2,4,6,7,9,10,11]
([2,4,6],[7,9,10,11])
ghci> :type break
break :: (a -> Bool) -> [a] -> ([a], [a])
ghci> break even [1,3,5,6,8,9,10]
([1,3,5],[6,8,9,10])

Searching Lists
As we’ve already seen, the elem function indicates whether a value is present in a list.
It has a companion function, notElem:

ghci> :type elem
elem :: (Eq a) => a -> [a] -> Bool
ghci> 2 `elem` [5,3,2,1,1]
True
ghci> 2 `notElem` [5,3,2,1,1]
False

For a more general search, filter takes a predicate and returns every element of the
list on which the predicate succeeds:

ghci> :type filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> filter odd [2,4,1,3,6,8,5,7]
[1,3,5,7]

In Data.List, three predicates—isPrefixOf, isInfixOf, and isSuffixOf—let us test for
the presence of sublists within a bigger list. The easiest way to use them is with infix
notation.
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The isPrefixOf function tells us whether its left argument matches the beginning of its
right argument:

ghci> :module +Data.List
ghci> :type isPrefixOf
isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
ghci> "foo" `isPrefixOf` "foobar"
True
ghci> [1,2] `isPrefixOf` []
False

The isInfixOf function indicates whether its left argument is a sublist of its right:

ghci> :module +Data.List
ghci> [2,6] `isInfixOf` [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9]
True
ghci> "funk" `isInfixOf` "sonic youth"
False

The operation of isSuffixOf shouldn’t need any explanation:

ghci> :module +Data.List
ghci> ".c" `isSuffixOf` "crashme.c"
True

Working with Several Lists at Once
The zip function takes two lists and “zips” them into a single list of pairs. The resulting
list is the same length as the shorter of the two inputs:

ghci> :type zip
zip :: [a] -> [b] -> [(a, b)]
ghci> zip [12,72,93] "zippity"
[(12,'z'),(72,'i'),(93,'p')]

More useful is zipWith, which takes two lists and applies a function to each pair of
elements, generating a list that is the same length as the shorter of the two:

ghci> :type zipWith
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
ghci> zipWith (+) [1,2,3] [4,5,6]
[5,7,9]

Haskell’s type system makes it an interesting challenge to write functions that take
variable numbers of arguments.* So if we want to zip three lists together, we call zip3
or zipWith3, and so on, up to zip7 and zipWith7.

* Unfortunately, we do not have room to address that challenge in this book.
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Special String-Handling Functions
We’ve already encountered the standard lines function and its standard counterpart
unlines in the section“Warming Up: Portably Splitting Lines of Text” on page 72.
Notice that unlines always places a newline on the end of its result:

ghci> lines "foo\nbar"
["foo","bar"]
ghci> unlines ["foo", "bar"]
"foo\nbar\n"

The words function splits an input string on any whitespace. Its counterpart, unwords,
uses a single space to join a list of words:

ghci> words "the  \r  quick \t  brown\n\n\nfox"
["the","quick","brown","fox"]
ghci> unwords ["jumps", "over", "the", "lazy", "dog"]
"jumps over the lazy dog"

E X E R C I S E S

1. Write your own “safe” definitions of the standard partial list functions, but make
sure they never fail. As a hint, you might want to consider using the following types:

-- file: ch04/ch04.exercises.hs
safeHead :: [a] -> Maybe a
safeTail :: [a] -> Maybe [a]
safeLast :: [a] -> Maybe a
safeInit :: [a] -> Maybe [a]

2. Write a function splitWith that acts similarly to words but takes a predicate and a
list of any type, and then splits its input list on every element for which the predicate
returns False:

-- file: ch04/ch04.exercises.hs
splitWith :: (a -> Bool) -> [a] -> [[a]]

3. Using the command framework from the earlier section “A Simple Command-Line
Framework” on page 71, write a program that prints the first word of each line of
its input.

4. Write a program that transposes the text in a file. For instance, it should convert
"hello\nworld\n" to "hw\neo\nlr\nll\nod\n".

How to Think About Loops
Unlike traditional languages, Haskell has neither a for loop nor a while loop. If we’ve
got a lot of data to process, what do we use instead? There are several possible answers
to this question.
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Explicit Recursion
A straightforward way to make the jump from a language that has loops to one that
doesn’t is to run through a few examples, looking at the differences. Here’s a C function
that takes a string of decimal digits and turns them into an integer:

int as_int(char *str)
{
    int acc; /* accumulate the partial result */

    for (acc = 0; isdigit(*str); str++) {
    acc = acc * 10 + (*str - '0');
    }

    return acc;
}

Given that Haskell doesn’t have any looping constructs, how should we think about
representing a fairly straightforward piece of code such as this?

We don’t have to start off by writing a type signature, but it helps to remind us of what
we’re working with:

-- file: ch04/IntParse.hs
import Data.Char (digitToInt) -- we'll need digitToInt shortly

asInt :: String -> Int

The C code computes the result incrementally as it traverses the string; the Haskell
code can do the same. However, in Haskell, we can express the equivalent of a loop as
a function. We’ll call ours loop just to keep things nice and explicit:

-- file: ch04/IntParse.hs
loop :: Int -> String -> Int

asInt xs = loop 0 xs

That first parameter to loop is the accumulator variable we’ll be using. Passing zero
into it is equivalent to initializing the acc variable in C at the beginning of the loop.

Rather than leap into blazing code, let’s think about the data we have to work with.
Our familiar String is just a synonym for [Char], a list of characters. The easiest way
for us to get the traversal right is to think about the structure of a list: it’s either empty
or a single element followed by the rest of the list.

We can express this structural thinking directly by pattern matching on the list type’s
constructors. It’s often handy to think about the easy cases first; here, that means we
will consider the empty list case:

-- file: ch04/IntParse.hs
loop acc [] = acc

An empty list doesn’t just mean “the input string is empty”; it’s also the case that we’ll
encounter when we traverse all the way to the end of a nonempty list. So we don’t want
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to “error out” if we see an empty list. Instead, we should do something sensible. Here,
the sensible thing is to terminate the loop and return our accumulated value.

The other case we have to consider arises when the input list is not empty. We need to
do something with the current element of the list, and something with the rest of the list:

-- file: ch04/IntParse.hs
loop acc (x:xs) = let acc' = acc * 10 + digitToInt x
                  in loop acc' xs

We compute a new value for the accumulator and give it the name acc'. We then call 
the loop function again, passing it the updated value acc' and the rest of the input list.
This is equivalent to the loop starting another round in C.

Single quotes in variable names
Remember, a single quote is a legal character to use in a Haskell variable
name, and it is pronounced “prime.” There’s a common idiom in Has-
kell programs involving a variable—say, foo—and another variable—
say, foo'. We can usually assume that foo' is somehow related to foo.
It’s often a new value for foo, as just shown in our code.

Sometimes we’ll see this idiom extended, such as foo''. Since keeping
track of the number of single quotes tacked onto the end of a name
rapidly becomes tedious, use of more than two in a row is thankfully
rare. Indeed, even one single quote can be easy to miss, which can lead
to confusion on the part of readers. It might be better to think of the use
of single quotes as a coding convention that you should be able to rec-
ognize, and less as one that you should actually follow.

Each time the loop function calls itself, it has a new value for the accumulator, and it
consumes one element of the input list. Eventually, it’s going to hit the end of the list,
at which time the [] pattern will match and the recursive calls will cease.

How well does this function work? For positive integers, it’s perfectly cromulent:

ghci> asInt "33"
33

But because we were focusing on how to traverse lists, not error handling, our poor
function misbehaves if we try to feed it nonsense:

ghci> asInt ""
0
ghci> asInt "potato"
*** Exception: Char.digitToInt: not a digit 'p'

We’ll defer fixing our function’s shortcomings to “Exercises” on page 97.

Because the last thing that loop does is simply call itself, it’s an example of a tail recursive
function. There’s another common idiom in this code, too. Thinking about the
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structure of the list, and handling the empty and nonempty cases separately, is a kind
of approach called structural recursion.

We call the nonrecursive case (when the list is empty) the base case (or sometimes the
terminating case). We’ll see people refer to the case where the function calls itself as the
recursive case (surprise!), or they might give a nod to mathematical induction and call
it the inductive case.

As a useful technique, structural recursion is not confined to lists; we can use it on other
algebraic data types, too. We’ll have more to say about it later.

What’s the big deal about tail recursion?
In an imperative language, a loop executes in constant space. Lacking
loops, we use tail recursive functions in Haskell instead. Normally, a
recursive function allocates some space each time it applies itself, so it
knows where to return to.

Clearly, a recursive function would be at a huge disadvantage relative
to a loop if it allocated memory for every recursive application—this
would require linear space instead of constant space. However, func-
tional language implementations detect uses of tail recursion and trans-
form tail recursive calls to run in constant space; this is called tail call
optimization (TCO).

Few imperative language implementations perform TCO; this is why
using any kind of ambitiously functional style in an imperative language
often leads to memory leaks and poor performance.

Transforming Every Piece of Input
Consider another C function, square, which squares every element in an array:

void square(double *out, const double *in, size_t length)
{
    for (size_t i = 0; i < length; i++) {
    out[i] = in[i] * in[i];
    }
}

This contains a straightforward and common kind of loop, one that does exactly the
same thing to every element of its input array. How might we write this loop in Haskell?

-- file: ch04/Map.hs
square :: [Double] -> [Double]

square (x:xs) = x*x : square xs
square []     = []

Our square function consists of two pattern-matching equations. The first “decon-
structs” the beginning of a nonempty list, in order to get its head and tail. It squares
the first element, then puts that on the front of a new list, which is constructed by calling
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square on the remainder of the empty list. The second equation ensures that square
halts when it reaches the end of the input list.

The effect of square is to construct a new list that’s the same length as its input list,
with every element in the input list substituted with its square in the output list.

Here’s another such C loop, one that ensures that every letter in a string is converted
to uppercase:

#include <ctype.h>

char *uppercase(const char *in)
{
    char *out = strdup(in);
    
    if (out != NULL) {
    for (size_t i = 0; out[i] != '\0'; i++) {
        out[i] = toupper(out[i]);
    }
    }

    return out;
}

Let’s look at a Haskell equivalent:

-- file: ch04/Map.hs
import Data.Char (toUpper)

upperCase :: String -> String

upperCase (x:xs) = toUpper x : upperCase xs
upperCase []     = []

Here, we’re importing the toUpper function from the standard Data.Char module, which
contains lots of useful functions for working with Char data.

Our upperCase function follows a similar pattern to our earlier square function. It ter-
minates with an empty list when the input list is empty; when the input isn’t empty, it
calls toUpper on the first element, then constructs a new list cell from that and the result
of calling itself on the rest of the input list.

These examples follow a common pattern for writing recursive functions over lists in
Haskell. The base case handles the situation where our input list is empty. The recursive
case deals with a nonempty list; it does something with the head of the list and calls
itself recursively on the tail.

Mapping over a List
The square and upperCase functions that we just defined produce new lists that are the
same lengths as their input lists, and they do only one piece of work per element. This
is such a common pattern that Haskell’s Prelude defines a function, map, in order to
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make it easier. map takes a function and applies it to every element of a list, returning a
new list constructed from the results of these applications.

Here are our square and upperCase functions rewritten to use map:

-- file: ch04/Map.hs
square2 xs = map squareOne xs
    where squareOne x = x * x

upperCase2 xs = map toUpper xs

This is our first close look at a function that takes another function as its argument.
We can learn a lot about what map does by simply inspecting its type:

ghci> :type map
map :: (a -> b) -> [a] -> [b]

The signature tells us that map takes two arguments. The first is a function that takes a
value of one type, a, and returns a value of another type, b.

Because map takes a function as an argument, we refer to it as a higher-order function.
(In spite of the name, there’s nothing mysterious about higher-order functions; it’s just
a term for functions that take other functions as arguments, or return functions.)

Since map abstracts out the pattern common to our square and upperCase functions so
that we can reuse it with less boilerplate, we can look at what those functions have in
common and figure out how to implement it ourselves:

-- file: ch04/Map.hs
myMap :: (a -> b) -> [a] -> [b]

myMap f (x:xs) = f x : myMap f xs
myMap _ _      = []

What are those wild cards doing there?
If you’re new to functional programming, the reasons for matching
patterns in certain ways won’t always be obvious. For example, in the
definition of myMap in the preceding code, the first equation binds the
function we’re mapping to the variable f, but the second uses wild cards
for both parameters. What’s going on?

We use a wild card in place of f to indicate that we aren’t calling the
function f on the righthand side of the equation. What about the list
parameter? The list type has two constructors. We’ve already matched
on the nonempty constructor in the first equation that defines myMap. By
elimination, the constructor in the second equation is necessarily the
empty list constructor, so there’s no need to perform a match to see
what its value really is.

As a matter of style, it is fine to use wild cards for well-known simple
types such as lists and Maybe. For more complicated or less familiar
types, it can be safer and more readable to name constructors explicitly.
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We try out our myMap function to give ourselves some assurance that it behaves similarly
to the standard map:

ghci> :module +Data.Char
ghci> map toLower "SHOUTING"
"shouting"
ghci> myMap toUpper "whispering"
"WHISPERING"
ghci> map negate [1,2,3]
[-1,-2,-3]

This pattern of spotting a repeated idiom, and then abstracting it so we can reuse (and
write less!) code, is a common aspect of Haskell programming. While abstraction isn’t
unique to Haskell, higher-order functions make it remarkably easy.

Selecting Pieces of Input
Another common operation on a sequence of data is to comb through it for elements
that satisfy some criterion. Here’s a function that walks a list of numbers and returns
those that are odd. Our code has a recursive case that’s a bit more complex than our
earlier functions—it puts a number in the list it returns only if the number is odd. Using
a guard expresses this nicely:

-- file: ch04/Filter.hs
oddList :: [Int] -> [Int]

oddList (x:xs) | odd x     = x : oddList xs
               | otherwise = oddList xs
oddList _                  = []

Let’s see that in action:

ghci> oddList [1,1,2,3,5,8,13,21,34]
[1,1,3,5,13,21]

Once again, this idiom is so common that the Prelude defines a function, filter, which
we already introduced. It removes the need for boilerplate code to recurse over the list:

ghci> :type filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> filter odd [3,1,4,1,5,9,2,6,5]
[3,1,1,5,9,5]

The filter function takes a predicate and applies it to every element in its input list,
returning a list of only those for which the predicate evaluates to True. We’ll revisit
filter again later in this chapter in “Folding from the Right” on page 94.

Computing One Answer over a Collection
It is also common to reduce a collection to a single value. A simple example of this is
summing the values of a list:
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-- file: ch04/Sum.hs
mySum xs = helper 0 xs
    where helper acc (x:xs) = helper (acc + x) xs
          helper acc _      = acc

Our helper function is tail-recursive and uses an accumulator parameter, acc, to hold
the current partial sum of the list. As we already saw with asInt, this is a “natural” way
to represent a loop in a pure functional language.

For something a little more complicated, let’s take a look at the Adler-32 checksum. It
is a popular checksum algorithm; it concatenates two 16-bit checksums into a single
32-bit checksum. The first checksum is the sum of all input bytes, plus one. The second
is the sum of all intermediate values of the first checksum. In each case, the sums are
computed modulo 65521. Here’s a straightforward, unoptimized Java implementation
(it’s safe to skip it if you don’t read Java):

public class Adler32 
{
    private static final int base = 65521;

    public static int compute(byte[] data, int offset, int length)
    {
    int a = 1, b = 0;

    for (int i = offset; i < offset + length; i++) {
        a = (a + (data[i] & 0xff)) % base;
        b = (a + b) % base;
    }

    return (b << 16) | a;
    }
}

Although Adler-32 is a simple checksum, this code isn’t particularly easy to read on
account of the bit-twiddling involved. Can we do any better with a Haskell
implementation?

-- file: ch04/Adler32.hs
import Data.Char (ord)
import Data.Bits (shiftL, (.&.), (.|.))

base = 65521

adler32 xs = helper 1 0 xs
    where helper a b (x:xs) = let a' = (a + (ord x .&. 0xff)) `mod` base
                                  b' = (a' + b) `mod` base
                              in helper a' b' xs
          helper a b _     = (b `shiftL` 16) .|. a

This code isn’t exactly easier to follow than the Java code, but let’s look at what’s going
on. First of all, we’ve introduced some new functions. The shiftL function implements
a logical shift left; (.&.) provides a bitwise “and”; and (.|.) provides a bitwise “or”.

How to Think About Loops | 91



Once again, our helper function is tail-recursive. We’ve turned the two variables that
we updated on every loop iteration in Java into accumulator parameters. When our
recursion terminates on the end of the input list, we compute our checksum and return
it.

If we take a step back, we can restructure our Haskell adler32 to more closely resemble
our earlier mySum function. Instead of two accumulator parameters, we can use a pair
as the accumulator:

-- file: ch04/Adler32.hs
adler32_try2 xs = helper (1,0) xs
    where helper (a,b) (x:xs) =
              let a' = (a + (ord x .&. 0xff)) `mod` base
                  b' = (a' + b) `mod` base
              in helper (a',b') xs
          helper (a,b) _     = (b `shiftL` 16) .|. a

Why would we want to make this seemingly meaningless structural change? Because
as we’ve already seen with map and filter, we can extract the common behavior shared
by mySum and adler32_try2 into a higher-order function. We can describe this behavior
as “do something to every element of a list, updating an accumulator as we go, and
returning the accumulator when we’re done.”

This kind of function is called a fold, because it “folds up” a list. There are two kinds
of fold-over lists: foldl for folding from the left (the start), and foldr for folding from
the right (the end).

The Left Fold
Here is the definition of foldl:

-- file: ch04/Fold.hs
foldl :: (a -> b -> a) -> a -> [b] -> a

foldl step zero (x:xs) = foldl step (step zero x) xs
foldl _    zero []     = zero

The foldl function takes a “step” function, an initial value for its accumulator, and a
list. The “step” takes an accumulator and an element from the list and returns a new
accumulator value. All foldl does is call the “stepper” on the current accumulator and
an element of the list, and then passes the new accumulator value to itself recursively
to consume the rest of the list.

We refer to foldl as a left fold because it consumes the list from left (the head) to right.

Here’s a rewrite of mySum using foldl:

-- file: ch04/Sum.hs
foldlSum xs = foldl step 0 xs
    where step acc x = acc + x
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That local function step just adds two numbers, so let’s simply use the addition oper-
ator instead, and eliminate the unnecessary where clause:

-- file: ch04/Sum.hs
niceSum :: [Integer] -> Integer
niceSum xs = foldl (+) 0 xs

Notice how much simpler this code is than our original mySum. We’re no longer using
explicit recursion, because foldl takes care of that for us. We’ve simplified our problem
down to two things: what the initial value of the accumulator should be (the second
parameter to foldl) and how to update the accumulator (the (+) function). As an added
bonus, our code is now shorter, too, which makes it easier to understand.

Let’s take a deeper look at what foldl is doing here, by manually writing out each step
in its evaluation when we call niceSum [1,2,3]:

-- file: ch04/Fold.hs
foldl (+) 0 (1:2:3:[])
          == foldl (+) (0 + 1)             (2:3:[])
          == foldl (+) ((0 + 1) + 2)       (3:[])
          == foldl (+) (((0 + 1) + 2) + 3) []
          ==           (((0 + 1) + 2) + 3)

We can rewrite adler32_try2 using foldl to let us focus on the details that are
important:

-- file: ch04/Adler32.hs
adler32_foldl xs = let (a, b) = foldl step (1, 0) xs
                   in (b `shiftL` 16) .|. a
    where step (a, b) x = let a' = a + (ord x .&. 0xff)
                          in (a' `mod` base, (a' + b) `mod` base)

Here, our accumulator is a pair, so the result of foldl will be, too. We pull the final
accumulator apart when foldl returns, and then bit-twiddle it into a “proper”
checksum.

Why Use Folds, Maps, and Filters?
A quick glance reveals that adler32_foldl isn’t really any shorter than adler32_try2.
Why should we use a fold in this case? The advantage here lies in the fact that folds are
extremely common in Haskell, and they have regular, predictable behavior.

This means that a reader with a little experience will have an easier time understanding
a use of a fold than code that uses explicit recursion. A fold isn’t going to produce any
surprises, but the behavior of a function that recurses explicitly isn’t immediately ob-
vious. Explicit recursion requires us to read closely to understand exactly what’s going
on.

This line of reasoning applies to other higher-order library functions, including those
we’ve already seen, map and filter. Because they’re library functions with well-defined
behavior, we need to learn what they do only once, and we’ll have an advantage when
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we need to understand any code that uses them. These improvements in readability
also carry over to writing code. Once we start to think with higher-order functions in
mind, we’ll produce concise code more quickly.

Folding from the Right
The counterpart to foldl is foldr, which folds from the right of a list:

-- file: ch04/Fold.hs
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr step zero (x:xs) = step x (foldr step zero xs)
foldr _    zero []     = zero

Let’s follow the same manual evaluation process with foldr (+) 0 [1,2,3] as we did
with niceSum earlier in the section “The Left Fold” on page 92:

-- file: ch04/Fold.hs
foldr (+) 0 (1:2:3:[])
          == 1 +           foldr (+) 0 (2:3:[])
          == 1 + (2 +      foldr (+) 0 (3:[])
          == 1 + (2 + (3 + foldr (+) 0 []))
          == 1 + (2 + (3 + 0))

The difference between foldl and foldr should be clear from looking at where the
parentheses and the empty list elements show up. With foldl, the empty list element
is on the left, and all the parentheses group to the left. With foldr, the zero value is on
the right, and the parentheses group to the right.

There is a lovely intuitive explanation of how foldr works: it replaces the empty list
with the zero value, and replaces every constructor in the list with an application of the
step function:

-- file: ch04/Fold.hs
1 : (2 : (3 : []))
1 + (2 + (3 + 0 ))

At first glance, foldr might seem less useful than foldl: what use is a function that folds
from the right? But consider the Prelude’s filter function, which we last encountered
earlier in this chapter in “Selecting Pieces of Input” on page 90. If we write filter using
explicit recursion, it will look something like this:

-- file: ch04/Fold.hs
filter :: (a -> Bool) -> [a] -> [a]
filter p []   = []
filter p (x:xs)
    | p x       = x : filter p xs
    | otherwise = filter p xs

Perhaps surprisingly, though, we can write filter as a fold, using foldr:

-- file: ch04/Fold.hs
myFilter p xs = foldr step [] xs
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    where step x ys | p x       = x : ys
                    | otherwise = ys

This is the sort of definition that could cause us a headache, so let’s examine it in a little
depth. Like foldl, foldr takes a function and a base case (what to do when the input
list is empty) as arguments. From reading the type of filter, we know that our
myFilter function must return a list of the same type as it consumes, so the base case
should be a list of this type, and the step helper function must return a list.

Since we know that foldr calls step on one element of the input list at a time, then
with the accumulator as its second argument, step’s actions must be quite simple. If
the predicate returns True, it pushes that element onto the accumulated list; otherwise,
it leaves the list untouched.

The class of functions that we can express using foldr is called primitive recursive. A
surprisingly large number of list manipulation functions are primitive recursive. For
example, here’s map written in terms of foldr:

-- file: ch04/Fold.hs
myMap :: (a -> b) -> [a] -> [b]

myMap f xs = foldr step [] xs
    where step x ys = f x : ys

In fact, we can even write foldl using foldr!

-- file: ch04/Fold.hs
myFoldl :: (a -> b -> a) -> a -> [b] -> a

myFoldl f z xs = foldr step id xs z
    where step x g a = g (f a x)

Understanding foldl in terms of foldr
If you want to set yourself a solid challenge, try to follow our definition
of foldl using foldr. Be warned: this is not trivial! You might want to
have the following tools at hand: some headache pills and a glass of
water, ghci (so that you can find out what the id function does), and a
pencil and paper.

You will want to follow the same manual evaluation process as we just
outlined to see what foldl and foldr were really doing. If you get stuck,
you may find the task easier after reading “Partial Function Application
and Currying” on page 100.

Returning to our earlier intuitive explanation of what foldr does, another useful way
to think about it is that it transforms its input list. Its first two arguments are “what to
do with each head/tail element of the list,” and “what to substitute for the end of the
list.”
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The “identity” transformation with foldr thus replaces the empty list with itself and
applies the list constructor to each head/tail pair:

-- file: ch04/Fold.hs
identity :: [a] -> [a]
identity xs = foldr (:) [] xs

It transforms a list into a copy of itself:

ghci> identity [1,2,3]
[1,2,3]

If foldr replaces the end of a list with some other value, this gives us another way to
look at Haskell’s list append function, (++):

ghci> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

All we have to do to append a list onto another is substitute that second list for the end
of our first list:

-- file: ch04/Fold.hs
append :: [a] -> [a] -> [a]
append xs ys = foldr (:) ys xs

Let’s try this out:

ghci> append [1,2,3] [4,5,6]
[1,2,3,4,5,6]

Here, we replace each list constructor with another list constructor, but we replace the
empty list with the list we want to append onto the end of our first list.

As our extended treatment of folds should indicate, the foldr function is nearly as
important a member of our list-programming toolbox as the more basic list functions
we saw in “Working with Lists” on page 77. It can consume and produce a list incre-
mentally, which makes it useful for writing lazy data-processing code.

Left Folds, Laziness, and Space Leaks
To keep our initial discussion simple, we use foldl throughout most of this section.
This is convenient for testing, but we will never use foldl in practice. The reason has
to do with Haskell’s nonstrict evaluation. If we apply foldl (+) [1,2,3], it evaluates
to the expression (((0 + 1) + 2) + 3). We can see this occur if we revisit the way in
which the function gets expanded:

-- file: ch04/Fold.hs
foldl (+) 0 (1:2:3:[])
          == foldl (+) (0 + 1)             (2:3:[])
          == foldl (+) ((0 + 1) + 2)       (3:[])
          == foldl (+) (((0 + 1) + 2) + 3) []
          ==           (((0 + 1) + 2) + 3)
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The final expression will not be evaluated to 6 until its value is demanded. Before it is
evaluated, it must be stored as a thunk. Not surprisingly, a thunk is more expensive to
store than a single number, and the more complex the thunked expression, the more
space it needs. For something cheap such as arithmetic, thunking an expression is more
computationally expensive than evaluating it immediately. We thus end up paying both
in space and in time.

When GHC is evaluating a thunked expression, it uses an internal stack to do so.
Because a thunked expression could potentially be infinitely large, GHC places a fixed
limit on the maximum size of this stack. Thanks to this limit, we can try a large thunked
expression in ghci without needing to worry that it might consume all the memory:

ghci> foldl (+) 0 [1..1000]
500500

From looking at this expansion, we can surmise that this creates a thunk that consists
of 1,000 integers and 999 applications of (+). That’s a lot of memory and effort to
represent a single number! With a larger expression, although the size is still modest,
the results are more dramatic:

ghci> foldl (+) 0 [1..1000000]
*** Exception: stack overflow

On small expressions, foldl will work correctly but slowly, due to the thunking over-
head that it incurs. We refer to this invisible thunking as a space leak, because our code
is operating normally, but it is using far more memory than it should.

On larger expressions, code with a space leak will simply fail, as above. A space leak
with foldl is a classic roadblock for new Haskell programmers. Fortunately, this is easy
to avoid.

The Data.List module defines a function named foldl' that is similar to foldl, but
does not build up thunks. The difference in behavior between the two is immediately
obvious:

ghci> foldl  (+) 0 [1..1000000]
*** Exception: stack overflow
ghci> :module +Data.List
ghci> foldl' (+) 0 [1..1000000]
500000500000

Due to foldl’s thunking behavior, it is wise to avoid this function in real programs,
even if it doesn’t fail outright, it will be unnecessarily inefficient. Instead, import
Data.List and use foldl'.

E X E R C I S E S

1. Use a fold (choosing the appropriate fold will make your code much simpler) to
rewrite and improve upon the asInt function from the earlier section“Explicit Re-
cursion” on page 85.
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-- file: ch04/ch04.exercises.hs
asInt_fold :: String -> Int

2. Your function should behave as follows:

ghci> asInt_fold "101"
101
ghci> asInt_fold "-31337"
-31337
ghci> asInt_fold "1798"
1798

3. Extend your function to handle the following kinds of exceptional conditions by
calling error:

ghci> asInt_fold ""
0
ghci> asInt_fold "-"
0
ghci> asInt_fold "-3"
-3
ghci> asInt_fold "2.7"
*** Exception: Char.digitToInt: not a digit '.'
ghci> asInt_fold "314159265358979323846"
564616105916946374

4. The asInt_fold function uses error, so its callers cannot handle errors. Rewrite
the function to fix this problem:

-- file: ch04/ch04.exercises.hs
type ErrorMessage = String
asInt_either :: String -> Ei

ghci> asInt_either "33"
Right 33
ghci> asInt_either "foo"
Left "non-digit 'o'"

5. The Prelude function concat concatenates a list of lists into a single list and has the
following type:

-- file: ch04/ch04.exercises.hs
concat :: [[a]] -> [a]

6. Write your own definition of concat using foldr.

7. Write your own definition of the standard takeWhile function, first using explicit
recursion, and then foldr.

8. The Data.List module defines a function, groupBy, which has the following type:

-- file: ch04/ch04.exercises.hs
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

9. Use ghci to load the Data.List module and figure out what groupBy does, then
write your own implementation using a fold.

10. How many of the following Prelude functions can you rewrite using list folds?

• any

• cycle

• words
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• unlines

For those functions where you can use either foldl' or foldr, which is more ap-
propriate in each case?

Further Reading
The article “A tutorial on the universality and expressiveness of fold” by Graham
Hutton (http://www.cs.nott.ac.uk/~gmh/fold.pdf) is an excellent and in-depth tutorial
that covers folds. It includes many examples of how to use simple, systematic calcula-
tion techniques to turn functions that use explicit recursion into folds.

Anonymous (lambda) Functions
In many of the function definitions we’ve seen so far, we’ve written short helper
functions:

-- file: ch04/Partial.hs
isInAny needle haystack = any inSequence haystack
    where inSequence s = needle `isInfixOf` s

Haskell lets us write completely anonymous functions, which we can use to avoid the
need to give names to our helper functions. Anonymous functions are often called
“lambda” functions, in a nod to their heritage in lambda calculus. We introduce an
anonymous function with a backslash character (\) pronounced lambda.† This is fol-
lowed by the function’s arguments (which can include patterns), and then an arrow
(->) to introduce the function’s body.

Lambdas are most easily illustrated by example. Here’s a rewrite of isInAny using an
anonymous function:

-- file: ch04/Partial.hs
isInAny2 needle haystack = any (\s -> needle `isInfixOf` s) haystack

We’ve wrapped the lambda in parentheses here so that Haskell can tell where the
function body ends.

In every respect, anonymous functions behave identically to functions that have names,
but Haskell places a few important restrictions on how we can define them. Most im-
portantly, while we can write a normal function using multiple clauses containing dif-
ferent patterns and guards, a lambda can have only a single clause in its definition.

The limitation to a single clause restricts how we can use patterns in the definition of
a lambda. We’ll usually write a normal function with several clauses to cover different
pattern matching possibilities:

† The backslash was chosen for its visual resemblance to the Greek letter lambda (λ). Although GHC can
accept Unicode input, it correctly treats λ as a letter, not as a synonym for \.
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-- file: ch04/Lambda.hs
safeHead (x:_) = Just x
safeHead _ = Nothing

But as we can’t write multiple clauses to define a lambda, we must be certain that any
patterns we use will match:

-- file: ch04/Lambda.hs
unsafeHead = \(x:_) -> x

This definition of unsafeHead will explode in our faces if we call it with a value on which
pattern matching fails:

ghci> :type unsafeHead
unsafeHead :: [t] -> t
ghci> unsafeHead [1]
1
ghci> unsafeHead []
*** Exception: Lambda.hs:7:13-23: Non-exhaustive patterns in lambda

The definition typechecks, so it will compile, and the error will occur at runtime. The
moral of this story is to be careful in how you use patterns when defining an anonymous
function: make sure your patterns can’t fail!

Another thing to notice about the isInAny and isInAny2 functions shown previously is
that the first version, using a helper function that has a name, is a little easier to read
than the version that plops an anonymous function into the middle. The named helper
function doesn’t disrupt the “flow” of the function in which it’s used, and the judi-
ciously chosen name gives us a little bit of information about what the function is
expected to do.

In contrast, when we run across a lambda in the middle of a function body, we have to
switch gears and read its definition fairly carefully to understand what it does. To help
with readability and maintainability, then, we tend to avoid lambdas in many situations
where we could use them to trim a few characters from a function definition. Very often,
we’ll use a partially applied function instead, resulting in clearer and more readable
code than either a lambda or an explicit function. Don’t know what a partially applied
function is yet? Read on!

We don’t intend these caveats to suggest that lambdas are useless, merely that we ought
to be mindful of the potential pitfalls when we’re thinking of using them. In later chap-
ters, we will see that they are often invaluable as “glue.”

Partial Function Application and Currying
You may wonder why the -> arrow is used for what seems to be two purposes in the
type signature of a function:

ghci> :type dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]
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It looks like the -> is separating the arguments to dropWhile from each other, but that
it also separates the arguments from the return type. Iin fact -> has only one meaning:
it denotes a function that takes an argument of the type on the left and returns a value
of the type on the right.

The implication here is very important. In Haskell, all functions take only one argu-
ment. While dropWhile looks like a function that takes two arguments, it is actually a
function of one argument, which returns a function that takes one argument. Here’s a
perfectly valid Haskell expression:

ghci> :module +Data.Char
ghci> :type dropWhile isSpace
dropWhile isSpace :: [Char] -> [Char]

Well, that looks useful. The value dropWhile isSpace is a function that strips leading
whitespace from a string. How is this useful? As one example, we can use it as an
argument to a higher order function:

ghci> map (dropWhile isSpace) [" a","f","   e"]
["a","f","e"]

Every time we supply an argument to a function, we can “chop” an element off the
front of its type signature. Let’s take zip3 as an example to see what we mean; this is a
function that zips three lists into a list of three-tuples:

ghci> :type zip3
zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
ghci> zip3 "foo" "bar" "quux"
[('f','b','q'),('o','a','u'),('o','r','u')]

If we apply zip3 with just one argument, we get a function that accepts two arguments.
No matter what arguments we supply to this compound function, its first argument
will always be the fixed value we specified:

ghci> :type zip3 "foo"
zip3 "foo" :: [b] -> [c] -> [(Char, b, c)]
ghci> let zip3foo = zip3 "foo"
ghci> :type zip3foo
zip3foo :: [b] -> [c] -> [(Char, b, c)]
ghci> (zip3 "foo") "aaa" "bbb"
[('f','a','b'),('o','a','b'),('o','a','b')]
ghci> zip3foo "aaa" "bbb"
[('f','a','b'),('o','a','b'),('o','a','b')]
ghci> zip3foo [1,2,3] [True,False,True]
[('f',1,True),('o',2,False),('o',3,True)]

When we pass fewer arguments to a function than the function can accept, we call it
partial application of the function—we’re applying the function to only some of its
arguments.

In the previous example, we have a partially applied function, zip3 "foo", and a new
function, zip3foo. We can see that the type signatures of the two and their behavior
are identical.
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This applies just as well if we fix two arguments, giving us a function of just one
argument:

ghci> let zip3foobar = zip3 "foo" "bar"
ghci> :type zip3foobar
zip3foobar :: [c] -> [(Char, Char, c)]
ghci> zip3foobar "quux"
[('f','b','q'),('o','a','u'),('o','r','u')]
ghci> zip3foobar [1,2]
[('f','b',1),('o','a',2)]

Partial function application lets us avoid writing tiresome throwaway functions. It’s
often more useful for this purpose than the anonymous functions we introduced earlier
in this chapter in “Anonymous (lambda) Functions” on page 99. Looking back at the
isInAny function we defined there, here’s how we’d use a partially applied function
instead of a named helper function or a lambda:

-- file: ch04/Partial.hs
isInAny3 needle haystack = any (isInfixOf needle) haystack

Here, the expression isInfixOf needle is the partially applied function. We’re taking
the function isInfixOf and “fixing” its first argument to be the needle variable from
our parameter list. This gives us a partially applied function that has exactly the same
type and behavior as the helper and lambda in our earlier definitions.

Partial function application is named currying, after the logician Haskell Curry (for
whom the Haskell language is named).

As another example of currying in use, let’s return to the list-summing function we
wrote in “The Left Fold” on page 92:

-- file: ch04/Sum.hs
niceSum :: [Integer] -> Integer
niceSum xs = foldl (+) 0 xs

We don’t need to fully apply foldl; we can omit the list xs from both the parameter
list and the parameters to foldl, and we’ll end up with a more compact function that
has the same type:

-- file: ch04/Sum.hs
nicerSum :: [Integer] -> Integer
nicerSum = foldl (+) 0

Sections
Haskell provides a handy notational shortcut to let us write a partially applied function
in infix style. If we enclose an operator in parentheses, we can supply its left or right
argument inside the parentheses to get a partially applied function. This kind of partial
application is called a section:

ghci> (1+) 2
3
ghci> map (*3) [24,36]
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[72,108]
ghci> map (2^) [3,5,7,9]
[8,32,128,512]

If we provide the left argument inside the section, then calling the resulting function
with one argument supplies the operator’s right argument, and vice versa.

Recall that we can wrap a function name in backquotes to use it as an infix operator.
This lets us use sections with functions:

ghci> :type (`elem` ['a'..'z'])
(`elem` ['a'..'z']) :: Char -> Bool

The preceding definition fixes elem’s second argument, giving us a function that checks
to see whether its argument is a lowercase letter:

ghci> (`elem` ['a'..'z']) 'f'
True

Using this as an argument to all, we get a function that checks an entire string to see
if it’s all lowercase:

ghci> all (`elem` ['a'..'z']) "Frobozz"
False

If we use this style, we can further improve the readability of our earlier isInAny3
function:

-- file: ch04/Partial.hs
isInAny4 needle haystack = any (needle `isInfixOf`) haystack

As-patterns
Haskell’s tails function, in the Data.List module, generalizes the tail function we
introduced earlier. Instead of returning one “tail” of a list, it returns all of them:

ghci> :m +Data.List
ghci> tail "foobar"
"oobar"
ghci> tail (tail "foobar")
"obar"
ghci> tails "foobar"
["foobar","oobar","obar","bar","ar","r",""]

Each of these strings is a suffix of the initial string, so tails produces a list of all suffixes,
plus an extra empty list at the end. It always produces that extra empty list, even when
its input list is empty:

ghci> tails []
[[]]

What if we want a function that behaves like tails but only returns the nonempty
suffixes? One possibility would be for us to write our own version by hand. We’ll use
a new piece of notation, the @ symbol:
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-- file: ch04/SuffixTree.hs
suffixes :: [a] -> [[a]]
suffixes xs@(_:xs') = xs : suffixes xs'
suffixes _ = []

The pattern xs@(_:xs') is called an as-pattern, and it means “bind the variable xs to
the value that matches the right side of the @ symbol.”

In our example, if the pattern after the @ matches, xs will be bound to the entire list that
matched, and xs' will be bound to all but the head of the list (we used the wild card
( _ ) pattern to indicate that we’re not interested in the value of the head of the list):

ghci> tails "foo"
["foo","oo","o",""]
ghci> suffixes "foo"
["foo","oo","o"]

The as-pattern makes our code more readable. To see how it helps, let us compare a
definition that lacks an as-pattern:

-- file: ch04/SuffixTree.hs
noAsPattern :: [a] -> [[a]]
noAsPattern (x:xs) = (x:xs) : noAsPattern xs
noAsPattern _ = []

Here, the list that we’ve deconstructed in the pattern match just gets put right back
together in the body of the function.

As-patterns have a more practical use than simple readability: they can help us to share
data instead of copying it. In our definition of noAsPattern, when we match (x:xs), we
construct a new copy of it in the body of our function. This causes us to allocate a new
list node at runtime. That may be cheap, but it isn’t free. In contrast, when we defined
suffixes, we reused the value xs that we matched with our as-pattern. Since we reuse
an existing value, we avoid a little allocation.

Code Reuse Through Composition
It seems a shame to introduce a new function, suffixes, that does almost the same
thing as the existing tails function. Surely we can do better?

Recall the init function we introduced in “Working with Lists” on page 77—it returns
all but the last element of a list:

-- file: ch04/SuffixTree.hs
suffixes2 xs = init (tails xs)

This suffixes2 function behaves identically to suffixes, but it’s a single line of code:

ghci> suffixes2 "foo"
["foo","oo","o"]

If we take a step back, we see the glimmer of a pattern. We’re applying a function, then
applying another function to its result. Let’s turn that pattern into a function definition:
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-- file: ch04/SuffixTree.hs
compose :: (b -> c) -> (a -> b) -> a -> c
compose f g x = f (g x)

We now have a function, compose, that we can use to “glue” two other functions
together:

-- file: ch04/SuffixTree.hs
suffixes3 xs = compose init tails xs

Haskell’s automatic currying lets us drop the xs variable, so we can make our definition
even shorter:

-- file: ch04/SuffixTree.hs
suffixes4 = compose init tails

Fortunately, we don’t need to write our own compose function. Plugging functions into
each other like this is so common that the Prelude provides function composition via
the (.) operator:

-- file: ch04/SuffixTree.hs
suffixes5 = init . tails

The (.) operator isn’t a special piece of language syntax—it’s just a normal operator:

ghci> :type (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
ghci> :type suffixes
suffixes :: [a] -> [[a]]
ghci> :type suffixes5
suffixes5 :: [a] -> [[a]]
ghci> suffixes5 "foo"
["foo","oo","o"]

We can create new functions at any time by writing chains of composed functions,
stitched together with (.), so long (of course) as the result type of the function on the
right of each (.) matches the type of parameter that the function on the left can accept.

As an example, let’s solve a simple puzzle. Count the number of words in a string that
begins with a capital letter:

ghci> :module +Data.Char
ghci> let capCount = length . filter (isUpper . head) . words
ghci> capCount "Hello there, Mom!"
2

We can understand what this composed function does by examining its pieces. The
(.) function is right-associative, so we will proceed from right to left:

ghci> :type words
words :: String -> [String]

The words function has a result type of [String], so whatever is on the left side of (.)
must accept a compatible argument:

ghci> :type isUpper . head
isUpper . head :: [Char] -> Bool
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This function returns True if a word begins with a capital letter (try it in ghci), so filter
(isUpper . head) returns a list of Strings containing only words that begin with capital
letters:

ghci> :type filter (isUpper . head)
filter (isUpper . head) :: [[Char]] -> [[Char]]

Since this expression returns a list, all that remains is to calculate the length of the list,
which we do with another composition.

Here’s another example, drawn from a real application. We want to extract a list of
macro names from a C header file shipped with libpcap, a popular network packet-
filtering library. The header file contains a large number definitions of the following
form:

#define DLT_EN10MB      1       /* Ethernet (10Mb) */
#define DLT_EN3MB       2       /* Experimental Ethernet (3Mb) */
#define DLT_AX25        3       /* Amateur Radio AX.25 */

Our goal is to extract names such as DLT_EN10MB and DLT_AX25:

-- file: ch04/dlts.hs
import Data.List (isPrefixOf)

dlts :: String -> [String]

dlts = foldr step [] . lines

We treat an entire file as a string, split it up with lines, and then apply foldr step []
to the resulting list of lines. The step helper function operates on a single line:

-- file: ch04/dlts.hs
  where step l ds
          | "#define DLT_" `isPrefixOf` l = secondWord l : ds
          | otherwise                     = ds
        secondWord = head . tail . words

If we match a macro definition with our guard expression, we cons the name of the
macro onto the head of the list we’re returning; otherwise, we leave the list untouched.

While the individual functions in the body of secondWord are familiar to us by now, it
can take a little practice to piece together a chain of compositions such as this. Let’s
walk through the procedure.

Once again, we proceed from right to left. The first function is words:

ghci> :type words
words :: String -> [String]
ghci> words "#define DLT_CHAOS    5"
["#define","DLT_CHAOS","5"]

We then apply tail to the result of words:

ghci> :type tail
tail :: [a] -> [a]
ghci> tail ["#define","DLT_CHAOS","5"]
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["DLT_CHAOS","5"]
ghci> :type tail . words
tail . words :: String -> [String]
ghci> (tail . words) "#define DLT_CHAOS    5"
["DLT_CHAOS","5"]

Finally, applying head to the result of drop 1 . words will give us the name of our macro:

ghci> :type head . tail . words
head . tail . words :: String -> String
ghci> (head . tail . words) "#define DLT_CHAOS    5"
"DLT_CHAOS"

Use Your Head Wisely
After warning against unsafe list functions earlier in this chapter in “Safely and Sanely
Working with Crashy Functions” on page 79, here we are calling both head and tail,
two of those unsafe list functions. What gives?

In this case, we can assure ourselves by inspection that we’re safe from a runtime failure.
The pattern guard in the definition of step contains two words, so when we apply
words to any string that makes it past the guard, we’ll have a list of at least two elements:
"#define" and some macro beginning with "DLT_".

This is the kind of reasoning we ought to do to convince ourselves that our code won’t
explode when we call partial functions. Don’t forget our earlier admonition: calling
unsafe functions such as this requires care and can often make our code more fragile
in subtle ways. If for some reason we modified the pattern guard to only contain one
word, we could expose ourselves to the possibility of a crash, as the body of the function
assumes that it will receive two words.

Tips for Writing Readable Code
So far in this chapter, we’ve come across two tempting features of Haskell: tail recursion
and anonymous functions. As nice as these are, we don’t often want to use them.

Many list manipulation operations can be most easily expressed using combinations
of library functions such as map, take, and filter. Without a doubt, it takes some
practice to get used to using these. In return for our initial investment, we can write
and read code more quickly, and with fewer bugs.

The reason for this is simple. A tail recursive function definition has the same problem
as a loop in an imperative language: it’s completely general. It might perform some
filtering, some mapping, or who knows what else. We are forced to look in detail at
the entire definition of the function to see what it’s really doing. In contrast, map and
most other list manipulation functions do only one thing. We can take for granted what
these simple building blocks do and can focus on the idea the code is trying to express,
not the minute details of how it’s manipulating its inputs.
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Two folds lie in the middle ground between tail recursive functions (with complete
generality) and our toolbox of list manipulation functions (each of which does one
thing). A fold takes more effort to understand than, say, a composition of map and
filter that does the same thing, but it behaves more regularly and predictably than a
tail recursive function. As a general rule, don’t use a fold if you can compose some
library functions, but otherwise try to use a fold in preference to a hand-rolled tail
recursive loop.

As for anonymous functions, they tend to interrupt the “flow” of reading a piece of
code. It is very often as easy to write a local function definition in a let or where clause
and use that as it is to put an anonymous function into place. The relative advantages
of a named function are twofold: we don’t need to understand the function’s definition
when we’re reading the code that uses it, and a well-chosen function name acts as a
tiny piece of local documentation.

Space Leaks and Strict Evaluation
The foldl function that we discussed earlier is not the only place where space leaks can
happen in Haskell code. We will use it to illustrate how nonstrict evaluation can some-
times be problematic and how to solve the difficulties that can arise.

Do you need to know all of this right now?
It is perfectly reasonable to skip this section until you encounter a space
leak “in the wild.” Provided you use foldr if you are generating a list,
and foldl' instead of foldl otherwise, space leaks are unlikely to bother
you in practice for a while.

Avoiding Space Leaks with seq
We refer to an expression that is not evaluated lazily as strict, so foldl' is a strict left
fold. It bypasses Haskell’s usual nonstrict evaluation through the use of a special func-
tion named seq:

-- file: ch04/Fold.hs
foldl' _    zero []     = zero
foldl' step zero (x:xs) =
    let new = step zero x
    in  new `seq` foldl' step new xs

This seq function has a peculiar type, hinting that it is not playing by the usual rules:

ghci> :type seq
seq :: a -> t -> t

It operates as follows: when a seq expression is evaluated, it forces its first argument to
be evaluated, and then returns its second argument. It doesn’t actually do anything

108 | Chapter 4: Functional Programming



with the first argument. seq exists solely as a way to force that value to be evaluated.
Let’s walk through a brief application to see what happens:

-- file: ch04/Fold.hs
foldl' (+) 1 (2:[])

This expands as follows:

-- file: ch04/Fold.hs
let new = 1 + 2
in new `seq` foldl' (+) new []

The use of seq forcibly evaluates new to 3 and returns its second argument:

-- file: ch04/Fold.hs
foldl' (+) 3 []

We end up with the following result:

-- file: ch04/Fold.hs
3

Thanks to seq, there are no thunks in sight.

Learning to Use seq
Without some direction, there is an element of mystery to using seq effectively. Here
are some useful rules for using it well.

To have any effect, a seq expression must be the first thing evaluated in an expression:

-- file: ch04/Fold.hs
-- incorrect: seq is hidden by the application of someFunc
-- since someFunc will be evaluated first, seq may occur too late
hiddenInside x y = someFunc (x `seq` y)

-- incorrect: a variation of the above mistake
hiddenByLet x y z = let a = x `seq` someFunc y
                    in anotherFunc a z

-- correct: seq will be evaluated first, forcing evaluation of x
onTheOutside x y = x `seq` someFunc y

To strictly evaluate several values, chain applications of seq together:

-- file: ch04/Fold.hs
chained x y z = x `seq` y `seq` someFunc z

A common mistake is to try to use seq with two unrelated expressions:

-- file: ch04/Fold.hs
badExpression step zero (x:xs) =
    seq (step zero x)
        (badExpression step (step zero x) xs)
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Here, the apparent intention is to evaluate step zero x strictly. Since the expression is
duplicated in the body of the function, strictly evaluating the first instance of it will
have no effect on the second. The use of let from the definition of foldl' just shows
illustrates how to achieve this effect correctly.

When evaluating an expression, seq stops as soon as it reaches a constructor. For simple
types such as numbers, this means that it will evaluate them completely. Algebraic data
types are a different story. Consider the value (1+2):(3+4):[]. If we apply seq to this,
it will evaluate the (1+2) thunk. Since it will stop when it reaches the first (:) con-
structor, it will have no effect on the second thunk. The same is true for tuples: seq
((1+2),(3+4)) True will do nothing to the thunks inside the pair, since it immediately
hits the pair’s constructor.

If necessary, we can use normal functional programming techniques to work around
these limitations:

-- file: ch04/Fold.hs
strictPair (a,b) = a `seq` b `seq` (a,b)

strictList (x:xs) = x `seq` x : strictList xs
strictList []     = []

It is important to understand that seq isn’t free: it has to perform a check at runtime to
see if an expression has been evaluated. Use it sparingly. For instance, while our
strictPair function evaluates the contents of a pair up to the first constructor, it adds
the overheads of pattern matching, two applications of seq, and the construction of a
new tuple. If we were to measure its performance in the inner loop of a benchmark, we
might find that it slows down the program.

Aside from its performance cost if overused, seq is not a miracle cure-all for memory
consumption problems. Just because you can evaluate something strictly doesn’t mean
you should. Careless use of seq may do nothing at all, move existing space leaks around,
or introduce new leaks.

The best guides to whether seq is necessary, and how well it is working, are performance
measurement and profiling, which we will cover in Chapter 25. From a base of empir-
ical measurement, you will develop a reliable sense of when seq is most useful.
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CHAPTER 5

Writing a Library: Working
with JSON Data

A Whirlwind Tour of JSON
In this chapter, we’ll develop a small, but complete, Haskell library. Our library will
manipulate and serialize data in a popular form known as JSON (JavaScript Object
Notation).

The JSON language is a small, simple representation for storing and transmitting
structured data—for example—over a network connection. It is most commonly used
to transfer data from a web service to a browser-based JavaScript application. The JSON
format is described at http://www.json.org/, and in greater detail by RFC 4627 (http://
www.ietf.org/rfc/rfc4627.txt).

JSON supports four basic types of value—strings, numbers, Booleans, and a special
value named null:

"a string" 12345 true
      null

The language provides two compound types: an array is an ordered sequence of values,
and an object is an unordered collection of name/value pairs. The names in an object
are always strings; the values in an object or array can be of any type:

[-3.14, true, null, "a string"]
      {"numbers": [1,2,3,4,5], "useful": false}

Representing JSON Data in Haskell
To work with JSON data in Haskell, we use an algebraic data type to represent the
range of possible JSON types:
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-- file: ch05/SimpleJSON.hs
data JValue = JString String
            | JNumber Double
            | JBool Bool
            | JNull
            | JObject [(String, JValue)]
            | JArray [JValue]
              deriving (Eq, Ord, Show)

For each JSON type, we supply a distinct value constructor. Some of these constructors
have parameters: if we want to construct a JSON string, we must provide a String value
as an argument to the JString constructor.

To start experimenting with this code, save the file SimpleJSON.hs in your editor, switch
to a ghci window, and load the file into ghci:

ghci> :load SimpleJSON
[1 of 1] Compiling SimpleJSON       ( SimpleJSON.hs, interpreted )
Ok, modules loaded: SimpleJSON.
ghci> JString "foo"
JString "foo"
ghci> JNumber 2.7
JNumber 2.7
ghci> :type JBool True
JBool True :: JValue

We can see how to use a constructor to take a normal Haskell value and turn it into a
JValue. To do the reverse, we use pattern matching. Here’s a function that we can add
to SimpleJSON.hs that will extract a string from a JSON value for us. If the JSON value
actually contains a string, our function will wrap the string with the Just constructor;
otherwise, it will return Nothing:

-- file: ch05/SimpleJSON.hs
getString :: JValue -> Maybe String
getString (JString s) = Just s
getString _           = Nothing

When we save the modified source file, we can reload it in ghci and try the new defi-
nition. (The :reload command remembers the last source file we loaded, so we do not
need to name it explicitly.)

ghci> :reload
Ok, modules loaded: SimpleJSON.
ghci> getString (JString "hello")
Just "hello"
ghci> getString (JNumber 3)
Nothing

A few more accessor functions and we’ve got a small body of code to work with:

-- file: ch05/SimpleJSON.hs
getInt (JNumber n) = Just (truncate n)
getInt _           = Nothing

getDouble (JNumber n) = Just n
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getDouble _           = Nothing

getBool (JBool b) = Just b
getBool _         = Nothing

getObject (JObject o) = Just o
getObject _           = Nothing

getArray (JArray a) = Just a
getArray _          = Nothing

isNull v            = v == JNull

The truncate function turns a floating-point or rational number into an integer by
dropping the digits after the decimal point:

ghci> truncate 5.8
5
ghci> :module +Data.Ratio
ghci> truncate (22 % 7)
3

The Anatomy of a Haskell Module
A Haskell source file contains a definition of a single module. A module lets us determine
which names inside the module are accessible from other modules.

A source file begins with a module declaration. This must precede all other definitions
in the source file:

-- file: ch05/SimpleJSON.hs
module SimpleJSON
    (
      JValue(..)
    , getString
    , getInt
    , getDouble
    , getBool
    , getObject
    , getArray
    , isNull
    ) where

The word module is reserved. It is followed by the name of the module, which must
begin with a capital letter. A source file must have the same base name (the component
before the suffix) as the name of the module it contains. This is why our file
SimpleJSON.hs contains a module named SimpleJSON.

Following the module name is a list of exports, enclosed in parentheses. The where
keyword indicates that the body of the module follows.

The list of exports indicates which names in this module are visible to other modules.
This lets us keep private code hidden from the outside world. The special notation
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(..) that follows the name JValue indicates that we are exporting both the type and all
of its constructors.

It might seem strange that we can export a type’s name (i.e., its type constructor), but
not its value constructors. The ability to do this is important: it lets us hide the details
of a type from its users, making the type abstract. If we cannot see a type’s value con-
structors, we cannot pattern match against a value of that type, nor can we construct
a new value of that type. Later in this chapter, we’ll discuss some situations in which
we might want to make a type abstract.

If we omit the exports (and the parentheses that enclose them) from a module decla-
ration, every name in the module will be exported:

-- file: ch05/Exporting.hs
module ExportEverything where

To export no names at all (which is rarely useful), we write an empty export list using
a pair of parentheses:

-- file: ch05/Exporting.hs
module ExportNothing () where

Compiling Haskell Source
In addition to the ghci interpreter, the GHC distribution includes a compiler, ghc, that
generates native code. If you are already familiar with a command-line compiler such
as gcc or cl (the C++ compiler component of Microsoft’s Visual Studio), you’ll imme-
diately be at home with ghc.

To compile a source file, we first open a terminal or command prompt window, and
then invoke ghc with the name of the source file to compile:

        ghc -c SimpleJSON.hs

The -c option tells ghc to generate only object code. If we were to omit the -c option,
the compiler would attempt to generate a complete executable. That would fail, be-
cause we haven’t written a main function, which GHC calls to start the execution of a
standalone program.

After ghc completes, if we list the contents of the directory, it should contain two new
files: SimpleJSON.hi and SimpleJSON.o. The former is an interface file, in which ghc
stores information about the names exported from our module in machine-readable
form. The latter is an object file, which contains the generated machine code.

Generating a Haskell Program and Importing Modules
Now that we’ve successfully compiled our minimal library, we’ll write a tiny program
to exercise it. Create the following file in your text editor and save it as Main.hs:
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-- file: ch05/Main.hs
module Main () where

import SimpleJSON

main = print (JObject [("foo", JNumber 1), ("bar", JBool False)])

Notice the import directive that follows the module declaration. This indicates that we
want to take all of the names that are exported from the SimpleJSON module and make
them available in our module. Any import directives must appear in a group at the
beginning of a module, after the module declaration, but before all other code. We
cannot, for example, scatter them throughout a source file.

Our choice of naming for the source file and function is deliberate. To create an exe-
cutable, ghc expects a module named Main that contains a function named main (the
main function is the one that will be called when we run the program once we’ve built
it).

        ghc -o simple Main.hs SimpleJSON.o

This time around, we omit the -c option when we invoke ghc, so it will attempt to
generate an executable. The process of generating an executable is called linking. As
our command line suggests, ghc is perfectly able to both compile source files and link
an executable in a single invocation.

We pass ghc a new option, -o, which takes one argument: the name of the executable
that ghc should create.* Here, we’ve decided to name the program simple. On Windows,
the program will have the suffix .exe, but on Unix variants, there will not be a suffix.

Finally, we supply the name of our new source file, Main.hs, and the object file we
already compiled, SimpleJSON.o. We must explicitly list every one of our files that
contains code that should end up in the executable. If we forget a source or object file,
ghc will complain about undefined symbols, which indicates that some of the definitions
that it needs are not provided in the files we supplied.

When compiling, we can pass ghc any mixture of source and object files. If ghc notices
that it has already compiled a source file into an object file, it will only recompile the
source file if we’ve modified it.

Once ghc has finished compiling and linking our simple program, we can run it from
the command line.

Printing JSON Data
Now that we have a Haskell representation for JSON’s types, we’d like to be able to
take Haskell values and render them as JSON data.

* Memory aid: -o stands for output or object file.
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There are a few ways we could go about this. Perhaps the most direct would be to write
a rendering function that prints a value in JSON form. Once we’re done, we’ll explore
some more interesting approaches.

-- file: ch05/PutJSON.hs
module PutJSON where

import Data.List (intercalate)
import SimpleJSON

renderJValue :: JValue -> String

renderJValue (JString s)   = show s
renderJValue (JNumber n)   = show n
renderJValue (JBool True)  = "true"
renderJValue (JBool False) = "false"
renderJValue JNull         = "null"

renderJValue (JObject o) = "{" ++ pairs o ++ "}"
  where pairs [] = ""
        pairs ps = intercalate ", " (map renderPair ps)
        renderPair (k,v)   = show k ++ ": " ++ renderJValue v

renderJValue (JArray a) = "[" ++ values a ++ "]"
  where values [] = ""
        values vs = intercalate ", " (map renderJValue vs)

Good Haskell style involves separating pure code from code that performs I/O. Our
renderJValue function has no interaction with the outside world, but we still need to
be able to print a JValue:

-- file: ch05/PutJSON.hs
putJValue :: JValue -> IO ()
putJValue v = putStrLn (renderJValue v)

Printing a JSON value is now easy.

Why should we separate the rendering code from the code that actually prints a value?
This gives us flexibility. For instance, if we want to compress the data before writing it
out and intermix rendering with printing, it would be much more difficult to adapt our
code to that change in circumstances.

This idea of separating pure from impure code is powerful, and it is pervasive in Haskell
code. Several Haskell compression libraries exist, all of which have simple interfaces:
a compression function accepts an uncompressed string and returns a compressed
string. We can use function composition to render JSON data to a string, and then
compress to another string, postponing any decision on how to actually display or
transmit the data.
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Type Inference Is a Double-Edged Sword
A Haskell compiler’s ability to infer types is powerful and valuable. Early on, you’ll
probably face a strong temptation to take advantage of type inference by omitting as
many type declarations as possible. Let’s simply make the compiler figure the whole
lot out!

Skimping on explicit type information has a downside, one that disproportionately
affects new Haskell programmers. As such a programmer, we’re extremely likely to
write code that will fail to compile due to straightforward type errors.

When we omit explicit type information, we force the compiler to figure out our
intentions. It will infer types that are logical and consistent, but perhaps not at all what
we meant. If we and the compiler unknowingly disagree about what is going on, it will
naturally take us longer to find the source of our problem.

Suppose, for instance, that we write a function that we believe returns a String, but we
don’t write a type signature for it:

-- file: ch05/Trouble.hs
upcaseFirst (c:cs) = toUpper c -- forgot ":cs" here

Here, we want to uppercase the first character of a word, but we’ve forgotten to append
the rest of the word onto the result. We think our function’s type is
String -> String, but the compiler will correctly infer its type as String -> Char. Let’s
say we then try to use this function somewhere else:

-- file: ch05/Trouble.hs
camelCase :: String -> String
camelCase xs = concat (map upcaseFirst (words xs))

When we try to compile this code or load it into ghci, we won’t necessarily get an
obvious error message:

ghci> :load Trouble
[1 of 1] Compiling Main             ( Trouble.hs, interpreted )

Trouble.hs:9:27:
    Couldn't match expected type `[Char]' against inferred type `Char'
      Expected type: [Char] -> [Char]
      Inferred type: [Char] -> Char
    In the first argument of `map', namely `upcaseFirst'
    In the first argument of `concat', namely
        `(map upcaseFirst (words xs))'
Failed, modules loaded: none.

Notice that the error is reported where we use the upcaseFirst function. If we’re
erroneously convinced that our definition and type for upcaseFirst are correct, we may
end up staring at the wrong piece of code for quite a while, until enlightenment strikes.

Every time we write a type signature, we remove a degree of freedom from the type
inference engine. This reduces the likelihood of divergence between our understanding
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of our code and the compiler’s. Type declarations also act as shorthand for us as readers
of our own code, making it easier for us to develop a sense of what must be going on.

This is not to say that we need to pepper every tiny fragment of code with a type
declaration. It is, however, usually good form to add a signature to every top-level
definition in our code. It’s best to start out fairly aggressive with explicit type signatures,
and slowly ease back as your mental model of how type checking works becomes more
accurate.

Explicit types, undefined values, and error
The special value undefined will happily typecheck no matter where we
use it, as will an expression like error "argh!". It is especially important
that we write type signatures when we use these. Suppose we use
undefined or error "write me" as a placeholder in the body of a top-
level definition. If we omit a type signature, we may be able to use the
value we defined in places where a correctly typed version would be
rejected by the compiler. This can easily lead us astray.

A More General Look at Rendering
Our JSON rendering code is narrowly tailored to the exact needs of our data types and
the JSON formatting conventions. The output it produces can be unfriendly to human
eyes. We will now look at rendering as a more generic task: how can we build a library
that is useful for rendering data in a variety of situations?

We would like to produce output that is suitable either for human consumption (e.g.,
for debugging) or for machine processing. Libraries that perform this job are referred
to as pretty printers. Several Haskell pretty-printing libraries already exist. We are cre-
ating one of our own not to replace them, but for the many useful insights we will gain
into both library design and functional programming techniques.

We will call our generic pretty-printing module Prettify, so our code will go into a
source file named Prettify.hs.

Naming
In our Prettify module, we will base our names on those used by several
established Haskell pretty-printing libraries., which will give us a degree
of compatibility with existing mature libraries.

To make sure that Prettify meets practical needs, we write a new JSON renderer that
uses the Prettify API. After we’re done, we’ll go back and fill in the details of the
Prettify module.

Instead of rendering straight to a string, our Prettify module will use an abstract type
that we’ll call Doc. By basing our generic rendering library on an abstract type, we can
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choose an implementation that is flexible and efficient. If we decide to change the
underlying code, our users will not be able to tell.

We will name our new JSON rendering module PrettyJSON.hs and retain the name
renderJValue for the rendering function. Rendering one of the basic JSON values is
straightforward:

-- file: ch05/PrettyJSON.hs
renderJValue :: JValue -> Doc
renderJValue (JBool True)  = text "true"
renderJValue (JBool False) = text "false"
renderJValue JNull         = text "null"
renderJValue (JNumber num) = double num
renderJValue (JString str) = string str

Our Prettify module provides the text, double, and string functions.

Developing Haskell Code Without Going Nuts
Early on, as we come to grips with Haskell development, we have so many new,
unfamiliar concepts to keep track of at one time that it can be a challenge to write code
that compiles at all.

As we write our first substantial body of code, it’s a huge help to pause every few minutes
and try to compile what we’ve produced so far. Because Haskell is so strongly typed,
if our code compiles cleanly, we’re assured that we’re not wandering too far off into
the programming weeds.

One useful technique for quickly developing the skeleton of a program is to write
placeholder, or stub, versions of types and functions. For instance, we just mentioned
that our string, text and double functions would be provided by our Prettify module.
If we don’t provide definitions for those functions or the Doc type, our attempts to
“compile early, compile often” with our JSON renderer will fail, as the compiler won’t
know anything about those functions. To avoid this problem, we write stub code that
doesn’t do anything:

-- file: ch05/PrettyStub.hs
import SimpleJSON

data Doc = ToBeDefined
         deriving (Show)

string :: String -> Doc
string str = undefined

text :: String -> Doc
text str = undefined

double :: Double -> Doc
double num = undefined
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The special value undefined has the type a, so it always typechecks, no matter where
we use it. If we attempt to evaluate it, it will cause our program to crash:

ghci> :type undefined
undefined :: a
ghci> undefined
*** Exception: Prelude.undefined
ghci> :type double
double :: Double -> Doc
ghci> double 3.14
*** Exception: Prelude.undefined

Even though we can’t yet run our stubbed code, the compiler’s type checker will ensure
that our program is sensibly typed.

Pretty Printing a String
When we must pretty print a string value, JSON has moderately involved escaping rules
that we must follow. At the highest level, a string is just a series of characters wrapped
in quotes:

-- file: ch05/PrettyJSON.hs
string :: String -> Doc
string = enclose '"' '"' . hcat . map oneChar

Point-free style
This style of writing a definition exclusively as a composition of other
functions is called point-free style. The use of the word point is not re-
lated to the “.” character used for function composition. The term
point is roughly synonymous (in Haskell) with value, so a point-free ex-
pression makes no mention of the values that it operates on.

Contrast this point-free definition of string with this “pointy” version,
which uses a variable, s, to refer to the value on which it operates:

-- file: ch05/PrettyJSON.hs
pointyString :: String -> Doc
pointyString s = enclose '"' '"' (hcat (map oneChar s))

The enclose function simply wraps a Doc value with an opening and closing character:

-- file: ch05/PrettyJSON.hs
enclose :: Char -> Char -> Doc -> Doc
enclose left right x = char left <> x <> char right

We provide a (<>) function in our pretty-printing library. It appends two Doc values,
so it’s the Doc equivalent of (++):

-- file: ch05/PrettyStub.hs
(<>) :: Doc -> Doc -> Doc
a <> b = undefined
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char :: Char -> Doc
char c = undefined

Our pretty-printing library also provides hcat, which concatenates multiple Doc values
into one—it’s the analogue of concat for lists:

-- file: ch05/PrettyStub.hs
hcat :: [Doc] -> Doc
hcat xs = undefined

Our string function applies the oneChar function to every character in a string, con-
catenates the lot, and encloses the result in quotes. The oneChar function escapes or
renders an individual character:

-- file: ch05/PrettyJSON.hs
oneChar :: Char -> Doc
oneChar c = case lookup c simpleEscapes of
              Just r -> text r
              Nothing | mustEscape c -> hexEscape c
                      | otherwise    -> char c
    where mustEscape c = c < ' ' || c == '\x7f' || c > '\xff'

simpleEscapes :: [(Char, String)]
simpleEscapes = zipWith ch "\b\n\f\r\t\\\"/" "bnfrt\\\"/"
    where ch a b = (a, ['\\',b])

The simpleEscapes value is a list of pairs. We call a list of pairs an association list, or
alist for short. Each element of our alist associates a character with its escaped
representation:

ghci> take 4 simpleEscapes
[('\b',"\\b"),('\n',"\\n"),('\f',"\\f"),('\r',"\\r")]

Our case expression attempts to see whether our character has a match in this alist. If
we find the match, we emit it; otherwise, we might need to escape the character in a
more complicated way. If so, we perform this escaping. Only if neither kind of escaping
is required do we emit the plain character. To be conservative, printable ASCII char-
acters are the only unescaped characters we emit.

The more complicated escaping involves turning a character into the string "\u" fol-
lowed by a four-character sequence of hexadecimal digits representing the numeric
value of the Unicode character:

-- file: ch05/PrettyJSON.hs
smallHex :: Int -> Doc
smallHex x  = text "\\u"
           <> text (replicate (4 - length h) '0')
           <> text h
    where h = showHex x ""

The showHex function comes from the Numeric library (you will need to import this at
the beginning of Prettify.hs) and returns a hexadecimal representation of a number:

ghci> showHex 114111 ""
"1bdbf"
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The replicate function is provided by the Prelude and builds a fixed-length repeating
list of its argument:

ghci> replicate 5 "foo"
["foo","foo","foo","foo","foo"]

There’s a wrinkle: the four-digit encoding that smallHex provides can only represent
Unicode characters up to 0xffff. Valid Unicode characters can range up to 0x10ffff.
To properly represent a character above 0xffff in a JSON string, we follow some com-
plicated rules to split it into two, which gives us an opportunity to perform some bit-
level manipulation of Haskell numbers:

-- file: ch05/PrettyJSON.hs
astral :: Int -> Doc
astral n = smallHex (a + 0xd800) <> smallHex (b + 0xdc00)
    where a = (n `shiftR` 10) .&. 0x3ff
          b = n .&. 0x3ff

The shiftR function comes from the Data.Bits module and shifts a number to the right.
The (.&.) function, also from Data.Bits, performs a bit-level and of two values:

ghci> 0x10000 `shiftR` 4   :: Int
4096
ghci> 7 .&. 2   :: Int
2

Now that we’ve written smallHex and astral, we can provide a definition for
hexEscape:

-- file: ch05/PrettyJSON.hs
hexEscape :: Char -> Doc
hexEscape c | d < 0x10000 = smallHex d
            | otherwise   = astral (d - 0x10000)
  where d = ord c

Arrays and Objects, and the Module Header
Compared to strings, pretty printing arrays and objects is a snap. We already know
that the two are visually similar: each starts with an opening character, followed by a
series of values separated with commas, followed by a closing character. Let’s write a
function that captures the common structure of arrays and objects:

-- file: ch05/PrettyJSON.hs
series :: Char -> Char -> (a -> Doc) -> [a] -> Doc
series open close item = enclose open close
                       . fsep . punctuate (char ',') . map item

We’ll start by interpreting this function’s type. It takes an opening and closing char-
acter, then a function that knows how to pretty print a value of some unknown type
a, followed by a list of values of type a. It then returns a value of type Doc.
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Notice that although our type signature mentions four parameters, we listed only three
in the definition of the function. We are just following the same rule that lets us simplify
a definiton such as myLength xs = length xs to myLength = length.

We have already written enclose, which wraps a Doc value in opening and closing char-
acters. The fsep function will live in our Prettify module. It combines a list of Doc
values into one, possibly wrapping lines if the output will not fit on a single line:

-- file: ch05/PrettyStub.hs
fsep :: [Doc] -> Doc
fsep xs = undefined

By now, you should be able to define your own stubs in Prettify.hs, following the ex-
amples we have supplied. We will not explicitly define any more stubs.

The punctuate function will also live in our Prettify module, and we can define it in
terms of functions for which we’ve already written stubs:

-- file: ch05/Prettify.hs
punctuate :: Doc -> [Doc] -> [Doc]
punctuate p []     = []
punctuate p [d]    = [d]
punctuate p (d:ds) = (d <> p) : punctuate p ds

With this definition of series, pretty printing an array is entirely straightforward. We
add this equation to the end of the block we’ve already written for our renderJValue
function:

-- file: ch05/PrettyJSON.hs
renderJValue (JArray ary) = series '[' ']' renderJValue ary

To pretty print an object, we need to do only a little more work. For each element, we
have both a name and a value to deal with:

-- file: ch05/PrettyJSON.hs
renderJValue (JObject obj) = series '{' '}' field obj
    where field (name,val) = string name
                          <> text ": "
                          <> renderJValue val

Writing a Module Header
Now that we have written the bulk of our PrettyJSON.hs file, we must go back to the
top and add a module declaration:

-- file: ch05/PrettyJSON.hs
module PrettyJSON
    (
      renderJValue
    ) where

import Numeric (showHex)
import Data.Char (ord)
import Data.Bits (shiftR, (.&.))
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import SimpleJSON (JValue(..))
import Prettify (Doc, (<>), char, double, fsep, hcat, punctuate, text,
                 compact, pretty)

We export just one name from this module: renderJValue, our JSON rendering func-
tion. The other definitions in the module exist purely to support renderJValue, so
there’s no reason to make them visible to other modules.

Regarding imports, the Numeric and Data.Bits modules are distributed with GHC.
We’ve already written the SimpleJSON module and filled our Prettify module with
skeletal definitions. Notice that there’s no difference in the way we import standard
modules from those we’ve written ourselves.

With each import directive, we explicitly list each of the names we want to bring into
our module’s namespace. This is not required. If we omit the list of names, all of the
names exported from a module will be available to us. However, it’s generally a good
idea to write an explicit import list for the following reasons:

• An explicit list makes it clear which names we’re importing from where. This will
make it easier for a reader to look up documentation if he encounters an unfamiliar
function.

• Occasionally, a library maintainer will remove or rename a function. If a function
disappears from a third-party module that we use, any resulting compilation error
is likely to happen long after we’ve written the module. The explicit list of imported
names can act as a reminder to ourselves of where we had been importing the
missing name from, which will help us to pinpoint the problem more quickly.

• It is possible that someone will add a name to a module that is identical to a name
already in our own code. If we don’t use an explicit import list, we’ll end up with
the same name in our module twice. If we use that name, GHC will report an error
due to the ambiguity. An explicit list lets us avoid the possibility of accidentally
importing an unexpected new name.

This idea of using explicit imports is a guideline that usually makes sense, not a hard-
and-fast rule. Occasionally, we’ll need so many names from a module that listing each
one becomes messy. In other cases, a module might be so widely used that a moderately
experienced Haskell programmer will probably know which names come from that
module.

Fleshing Out the Pretty-Printing Library
In our Prettify module, we represent our Doc type as an algebraic data type:

-- file: ch05/Prettify.hs
data Doc = Empty
         | Char Char
         | Text String
         | Line
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         | Concat Doc Doc
         | Union Doc Doc
           deriving (Show,Eq)

Observe that the Doc type is actually a tree. The Concat and Union constructors create
an internal node from two other Doc values, while the Empty and other simple con-
structors build leaves.

In the header of our module, we will export the name of the type, but none of its
constructors. This will prevent modules that use the Doc type from creating and pattern
matching against Doc values.

Instead, to create a Doc, a user of the Prettify module will call a function that we
provide. Here are the simple construction functions. As we add real definitions, we
must replace any stubbed versions already in the Prettify.hs source file:

-- file: ch05/Prettify.hs
empty :: Doc
empty = Empty

char :: Char -> Doc
char c = Char c

text :: String -> Doc
text "" = Empty
text s  = Text s

double :: Double -> Doc
double d = text (show d)

The Line constructor represents a line break. The line function creates hard line breaks,
which always appear in the pretty printer’s output. Sometimes we’ll want a soft line
break, which is only used if a line is too wide to fit in a window or page (we’ll introduce
a softline function shortly):

-- file: ch05/Prettify.hs
line :: Doc
line = Line

Almost as simple as the basic constructors is the (<>) function, which concatenates two
Doc values:

-- file: ch05/Prettify.hs
(<>) :: Doc -> Doc -> Doc
Empty <> y = y
x <> Empty = x
x <> y = x `Concat` y

We pattern-match against Empty so that concatenating a Doc value with Empty on the
left or right will have no effect, which keeps us from bloating the tree with useless values:

ghci> text "foo" <> text "bar"
Concat (Text "foo") (Text "bar")
ghci> text "foo" <> empty
Text "foo"
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ghci> empty <> text "bar"
Text "bar"

A mathematical moment
If we briefly put on our mathematical hats, we can say that Empty is the
identity under concatenation, since nothing happens if we concatenate
a Doc value with Empty. In a similar vein, 0 is the identity for adding
numbers, and 1 is the identity for multiplying them. Taking the math-
ematical perspective has useful practical consequences, as we will see in
a number of places throughout this book.

Our hcat and fsep functions concatenate a list of Doc values into one. In “Exercises”
on page 130 and in “How to Think About Loops” on page 84, we mentioned that we
could define concatenation for lists using foldr:

-- file: ch05/Concat.hs
concat :: [[a]] -> [a]
concat = foldr (++) []

Since (<>) is analogous to (++), and empty to [], we can see how we might write hcat
and fsep as folds, too:

-- file: ch05/Prettify.hs
hcat :: [Doc] -> Doc
hcat = fold (<>)

fold :: (Doc -> Doc -> Doc) -> [Doc] -> Doc
fold f = foldr f empty

The definition of fsep depends on several other functions:

-- file: ch05/Prettify.hs
fsep :: [Doc] -> Doc
fsep = fold (</>)

(</>) :: Doc -> Doc -> Doc
x </> y = x <> softline <> y

softline :: Doc
softline = group line

These take a little explaining. The softline function should insert a newline if the
current line has become too wide, or a space otherwise. How can we do this if our
Doc type doesn’t contain any information about rendering? Our answer is that every
time we encounter a soft newline, we maintain two alternative representations of the
document, using the Union constructor:

-- file: ch05/Prettify.hs
group :: Doc -> Doc
group x = flatten x `Union` x

Our flatten function replaces a Line with a space, turning two lines into one longer line:
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-- file: ch05/Prettify.hs
flatten :: Doc -> Doc
flatten (x `Concat` y) = flatten x `Concat` flatten y
flatten Line           = Char ' '
flatten (x `Union` _)  = flatten x
flatten other          = other

Notice that we always call flatten on the left element of a Union: the left of each
Union is always the same width (in characters) as, or wider than, the right. We’ll make
use of this property in our rendering functions that follow.

Compact Rendering
We frequently need to use a representation for a piece of data that contains as few
characters as possible. For example, if we’re sending JSON data over a network con-
nection, there’s no sense in laying it out nicely. The software on the far end won’t care
whether the data is pretty or not, and the added whitespace needed to make the layout
look good would add a lot of overhead.

For these cases, and because it’s a simple piece of code to start with, we provide a bare-
bones compact rendering function:

-- file: ch05/Prettify.hs
compact :: Doc -> String
compact x = transform [x]
    where transform [] = ""
          transform (d:ds) =
              case d of
                Empty        -> transform ds
                Char c       -> c : transform ds
                Text s       -> s ++ transform ds
                Line         -> '\n' : transform ds
                a `Concat` b -> transform (a:b:ds)
                _ `Union` b  -> transform (b:ds)

The compact function wraps its argument in a list and applies the transform helper
function to it. The transform function treats its argument as a stack of items to process,
where the first element of the list is the top of the stack.

The transform function’s (d:ds) pattern breaks the stack into its head, d, and the re-
mainder, ds. In our case expression, the first several branches recurse on ds, consuming
one item from the stack for each recursive application. The last two branches add items
in front of ds; the Concat branch adds both elements to the stack, while the Union branch
ignores its left element, on which we called flatten, and adds its right element to the
stack.

We have now fleshed out enough of our original skeletal definitions that we can try out
our compact function in ghci:

ghci> let value = renderJValue (JObject [("f", JNumber 1), ("q", JBool True)])
ghci> :type value
value :: Doc
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ghci> putStrLn (compact value)
{"f": 1.0,
"q": true
}

To better understand how the code works, let’s look at a simpler example in more detail:

ghci> char 'f' <> text "oo"
Concat (Char 'f') (Text "oo")
ghci> compact (char 'f' <> text "oo")
"foo"

When we apply compact, it turns its argument into a list and applies transform (the
degree of indentation below reflects the depth of recursion):

• The transform function receives a one-item list, which matches the (d:ds) pattern.
Thus d is the value Concat (Char 'f') (Text "oo"), and ds is the empty list, [].

Since d’s constructor is Concat, the Concat pattern matches in the case expression.
On the righthand side, we add Char 'f' and Text "oo" to the stack and then apply
transform, recursively.

• The transform function receives a two-item list, again matching the (d:ds) pattern.
The variable d is bound to Char 'f', and ds to [Text "oo"].

— The case expression matches in the Char branch. On the righthand side, we use
(:) to construct a list whose head is 'f', and whose body is the result of a
recursive application of transform.

• The recursive invocation receives a one-item list. The variable d is bound to
Text "oo", and ds to [].

The case expression matches in the Text branch. On the righthand side, we
use (++) to concatenate "oo" with the result of a recursive application of
transform.

— In the final invocation, transform is invoked with an empty list and returns
an empty string.

• The result is "oo" ++ "".

• The result is 'f' : "oo" ++ "".

True Pretty Printing
While our compact function is useful for machine-to-machine communication, its result
is not always easy for a human to follow: there’s very little information on each line.
To generate more readable output, we’ll write another function, pretty. Compared to
compact, pretty takes one extra argument: the maximum width of a line, in columns
(we’re assuming that our typeface is of fixed width):

-- file: ch05/Prettify.hs
pretty :: Int -> Doc -> String
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To be more precise, this Int parameter controls the behavior of pretty when it en-
counters a softline. Only at a softline does pretty have the option of either continuing
the current line or beginning a new one. Elsewhere, we must strictly follow the directives
set out by the person using our pretty-printing functions.

Here’s the core of our implementation:

-- file: ch05/Prettify.hs
pretty width x = best 0 [x]
    where best col (d:ds) =
              case d of
                Empty        -> best col ds
                Char c       -> c :  best (col + 1) ds
                Text s       -> s ++ best (col + length s) ds
                Line         -> '\n' : best 0 ds
                a `Concat` b -> best col (a:b:ds)
                a `Union` b  -> nicest col (best col (a:ds))
                                           (best col (b:ds))
          best _ _ = ""

          nicest col a b | (width - least) `fits` a = a
                         | otherwise                = b
                         where least = min width col

Our best helper function takes two arguments: the number of columns emitted so far
on the current line and the list of remaining Doc values to process.

In the simple cases, best updates the col variable in straightforward ways as it consumes
the input. Even the Concat case is obvious: we push the two concatenated components
onto our stack/list, and we don’t touch col.

The interesting case involves the Union constructor. Recall that we applied flatten to
the left element and did nothing to the right. Also, remember that flatten replaces
newlines with spaces. Therefore, our job is to see which (if either) of the two layouts
—the flattened one or the original—will fit into our width restriction.

To do this, we write a small helper function that determines whether a single line of a
rendered Doc value will fit into a given number of columns:

-- file: ch05/Prettify.hs
fits :: Int -> String -> Bool
w `fits` _ | w < 0 = False
w `fits` ""        = True
w `fits` ('\n':_)  = True
w `fits` (c:cs)    = (w - 1) `fits` cs

Following the Pretty Printer
In order to understand how this code works, let’s first consider a simple Doc value:

ghci> empty </> char 'a'
Concat (Union (Char ' ') Line) (Char 'a')
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We’ll apply pretty 2 on this value. When we first apply best, the value of col is zero.
It matches the Concat case, pushes the values Union (Char ' ') Line and Char 'a' onto
the stack, and applies itself recursively. In the recursive application, it matches on Union
(Char ' ') Line.

At this point, we’re going to ignore Haskell’s usual order of evaluation. This keeps our
explanation of what’s going on simple, without changing the end result. We now have
two subexpressions: best 0 [Char ' ', Char 'a'] and best 0 [Line, Char 'a']. The
first evaluates to " a", and the second to "\na". We then substitute these into the outer
expression to give nicest 0 " a" "\na".

To figure out what the result of nicest is here, we do a little substitution. The values
of width and col are 0 and 2, respectively, so least is 0, and width - least is 2. We
quickly evaluate 2 `fits` " a" in ghci:

ghci> 2 `fits` " a"
True

Since this evaluates to True, the result of nicest here is " a".

If we apply our pretty function to the same JSON data that we did earlier, we can see
that it produces different output depending on the width that we give it:

ghci> putStrLn (pretty 10 value)
{"f": 1.0,
"q": true
}
ghci> putStrLn (pretty 20 value)
{"f": 1.0, "q": true
}
ghci> putStrLn (pretty 30 value)
{"f": 1.0, "q": true }

E X E R C I S E S

1. Our current pretty printer is spartan so that it will fit within our space constraints,
but there are a number of useful improvements we can make.

Write a function, fill, with the following type signature:

-- file: ch05/Prettify.hs
fill :: Int -> Doc -> Doc

It should add spaces to a document until it is the given number of columns wide.
If it is already wider than this value, it should not add any spaces.

2. Our pretty printer does not take nesting into account. Whenever we open paren-
theses, braces, or brackets, any lines that follow should be indented so that they
are aligned with the opening character until a matching closing character is en-
countered.

Add support for nesting, with a controllable amount of indentation:
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-- file: ch05/Prettify.hs
fill :: Int -> Doc -> Doc

Creating a Package
The Haskell community has built a standard set of tools, named Cabal, that help with
building, installing, and distributing software. Cabal organizes software as a package.
A package contains one library, and possibly several executable programs.

Writing a Package Description
To do anything with a package, Cabal needs a description of it. This is contained in a
text file whose name ends with the suffix .cabal. This file belongs in the top-level di-
rectory of your project. It has a simple format, which we’ll describe next.

A Cabal package must have a name. Usually, the name of the package matches the
name of the .cabal file. We’ll call our package mypretty, so our file is mypretty.cabal.
Often, the directory that contains a .cabal file will have the same name as the package,
e.g., mypretty.

A package description begins with a series of global properties, which apply to every
library and executable in the package:

Name:          mypretty
Version:       0.1

-- This is a comment.  It stretches to the end of the line.

Package names must be unique. If you create and install a package that has the same
name as a package already present on your system, GHC will get very confused.

The global properties include a substantial amount of information that is intended for
human readers, not Cabal itself:

Synopsis:      My pretty printing library, with JSON support
Description:
  A simple pretty-printing library that illustrates how to
  develop a Haskell library.
Author:        Real World Haskell
Maintainer:    nobody@realworldhaskell.org

As the Description field indicates, a field can span multiple lines, provided they’re
indented.

Also included in the global properties is license information. Most Haskell packages
are licensed under the BSD license, which Cabal calls BSD3.† (Obviously, you’re free to

† The “3” in BSD3 refers to the number of clauses in the license. An older version of the BSD license contained
4 clauses, but it is no longer used.
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choose whatever license you think is appropriate.) The optional License-File field lets
us specify the name of a file that contains the exact text of our package’s licensing terms.

The features supported by successive versions of Cabal evolve over time, so it’s wise to
indicate what versions of Cabal we expect to be compatible with. The features we are
describing are supported by versions 1.2 and higher of Cabal:

Cabal-Version: >= 1.2

To describe an individual library within a package, we write a library section. The use
of indentation here is significant; the contents of a section must be indented:

library
  Exposed-Modules: Prettify
                   PrettyJSON
                   SimpleJSON
  Build-Depends:   base >= 2.0

The Exposed-Modules field contains a list of modules that should be available to users
of this package. An optional field, Other-Modules, contains a list of internal modules.
These are required for this library to function, but will not be visible to users.

The Build-Depends field contains a comma-separated list of packages that our library
requires to build. For each package, we can optionally specify the range of versions
with which this library is known to work. The base package contains many of the core
Haskell modules, such as the Prelude, so it’s effectively always required.

Figuring out build dependencies
We don’t have to guess or do any research to establish which packages
we depend on. If we try to build our package without a Build-Depends
field, compilation will fail with a useful error message. Here’s an exam-
ple where we commented out the dependency on the base package:

$ runghc Setup build
Preprocessing library mypretty-0.1...
Building mypretty-0.1...

PrettyJSON.hs:8:7:
    Could not find module `Data.Bits':
      it is a member of package base, which is hidden

The error message makes it clear that we need to add the base package,
even though base is already installed. Forcing us to be explicit about
every package we need has a practical benefit: a command-line tool
named cabal-install will automatically download, build, and install a
package and all of the packages it depends on.
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GHC’s Package Manager
GHC includes a simple package manager that tracks which packages are installed, and
what the versions of those packages are. A command-line tool named ghc-pkg lets us
work with its package databases.

We say databases because GHC distinguishes between system-wide packages, which
are available to every user, and per-user packages, which are only visible to the current
user. The per-user database lets us avoid the need for administrative privileges to install
packages.

The ghc-pkg command provides subcommands to address different tasks. Most of the
time, we’ll need only two of them. The ghc-pkg list command lets us see what packages
are installed. When we want to uninstall a package, ghc-pkg unregister tells GHC that
we won’t be using a particular package any longer. (We will have to manually delete
the installed files ourselves.)

Setting Up, Building, and Installing
In addition to a .cabal file, a package must contain a setup file. This allows Cabal’s build
process to be heavily customized (if a package needs it). The simplest setup file looks
like this:

-- file: ch05/Setup.hs
#!/usr/bin/env runhaskell
import Distribution.Simple
main = defaultMain

We save this file under the name Setup.hs.

Once we write the .cabal and Setup.hs files, there are three steps left:

1. To instruct Cabal how to build and where to install a package, we run a simple
command:

$ runghc Setup configure

This ensures that the packages we need are available, and it stores settings to be
used later by other Cabal commands.

If we do not provide any arguments to configure, Cabal will install our package in
the system-wide package database. To install it into our home directory and our
personal package database, we must provide a little more information:

2. We build the package:

$ runghc Setup build

3. If this succeeds, we can install the package. We don’t need to indicate where to
install to—Cabal will use the settings we provided in the configure step. It will
install to our own directory and update GHC’s per-user package database.
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Practical Pointers and Further Reading
GHC already bundles a pretty-printing library, Text.PrettyPrint.HughesPJ. It provides
the same basic API as our example but a much richer and more useful set of pretty-
printing functions. We recommend using it, rather than writing your own.

John Hughes introduced the design of the HughesPJ pretty printer “The Design of a
Pretty-Printing library” (http://citeseer.ist.psu.edu/hughes95design.html). The library
was subsequently improved by Simon Peyton Jones, hence the name. Hughes’s paper
is long, but well worth reading for his discussion of how to design a library in Haskell.

In this chapter, our pretty-printing library is based on a simpler system described by
Philip Wadler in “A prettier printer” (http://citeseerx.ist.psu.edu/viewdoc/summary?doi
=10.1.1.19.635). His library was extended by Daan Leijen; this version is available for
download from Hackage as wl-pprint. If you use the cabal command-line tool, you can
download, build, and install it in one step with cabal install wl-pprint.
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CHAPTER 6

Using Typeclasses

Typeclasses are among the most powerful features in Haskell. They allow us to define
generic interfaces that provide a common feature set over a wide variety of types. Type-
classes are at the heart of some basic language features such as equality testing and
numeric operators. Before we talk about what exactly typeclasses are, though, we’d
like to explain the need for them.

The Need for Typeclasses
Let’s imagine that for some unfathomable reason, the designers of the Haskell language
neglected to implement the equality test ==. Once you get over your shock at hearing
this, you resolve to implement your own equality tests. Your application consists of a
simple Color type, and so your first equality test is for this type. Your first attempt might
look like this:

-- file: ch06/naiveeq.hs
data Color = Red | Green | Blue

colorEq :: Color -> Color -> Bool
colorEq Red   Red   = True
colorEq Green Green = True
colorEq Blue  Blue  = True
colorEq _     _     = False

You can test this with ghci:

ghci> :load naiveeq.hs
[1 of 1] Compiling Main             ( naiveeq.hs, interpreted )
Ok, modules loaded: Main.
ghci> colorEq Red Red
True
ghci> colorEq Red Green
False
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Now, let’s say that you want to add an equality test for Strings. Since a Haskell
String is a list of characters, we can write a simple function to perform that test. For
simplicity, we cheat a bit and use the == operator here to illustrate:

-- file: ch06/naiveeq.hs
stringEq :: [Char] -> [Char] -> Bool

-- Match if both are empty
stringEq [] [] = True

-- If both start with the same char, check the rest
stringEq (x:xs) (y:ys) = x == y && stringEq xs ys

-- Everything else doesn't match
stringEq _ _ = False

You should now be able to see a problem: we have to use a function with a different
name for every different type that we want to be able to compare. That’s inefficient and
annoying. It’s much more convenient to be able to just use == to compare anything. It
may also be useful to write generic functions such as /= that could be implemented in
terms of ==, and valid for almost anything. By having a generic function that can com-
pare anything, we can also make our code generic: if a piece of code needs only to
compare things, then it ought to be able to accept any data type that the compiler knows
how to compare. What’s more, if new data types are added later, the existing code
shouldn’t have to be modified.

Haskell’s typeclasses are designed to address all of these things.

What Are Typeclasses?
Typeclasses define a set of functions that can have different implementations depending
on the type of data they are given. Typeclasses may look like the objects of object-
oriented programming, but they are truly quite different.

Let’s use typeclasses to solve our equality dilemma from the previous section. To begin
with, we must define the typeclass itself. We want a function that takes two parameters,
both the same type, and returns a Bool indicating whether or not they are equal. We
don’t care what that type is, but we just want two items of that type. Here’s our first
definition of a typeclass:

-- file: ch06/eqclasses.hs
class BasicEq a where
    isEqual :: a -> a -> Bool

This says that we are declaring a typeclass named BasicEq, and we’ll refer to instance
types with the letter a. An instance type of this typeclass is any type that implements
the functions defined in the typeclass. This typeclass defines one function. That func-
tion takes two parameters—both corresponding to instance types—and returns a Bool.
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When is a class not a class?
The keyword to define a typeclass in Haskell is class. Unfortunately,
this may be confusing for those of you coming from an object-oriented
background, as we are not really defining the same thing.

On the first line, the name of the parameter a was chosen arbitrarily—we could have
used any name. The key is that, when you list the types of your functions, you must
use that name to refer to instance types.

Let’s look at this in ghci. Recall that you can type :type in ghci to have it show you the
type of something. Let’s see what it says about isEqual:

*Main> :type isEqual
isEqual :: (BasicEq a) => a -> a -> Bool

You can read that this way: “For all types a, so long as a is an instance of BasicEq,
isEqual takes two parameters of type a and returns a Bool.” Let’s take a quick look at
defining isEqual for a particular type:

-- file: ch06/eqclasses.hs
instance BasicEq Bool where
    isEqual True  True  = True
    isEqual False False = True
    isEqual _     _     = False

You can also use ghci to verify that we can now use isEqual on Bools but not on any
other type:

ghci> :load eqclasses.hs
[1 of 1] Compiling Main             ( eqclasses.hs, interpreted )
Ok, modules loaded: Main.
ghci> isEqual False False
True
ghci> isEqual False True
False
ghci> isEqual "Hi" "Hi"

<interactive>:1:0:
    No instance for (BasicEq [Char])
      arising from a use of `isEqual' at <interactive>:1:0-16
    Possible fix: add an instance declaration for (BasicEq [Char])
    In the expression: isEqual "Hi" "Hi"
    In the definition of `it': it = isEqual "Hi" "Hi"

Notice that when we tried to compare two strings, ghci recognized that we hadn’t
provided an instance of BasicEq for String. It therefore didn’t know how to compare a
String and suggested that we could fix the problem by defining an instance of Basi
cEq for [Char], which is the same as String.

We’ll go into more detail on defining instances in the next section “Declaring Typeclass
Instances” on page 139. First, though, let’s continue to look at ways to define
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typeclasses. In this example, a not-equal-to function might be useful. Here’s what we
might say to define a typeclass with two functions:

-- file: ch06/eqclasses.hs
class BasicEq2 a where
    isEqual2    :: a -> a -> Bool
    isNotEqual2 :: a -> a -> Bool

Someone providing an instance of BasicEq2 will be required to define two functions:
isEqual2 and isNotEqual2.

While our definition of BasicEq2 is fine, it seems that we’re making extra work for
ourselves. Logically speaking, if we know what isEqual or isNotEqual would return,
we know how to figure out what the other function would return, for all types. Rather
than making users of the typeclass define both functions for all types, we can provide
default implementations for them. Then, users will only have to implement one func-
tion.* Here’s an example that shows how to do this:

-- file: ch06/eqclasses.hs
class BasicEq3 a where
    isEqual3 :: a -> a -> Bool
    isEqual3 x y = not (isNotEqual3 x y)

    isNotEqual3 :: a -> a -> Bool
    isNotEqual3 x y = not (isEqual3 x y)

People implementing this class must provide an implementation of at least one func-
tion. They can implement both if they wish, but they will not be required to. While we
did provide defaults for both functions, each function depends on the presence of the
other to calculate an answer. If we don’t specify at least one, the resulting code would
be an endless loop. Therefore, at least one function must always be implemented.

With BasicEq3, we have provided a class that does very much the same thing as Haskell’s
built-in == and /= operators. In fact, these operators are defined by a typeclass that looks
almost identical to BasicEq3. The Haskell 98 Report defines a typeclass that implements
equality comparison. Here is the code for the built-in Eq typeclass. Note how similar it
is to our BasicEq3 typeclass:

class  Eq a  where
    (==), (/=) :: a -> a -> Bool

       -- Minimal complete definition:
       --     (==) or (/=)
    x /= y     =  not (x == y)
    x == y     =  not (x /= y)

* We provided a default implementation of both functions, which gives an implementer of instances a choice:
he can pick which one he implements. We could have provided a default for only one function, which would
force users to implement the other every time. As it is, a user can implement one or both, as he sees fit.
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Declaring Typeclass Instances
Now that you know how to define typeclasses, it’s time to learn how to define instances
of typeclasses. Recall that types are made instances of a particular typeclass by imple-
menting the functions necessary for that typeclass.

Recall our attempt to create a test for equality over a Color type back in “The Need for
Typeclasses” on page 135. Now let’s see how we could make that same Color type a
member of the BasicEq3 class:

-- file: ch06/eqclasses.hs
instance BasicEq3 Color where
    isEqual3 Red Red = True
    isEqual3 Green Green = True
    isEqual3 Blue Blue = True
    isEqual3 _ _ = False

Notice that we provide essentially the same function as we used in “The Need for
Typeclasses” on page 135. In fact, the implementation is identical. However, in this
case, we can use isEqual3 on any type that we declare is an instance of BasicEq3, not
just this one color type. We could define equality tests for anything from numbers to
graphics using the same basic pattern. In fact, as you will see in “Equality, Ordering,
and Comparisons” on page 148, this is exactly how you can make Haskell’s == operator
work for your own custom types.

Note also that the BasicEq3 class defined both isEqual3 and isNotEqual3, but we
implemented only one of them in the Color instance. That’s because of the default
implementation contained in BasicEq3. Since we didn’t explicitly define isNotEqual3,
the compiler automatically uses the default implementation given in the BasicEq3
declaration.

Important Built-in Typeclasses
Now that we’ve discussed defining your own typeclasses and making your types in-
stances of typeclasses, it’s time to introduce you to typeclasses that are a standard part
of the Haskell Prelude. As we mentioned at the beginning of this chapter, typeclasses
are at the core of some important aspects of the language. We’ll cover the most common
ones here. For more details, the Haskell library reference is a good resource. It will give
you a description of the typeclasses and usually also will tell you which functions you
must implement to have a complete definition.

Show
The Show typeclass is used to convert values to Strings. It is perhaps most commonly
used to convert numbers to Strings, but it is defined for so many types that it can be
used to convert quite a bit more. If you have defined your own types, making them
instances of Show will make it easy to display them in ghci or print them out in programs.
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The most important function of Show is show. It takes one argument—the data to con-
vert. It returns a String representing that data. ghci reports the type of show like this:

ghci> :type show
show :: (Show a) => a -> String

Let’s look at some examples of converting values to strings:

ghci> show 1
"1"
ghci> show [1, 2, 3]
"[1,2,3]"
ghci> show (1, 2)
"(1,2)"

Remember that ghci displays results as they would be entered into a Haskell program.
So the expression show 1 returns a single-character string containing the digit 1. That
is, the quotes are not part of the string itself. We can make that clear by using putStrLn:

ghci> putStrLn (show 1)
1
ghci> putStrLn (show [1,2,3])
[1,2,3]

You can also use show on Strings:

ghci> show "Hello!"
"\"Hello!\""
ghci> putStrLn (show "Hello!")
"Hello!"
ghci> show ['H', 'i']
"\"Hi\""
ghci> putStrLn (show "Hi")
"Hi"
ghci> show "Hi, \"Jane\""
"\"Hi, \\\"Jane\\\"\""
ghci> putStrLn (show "Hi, \"Jane\"")
"Hi, \"Jane\""

Running show on Strings can be confusing. Since show generates a result that is suitable
for a Haskell literal, it adds quotes and escaping suitable for inclusion in a Haskell
program. ghci also uses show to display results, so quotes and escaping get added twice.
Using putStrLn can help make this difference clear.

You can define a Show instance for your own types easily. Here’s an example:

-- file: ch06/eqclasses.hs
instance Show Color where
    show Red   = "Red"
    show Green = "Green"
    show Blue  = "Blue"

This example defines an instance of Show for our type Color (see “The Need for Type-
classes” on page 135). The implementation is simple: we define a function show. That’s
all that’s needed.
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The Show typeclass
Show is usually used to define a String representation for data that is
useful for a machine to parse back with Read. Haskell programmers
generally write custom functions to format data attractively for end
users, if this representation would be different than expected via Show.

Read
The Read typeclass is essentially the opposite of Show. It defines functions that will take
a String, parse it, and return data in any type that is a member of Read. The most useful
function in Read is read. You can ask ghci for its type like this:

ghci> :type read
read :: (Read a) => String -> a

Here’s an example illustrating the use of read and show:

-- file: ch06/read.hs
main = do
        putStrLn "Please enter a Double:"
        inpStr <- getLine
        let inpDouble = (read inpStr)::Double
        putStrLn ("Twice " ++ show inpDouble ++ " is " ++ show (inpDouble * 2))

This is a simple example of read and show together. Notice that we gave an explicit type
of Double when processing the read. That’s because read returns a value of type
Read a => a, and show expects a value of type Show a => a. There are many types that
have instances defined for both Read and Show. Without knowing a specific type, the
compiler must guess from these many types which one is needed. In situations such as
this, it may often choose Integer. If we want to accept floating-point input, this
wouldn’t work, so we provide an explicit type.

A note about defaulting
In most cases, if the explicit Double type annotation were omitted, the
compiler would refuse to guess a common type and simply give an error.
The fact that it could default to Integer here is a special case arising
from the fact that the literal 2 is treated as an Integer unless a different
type is expected for it.

You can see the same effect at work if you try to use read on the ghci command line.
ghci uses show internally to display results, meaning that you can encounter this am-
biguous typing problem there as well. You’ll need to explicitly give types for your
read results in ghci as shown here:

ghci> read "5"

<interactive>:1:0:
    Ambiguous type variable `a' in the constraint:
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      `Read a' arising from a use of `read' at <interactive>:1:0-7
    Probable fix: add a type signature that fixes these type variable(s)
ghci> :type (read "5")
(read "5") :: (Read a) => a
ghci> (read "5")::Integer
5
ghci> (read "5")::Double
5.0

Recall the type of read: (Read a) => String -> a. The a here is the type of each instance
of Read. The particular parsing function that is called depends upon the type that is
expected from the return value of read. Let’s see how that works:

ghci> (read "5.0")::Double
5.0
ghci> (read "5.0")::Integer
*** Exception: Prelude.read: no parse

Notice the error when trying to parse 5.0 as an Integer. The interpreter selects a dif-
ferent instance of Read when the return value was expected to be Integer than it did
when a Double was expected. The Integer parser doesn’t accept decimal points and
caused an exception to be raised.

The Read class provides for some fairly complicated parsers. You can define a simple
parser by providing an implementation for the readsPrec function. Your implementa-
tion can return a list containing exactly one tuple on a successful parse, or it can return
an empty list on an unsuccessful parse. Here’s an example implementation:

-- file: ch06/eqclasses.hs
instance Read Color where
    -- readsPrec is the main function for parsing input
    readsPrec _ value = 
        -- We pass tryParse a list of pairs.  Each pair has a string
        -- and the desired return value.  tryParse will try to match
        -- the input to one of these strings.
        tryParse [("Red", Red), ("Green", Green), ("Blue", Blue)]
        where tryParse [] = []    -- If there is nothing left to try, fail
              tryParse ((attempt, result):xs) =
                      -- Compare the start of the string to be parsed to the
                      -- text we are looking for.
                      if (take (length attempt) value) == attempt
                         -- If we have a match, return the result and the
                         -- remaining input
                         then [(result, drop (length attempt) value)]
                         -- If we don't have a match, try the next pair
                         -- in the list of attempts.
                         else tryParse xs

This example handles the known cases for the three colors. It returns an empty list
(resulting in a “no parse” message) for others. The function is supposed to return the
part of the input that was not parsed so that the system can integrate the parsing of
different types together. Here’s an example of using this new instance of Read:
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ghci> (read "Red")::Color
Red
ghci> (read "Green")::Color
Green
ghci> (read "Blue")::Color
Blue
ghci> (read "[Red]")::[Color]
[Red]
ghci> (read "[Red,Red,Blue]")::[Color]
[Red,Red,Blue]
ghci> (read "[Red, Red, Blue]")::[Color]
*** Exception: Prelude.read: no parse

Notice the error on the final attempt. That’s because our parser is not smart enough to
handle leading spaces yet. If we modify it to accept leading spaces, that attempt would
work. You could rectify this by changing your Read instance to discard any leading
spaces, which is common practice in Haskell programs.

Read is not widely used
While it is possible to build sophisticated parsers using the Read type-
class, many people find it easier to do so using Parsec, and rely on
Read only for simpler tasks. Parsec is covered in detail in Chapter 16.

Serialization with read and show
You may often have a data structure in memory that you need to store on disk for later
retrieval or to send across the network. The process of converting data in memory to a
flat series of bits for storage is called serialization.

It turns out that read and show make excellent tools for serialization. show produces
output that is both human- and machine-readable. Most show output is also syntacti-
cally valid Haskell, though it is up to people that write Show instances to make it so.

Parsing large strings
String handling in Haskell is normally lazy, so read and show can be used
on quite large data structures without incident. The built-in read and
show instances in Haskell are efficient and implemented in pure Haskell.
For information on how to handle parsing exceptions, refer to Chap-
ter 19.

Let’s try it out in ghci:

ghci> let d1 = [Just 5, Nothing, Nothing, Just 8, Just 9]::[Maybe Int]
ghci> putStrLn (show d1)
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> writeFile "test" (show d1)
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First, we assign d1 to be a list. Next, we print out the result of show d1, so we can see
what it generates. Then, we write the result of show d1 to a file named test.

Let’s try reading it back:

ghci> input <- readFile "test"
"[Just 5,Nothing,Nothing,Just 8,Just 9]"
ghci> let d2 = read input

<interactive>:1:9:
    Ambiguous type variable `a' in the constraint:
      `Read a' arising from a use of `read' at <interactive>:1:9-18
    Probable fix: add a type signature that fixes these type variable(s)
ghci> let d2 = (read input)::[Maybe Int]
ghci> print d1
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> print d2
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> d1 == d2
True

First, we ask Haskell to read the file back.† Then, we try to assign the result of read
input to d2. That generates an error. The reason is that the interpreter doesn’t know
what type d2 is meant to be, so it doesn’t know how to parse the input. If we give it an
explicit type, it works, and we can verify that the two sets of data are equal.

Since so many different types are instances of Read and Show by default (and others can
be made instances easily; see “Automatic Derivation” on page 148), you can use it for
some really complex data structures. Here are a few examples of slightly more complex
data structures:

ghci> putStrLn $ show [("hi", 1), ("there", 3)]
[("hi",1),("there",3)]
ghci> putStrLn $ show [[1, 2, 3], [], [4, 0, 1], [], [503]]
[[1,2,3],[],[4,0,1],[],[503]]
ghci> putStrLn $ show [Left 5, Right "three", Left 0, Right "nine"]
[Left 5,Right "three",Left 0,Right "nine"]
ghci> putStrLn $ show [Left 0, Right [1, 2, 3], Left 5, Right []]
[Left 0,Right [1,2,3],Left 5,Right []]

Numeric Types
Haskell has a powerful set of numeric types. You can use everything from fast 32-bit
or 64-bit integers to arbitrary-precision rational numbers. You probably know that
operators such as + can work with just about all of these. This feature is implemented
using typeclasses. As a side benefit, it allows us to define your own numeric types and
make them first-class citizens in Haskell.

† As you will see in “Lazy I/O” on page 178, Haskell doesn’t actually read the entire file at this point. But for
the purposes of this example, we can ignore that distinction.
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Let’s begin our discussion of the typeclasses surrounding numeric types with an
examination of the types themselves. Table 6-1 describes the most commonly used
numeric types in Haskell. Note that there are also many more numeric types available
for specific purposes such as interfacing to C.

Table 6-1. Selected numeric types

Type Description

Double Double-precision floating point. A common choice for floating-point data.

Float Single-precision floating point. Often used when interfacing with C.

Int Fixed-precision signed integer; minimum range [-2^29..2^29-1]. Commonly used.

Int8 8-bit signed integer.

Int16 16-bit signed integer.

Int32 32-bit signed integer.

Int64 64-bit signed integer.

Integer Arbitrary-precision signed integer; range limited only by machine resources. Commonly used.

Rational Arbitrary-precision rational numbers. Stored as a ratio of two Integers.

Word Fixed-precision unsigned integer; storage size same as Int.

Word8 8-bit unsigned integer.

Word16 16-bit unsigned integer.

Word32 32-bit unsigned integer.

Word64 64-bit unsigned integer.

These are quite a few different numeric types. There are some operations, such as
addition, that work with all of them. There are others, such as asin, that apply only to
floating-point types. Table 6-2 summarizes the different functions that operate on nu-
meric types, and Table 6-3 matches the types with their respective typeclasses. As you
read Table 6-3, keep in mind that Haskell operators are just functions: you can say
either (+) 2 3 or 2 + 3 with the same result. By convention, when referring to an
operator as a function, it is written in parentheses as seen in Table 6-2.

Table 6-2. Selected numeric functions and constants

Item Type Module Description

(+) Num a => a -> a -> a Prelude Addition.

(-) Num a => a -> a -> a Prelude Subtraction.

(*) Num a => a -> a -> a Prelude Multiplication.

(/) Fractional a => a -> a -> a Prelude Fractional division.

(**) Floating a => a -> a -> a Prelude Raise to the power of.

(^) (Num a, Integral b)
=> a -> b -> a

Prelude Raise a number to a nonnegative,
integral power.
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Item Type Module Description

(^^) (Fractional a, Integral b)
=> a -> b -> a

Prelude Raise a fractional number to any
integral power.

(%) Integral a => a -> a -> Ratio a Data.Ratio Ratio composition.

(.&.) Bits a => a -> a -> a Data.Bits Bitwise and.

(.|.) Bits a => a -> a -> a Data.Bits Bitwise or.

abs Num a => a -> a Prelude Absolute value

approxRational RealFrac a => a -> a -> Rational Data.Ratio Approximate rational composi-
tion based on fractional numera-
tors and denominators.

cos Floating a => a -> a Prelude Cosine. Also provided are acos,
cosh, and acosh, with the same
type.

div Integral a => a -> a -> a Prelude Integer division always truncated
down; see also quot.

fromInteger Num a => Integer -> a Prelude Conversion from an Integer to
any numeric type.

fromIntegral (Integral a, Num b) => a -> b Prelude More general conversion from
any Integral to any numeric
type.

fromRational Fractional a => Rational -> a Prelude Conversion from a Rational.
May be lossy.

log Floating a => a -> a Prelude Natural logarithm.

logBase Floating a => a -> a -> a Prelude Log with explicit base.

maxBound Bounded a => a Prelude The maximum value of a bounded
type.

minBound Bounded a => a Prelude The minimum value of a bounded
type.

mod Integral a => a -> a -> a Prelude Integer modulus.

pi Floating a => a Prelude Mathematical constant pi.

quot Integral a => a -> a -> a Prelude Integer division; fractional part of
quotient truncated towards zero.

recip Fractional a => a -> a Prelude Reciprocal.

rem Integral a => a -> a -> a Prelude Remainder of integer division.

round (RealFrac a, Integral b)
=> a -> b

Prelude Rounds to nearest integer.

shift Bits a => a -> Int -> a Bits Shift left by the specified number
of bits, which may be negative for
a right shift.
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Item Type Module Description

sin Floating a => a -> a Prelude Sine. Also provided are asin,
sinh, and asinh, with the same
type.

sqrt Floating a => a -> a Prelude Square root.

tan Floating a => a -> a Prelude Tangent. Also provided are atan,
tanh, and atanh, with the same
type.

toInteger Integral a => a -> Integer Prelude Convert any Integral to an
Integer.

toRational Real a => a -> Rational Prelude Convert losslessly to Rational.

truncate (RealFrac a, Integral b)
=> a -> b

Prelude Truncates number towards zero.

xor Bits a => a -> a -> a Data.Bits Bitwise exclusive or.

Table 6-3. Typeclass instances for numeric types

Type Bits Bounded Floating Fractional Integral Num Real RealFrac

Double X X X X X

Float X X X X X

Int X X X X X

Int16 X X X X X

Int32 X X X X X

Int64 X X X X X

Integer X X X X

Rational or any Ratio X X X X

Word X X X X X

Word16 X X X X X

Word32 X X X X X

Word64 X X X X X

Converting between numeric types is another common need. Table 6-2 listed many
functions that can be used for conversion. However, it is not always obvious how to
apply them to convert between two arbitrary types. To help you out, Table 6-4 provides
information on converting between different types.
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Table 6-4. Conversion between numeric typesa

Source type Destination type

Double, Float Int, Word Integer Rational

Double, Float fromRational . toRational truncate * truncate * toRational

Int, Word fromIntegral fromIntegral fromIntegral fromIntegral

Integer fromIntegral fromIntegral N/A fromIntegral

Rational fromRational truncate * truncate * N/A

a Instead of truncate, you could also use round, ceiling, or floor.

For an extended example demonstrating the use of these numeric typeclasses, see
“Extended Example: Numeric Types” on page 307.

Equality, Ordering, and Comparisons
We’ve already talked about the arithmetic operators such as + that can be used for all
sorts of different numbers. But there are some even more widely applied operators in
Haskell. The most obvious, of course, are the equality tests: == and /=. These operators
are defined in the Eq class.

There are also comparison operators such as >= and <=. These are declared by the Ord
typeclass. These are in a separate typeclass because there are some types, such as
Handle, where an equality test makes sense, but there is no way to express a particular
ordering. Anything that is an instance of Ord can be sorted by Data.List.sort.

Almost all Haskell types are instances of Eq, and nearly as many are instances of Ord.

Automatic Derivation
For many simple data types, the Haskell compiler can automatically derive instances
of Read, Show, Bounded, Enum, Eq, and Ord for us. This saves us the effort of having to
manually write code to compare or display our own types:

-- file: ch06/colorderived.hs
data Color = Red | Green | Blue
     deriving (Read, Show, Eq, Ord)

Which types can be automatically derived?
The Haskell standard requires compilers to be able to automatically
derive instances of these specific typeclasses. This automation is not
available for other typeclasses.

Let’s take a look at how these derived instances work for us:
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ghci> show Red
"Red"
ghci> (read "Red")::Color
Red
ghci> (read "[Red,Red,Blue]")::[Color]
[Red,Red,Blue]
ghci> (read "[Red, Red, Blue]")::[Color]
[Red,Red,Blue]
ghci> Red == Red
True
ghci> Red == Blue
False
ghci> Data.List.sort [Blue,Green,Blue,Red]
[Red,Green,Blue,Blue]
ghci> Red < Blue
True

Notice that the sort order for Color was based on the order in which the constructors
were defined.

Automatic derivation is not always possible. For instance, if you defined a type
data MyType = MyType (Int -> Bool), the compiler will not be able to derive an instance
of Show because it doesn’t know how to render a function. We will get a compilation
error in such a situation.

When we automatically derive an instance of some typeclass, the types that we refer to
in our data declaration must also be instances of that typeclass (manually or
automatically):

-- file: ch06/AutomaticDerivation.hs
data CannotShow = CannotShow
                deriving (Show)

-- will not compile, since CannotShow is not an instance of Show
data CannotDeriveShow = CannotDeriveShow CannotShow
                        deriving (Show)

data OK = OK

instance Show OK where
    show _ = "OK"

data ThisWorks = ThisWorks OK
                 deriving (Show)

Typeclasses at Work: Making JSON Easier to Use
The JValue type that we introduced in “Representing JSON Data in Haskell” on page
111 is not especially easy to work with. Here is a truncated and tidied snippet of some
real JSON data, produced by a well-known search engine:

{
  "query": "awkward squad haskell",
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  "estimatedCount": 3920,
  "moreResults": true,
  "results":
  [{
    "title": "Simon Peyton Jones: papers",
    "snippet": "Tackling the awkward squad: monadic input/output ...",
    "url": "http://research.microsoft.com/~simonpj/papers/marktoberdorf/",
   },
   {
    "title": "Haskell for C Programmers | Lambda the Ultimate",
    "snippet": "... the best job of all the tutorials I've read ...",
    "url": "http://lambda-the-ultimate.org/node/724",
   }]
}

And here’s a further slimmed down fragment of that data, represented in Haskell:

-- file: ch05/SimpleResult.hs
import SimpleJSON

result :: JValue
result = JObject [
  ("query", JString "awkward squad haskell"),
  ("estimatedCount", JNumber 3920),
  ("moreResults", JBool True),
  ("results", JArray [
     JObject [
      ("title", JString "Simon Peyton Jones: papers"),
      ("snippet", JString "Tackling the awkward ..."),
      ("url", JString "http://.../marktoberdorf/")
     ]])
  ]

Because Haskell doesn’t natively support lists that contain types of different values, we
can’t directly represent a JSON object that contains values of different types. Instead,
we must wrap each value with a JValue constructor, which limits our flexibility—if we
want to change the number 3920 to a string "3,920", we must change the constructor
that we use to wrap it from JNumber to JString.

Haskell’s typeclasses offer a tempting solution to this problem:

-- file: ch06/JSONClass.hs
type JSONError = String

class JSON a where
    toJValue :: a -> JValue
    fromJValue :: JValue -> Either JSONError a

instance JSON JValue where
    toJValue = id
    fromJValue = Right

Now, instead of applying a constructor such as JNumber to a value in order to wrap it,
we apply the toJValue function. If we change a value’s type, the compiler will choose
a suitable implementation of toJValue to use with it.
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We also provide a fromJValue function, which attempts to convert a JValue into a value
of our desired type.

More Helpful Errors
The return type of our fromJValue function uses the Either type. Like Maybe, this type
is predefined for us. We’ll often use it to represent a computation that could fail.

While Maybe is useful for this purpose, it gives us no information if a failure occurs: we
literally have Nothing. The Either type has a similar structure, but instead of Nothing,
the “something bad happened” constructor is named Left, and it takes a parameter:

-- file: ch06/DataEither.hs
data Maybe a = Nothing
             | Just a
               deriving (Eq, Ord, Read, Show)

data Either a b = Left a
                | Right b
                  deriving (Eq, Ord, Read, Show)

Quite often, the type we use for the a parameter value is String, so we can provide a
useful description if something goes wrong. To see how we use the Either type in
practice, let’s look at a simple instance of our typeclass:

-- file: ch06/JSONClass.hs
instance JSON Bool where
    toJValue = JBool
    fromJValue (JBool b) = Right b
    fromJValue _ = Left "not a JSON boolean"

Making an Instance with a Type Synonym
The Haskell 98 standard does not allow us to write an instance of the following form,
even though it seems perfectly reasonable:

-- file: ch06/JSONClass.hs
instance JSON String where
    toJValue               = JString

    fromJValue (JString s) = Right s
    fromJValue _           = Left "not a JSON string"

Recall that String is a synonym for [Char], which in turn is the type [a] where Char is
substituted for the type parameter a. According to Haskell 98’s rules, we are not allowed
to supply a type in place of a type parameter when we write an instance. In other words,
it would be legal for us to write an instance for [a], but not for [Char].

While GHC follows the Haskell 98 standard by default, we can relax this particular
restriction by placing a specially formatted comment at the top of our source file:

-- file: ch06/JSONClass.hs
{-# LANGUAGE TypeSynonymInstances #-}
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This comment is a directive to the compiler, called a pragma, which tells it to enable
a language extension. The TypeSynonymInstances language extension makes the
preceding code legal. We’ll encounter a few other language extensions in this chapter,
and a handful more later in this book.

Living in an Open World
Haskell’s typeclasses are intentionally designed to let us create new instances of a type-
class whenever we see fit:

-- file: ch06/JSONClass.hs
doubleToJValue :: (Double -> a) -> JValue -> Either JSONError a
doubleToJValue f (JNumber v) = Right (f v)
doubleToJValue _ _ = Left "not a JSON number"

instance JSON Int where
    toJValue = JNumber . realToFrac
    fromJValue = doubleToJValue round

instance JSON Integer where
    toJValue = JNumber . realToFrac
    fromJValue = doubleToJValue round

instance JSON Double where
    toJValue = JNumber
    fromJValue = doubleToJValue id

We can add new instances anywhere; they are not confined to the module where we
define a typeclass. This feature of the typeclass system is referred to as its open world
assumption. If we had a way to express a notion of “the following are the only instances
of this typeclass that can exist,” we would have a closed world.

We would like to be able to turn a list into what JSON calls an array. We won’t worry
about implementation details just yet, so let’s use undefined as the bodies of the in-
stance’s methods:

-- file: ch06/BrokenClass.hs
instance (JSON a) => JSON [a] where
    toJValue = undefined
    fromJValue = undefined

It would also be convenient if we could turn a list of name/value pairs into a JSON
object:

-- file: ch06/BrokenClass.hs
instance (JSON a) => JSON [(String, a)] where
    toJValue = undefined
    fromJValue = undefined
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When Do Overlapping Instances Cause Problems?
If we put these definitions into a source file and load them into ghci, everything seems
fine initially:

ghci> :load BrokenClass
[1 of 2] Compiling SimpleJSON       ( ../ch05/SimpleJSON.hs, interpreted )
[2 of 2] Compiling BrokenClass      ( BrokenClass.hs, interpreted )
Ok, modules loaded: BrokenClass, SimpleJSON.

However, once we try to use the list-of-pairs instance, we run into trouble:

ghci> toJValue [("foo","bar")]

<interactive>:1:0:
    Overlapping instances for JSON [([Char], [Char])]
      arising from a use of `toJValue' at <interactive>:1:0-23
    Matching instances:
      instance (JSON a) => JSON [a]
        -- Defined at BrokenClass.hs:(44,0)-(46,25)
      instance (JSON a) => JSON [(String, a)]
        -- Defined at BrokenClass.hs:(50,0)-(52,25)
    In the expression: toJValue [("foo", "bar")]
    In the definition of `it': it = toJValue [("foo", "bar")]

This problem of overlapping instances is a consequence of Haskell’s open world as-
sumption. Here’s a simpler example that makes it clearer what’s going on:

-- file: ch06/Overlap.hs
class Borked a where
    bork :: a -> String

instance Borked Int where
    bork = show

instance Borked (Int, Int) where
    bork (a, b) = bork a ++ ", " ++ bork b

instance (Borked a, Borked b) => Borked (a, b) where
    bork (a, b) = ">>" ++ bork a ++ " " ++ bork b ++ "<<"

We have two instances of the typeclass Borked for pairs: one for a pair of Ints and
another for a pair of anything else that’s Borked.

Suppose that we want to bork a pair of Int values. To do so, the compiler must choose
an instance to use. Because these instances are right next to each other, it may seem
that it could simply choose the more specific instance.

However, GHC is conservative by default and insists that there must be only one pos-
sible instance that it can use. It will thus report an error if we try to use bork.
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When do overlapping instances matter?
As we mentioned earlier, we can scatter instances of a typeclass across
several modules. GHC does not complain about the mere existence of
overlapping instances. Instead, it complains only when we try to use a
method of the affected typeclass, when it is forced to make a decision
about which instance to use.

Relaxing Some Restrictions on Typeclasses
Normally, we cannot write an instance of a typeclass for a specialized version of a
polymorphic type. The [Char] type is the polymorphic type [a] specialized to the type
Char. We are thus prohibited from declaring [Char] to be an instance of a typeclass.
This is highly inconvenient, since strings are ubiquitous in real code.

The TypeSynonymInstances language extension removes this restriction, permitting us
to write such instances.

GHC supports another useful language extension, OverlappingInstances, which ad-
dresses the problem we saw with overlapping instances. When there are multiple over-
lapping instances to choose from, this extension causes the compiler to pick the most
specific one.

We frequently use this extension together with TypeSynonymInstances. Here’s an
example:

-- file: ch06/SimpleClass.hs
{-# LANGUAGE TypeSynonymInstances, OverlappingInstances #-}

import Data.List

class Foo a where
    foo :: a -> String

instance Foo a => Foo [a] where
    foo = concat . intersperse ", " . map foo

instance Foo Char where
    foo c = [c]

instance Foo String where
    foo = id

If we apply foo to a String, the compiler will use the String-specific implementation.
Even though we have an instance of Foo for [a] and Char, the instance for String is more
specific, so GHC chooses it. For other types of list, we will see the behavior specified
for [a].

With the OverlappingInstances extension enabled, GHC will still reject code if it finds
more than one equally specific instance.
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When to use the OverlappingInstances extension
Here’s an important point: GHC treats OverlappingInstances as affect-
ing the declaration of an instance, not a location where we use the in-
stance. In other words, when we define an instance that we wish to allow
to overlap with another instance, we must enable the extension for the
module that contains the definition. When it compiles the module,
GHC will record that instance as “can be overlapped with other
instances.”

Once we import this module and use the instance, we won’t need to
enable OverlappingInstances in the importing module. GHC will al-
ready know that the instance was marked as “OK to overlap” when it
was defined.

This behavior is useful when we are writing a library: we can choose to
create overlappable instances, but users of our library do not need to
enable any special language extensions.

How Does Show Work for Strings?
The OverlappingInstances and TypeSynonymInstances language extensions are specific
to GHC, and by definition were not present in Haskell 98. However, the familiar
Show typeclass from Haskell 98 somehow renders a list of Char differently from a list of
Int. It achieves this via a clever, but simple, trick.

The Show class defines both a show method, which renders one value, and a showList
method, which renders a list of values. The default implementation of showList renders
a list using square brackets and commas.

The instance of Show for [a] is implemented using showList. The instance of Show for
Char provides a special implementation of showList that uses double quotes and escapes
non-ASCII-printable characters.

As a result, if someone applies show to a [Char] value, the implementation of
showList will be chosen, and it will correctly render the string using quotes.

At least sometimes, then, we can avoid the need for the OverlappingInstances extension
with a little bit of lateral thinking.

How to Give a Type a New Identity
In addition to the familiar data keyword, Haskell provides us with another way to create
a new type, using the newtype keyword:

-- file: ch06/Newtype.hs
data DataInt = D Int
    deriving (Eq, Ord, Show)
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newtype NewtypeInt = N Int
    deriving (Eq, Ord, Show)

The purpose of a newtype declaration is to rename an existing type, giving it a distinct
identity. As we can see, it is similar in appearance to a type declared using the data
keyword.

The type and newtype keywords
Although their names are similar, the type and newtype keywords have
different purposes. The type keyword gives us another way of referring
to a type, like a nickname for a friend. We and the compiler know that
[Char] and String names refer to the same type.

In contrast, the newtype keyword exists to hide the nature of a type.
Consider a UniqueID type:

-- file: ch06/Newtype.hs
newtype UniqueID = UniqueID Int
    deriving (Eq)

The compiler treats UniqueID as a different type from Int. As a user of a
UniqueID, we know only that we have a unique identifier; we cannot see
that it is implemented as an Int.

When we declare a newtype, we must choose which of the underlying type’s typeclass
instances we want to expose. Here, we’ve elected to make NewtypeInt provide Int’s
instances for Eq, Ord, and Show. As a result, we can compare and print values of type
NewtypeInt:

ghci> N 1 < N 2
True

Since we are not exposing Int’s Num or Integral instances, values of type NewtypeInt are
not numbers. For instance, we can’t add them:

ghci> N 313 + N 37

<interactive>:1:0:
    No instance for (Num NewtypeInt)
      arising from a use of `+' at <interactive>:1:0-11
    Possible fix: add an instance declaration for (Num NewtypeInt)
    In the expression: N 313 + N 37
    In the definition of `it': it = N 313 + N 37

As with the data keyword, we can use a newtype’s value constructor to create a new
value or to pattern match on an existing value.

If a newtype does not use automatic deriving to expose the underlying type’s imple-
mentation of a typeclass, we are free to either write a new instance or leave the typeclass
unimplemented.
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Differences Between Data and Newtype Declarations
The newtype keyword exists to give an existing type a new identity, and it has more
restrictions on its uses than the data keyword. Specifically, a newtype can have only one
value constructor, which must have exactly one field:

-- file: ch06/NewtypeDiff.hs
-- ok: any number of fields and constructors
data TwoFields = TwoFields Int Int

-- ok: exactly one field
newtype Okay = ExactlyOne Int

-- ok: type parameters are no problem
newtype Param a b = Param (Either a b)

-- ok: record syntax is fine
newtype Record = Record {
      getInt :: Int
    }

-- bad: no fields
newtype TooFew = TooFew

-- bad: more than one field
newtype TooManyFields = Fields Int Int

-- bad: more than one constructor
newtype TooManyCtors = Bad Int
                     | Worse Int

Beyond this, there’s another important difference between data and newtype. A type
created with the data keyword has a bookkeeping cost at runtime, for example, in order
to track which constructor created a value. A newtype value, on the other hand, can
have only one constructor and so does not need this overhead. This makes it more
space- and time-efficient at runtime.

Because a newtype’s constructor is used only at compile time and does not even exist
at runtime, pattern matching on undefined behaves differently for types defined using
newtype than for those that use data.

To understand the difference, let’s first review what we might expect with a normal
data type. We are already familiar with the idea that if undefined is evaluated at runtime,
it causes a crash:

ghci> undefined
*** Exception: Prelude.undefined

Here is a pattern match where we construct a DataInt using the D constructor and put
undefined inside:

ghci> case D undefined of D _ -> 1
1
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Since our pattern matches against the constructor but doesn’t inspect the payload,
undefined remains unevaluated and does not cause an exception to be thrown.

In this example, we’re not using the D constructor, so the unprotected undefined is
evaluated when the pattern match occurs, and we throw an exception:

ghci> case undefined of D _ -> 1
*** Exception: Prelude.undefined

When we use the N constructor for the NewtypeInt type, we see the same behavior that
we did with the DataInt type’s D constructor—no exception:

ghci> case N undefined of N _ -> 1
1

The crucial difference arises when we get rid of the N constructor from the expression
and match against an unprotected undefined:

ghci> case undefined of N _ -> 1
1

We don’t crash! Because there’s no constructor present at runtime, matching against
N _ is in fact equivalent to matching against the plain wild card (_). Since the wild card
always matches, the expression does not need to be evaluated.

Another perspective on newtype constructors
Even though we use the value constructor for a newtype in the same way
as that of a type defined using the data keyword, all it does is coerce a
value between its “normal” type and its newtype type.

In other words, when we apply the N constructor in an expression, we
coerce an expression from type Int to type NewtypeInt as far as we and
the compiler are concerned, but absolutely nothing occurs at runtime.

Similarly, when we match on the N constructor in a pattern, we coerce
an expression from type NewtypeInt to Int, but again there’s no overhead
involved at runtime.

Summary: The Three Ways of Naming Types
Here’s a brief recap of Haskell’s three ways to introduce new names for types:

• The data keyword introduces a truly new algebraic data type.

• The type keyword gives us a synonym to use for an existing type. We can use the
type and its synonym interchangeably.

• The newtype keyword gives an existing type a distinct identity. The original type
and the new type are not interchangeable.
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JSON Typeclasses Without Overlapping Instances
Enabling GHC’s support for overlapping instances is an effective and quick way to
make our JSON code happy. In more complex cases, we will occasionally be faced with
several equally good instances for some typeclass, in which case, overlapping instances
will not help us and we will need to put some newtype declarations into place. To see
what’s involved, let’s rework our JSON typeclass instances to use newtypes instead of
overlapping instances.

Our first task, then, is to help the compiler to distinguish between [a], the represen-
tation we use for JSON arrays, and [(String,[a])], which we use for objects. These
were the types that gave us problems before we learned about OverlappingInstances.
We wrap up the list type so that the compiler will not see it as a list:

-- file: ch06/JSONClass.hs
newtype JAry a = JAry {
      fromJAry :: [a]
    } deriving (Eq, Ord, Show)

When we export this type from our module, we’ll export the complete details of the
type. Our module header will look like this:

-- file: ch06/JSONClassExport.hs
module JSONClass
    (
      JAry(..)
    ) where

The (..) following the JAry name means “export all details of this type.”

A Slight Deviation from Normal Use
Usually, when we export a newtype, we will not export its data constructor, in order to
keep the details of the type abstract. Instead, we would define a function to apply the
constructor for us:

-- file: ch06/JSONClass.hs
jary :: [a] -> JAry a
jary = JAry

We would then export the type constructor, the deconstructor function, and our con-
struction function, but not the data constructor:

-- file: ch06/JSONClassExport.hs
module JSONClass
    (
      JAry(fromJAry)
    , jary
    ) where

When we don’t export a type’s data constructor, clients of our library can only use the
functions we provide to construct and deconstruct values of that type. This gives us,
the library authors, the liberty to change our internal representation if we need to.

JSON Typeclasses Without Overlapping Instances | 159



If we export the data constructor, clients are likely to start depending on it, for instance
by using it in patterns. If we later wish to change the innards of our type, we’ll risk
breaking any code that uses the constructor.

In our circumstances here, we have nothing to gain by making the array wrapper ab-
stract, so we may as well simply export the entire definition of the type.

We provide another wrapper type that hides our representation of a JSON object:

-- file: ch06/JSONClass.hs
newtype JObj a = JObj {
      fromJObj :: [(String, a)]
    } deriving (Eq, Ord, Show)

With these types defined, we make small changes to the definition of our JValue type:

-- file: ch06/JSONClass.hs
data JValue = JString String
            | JNumber Double
            | JBool Bool
            | JNull
            | JObject (JObj JValue)   -- was [(String, JValue)]
            | JArray (JAry JValue)    -- was [JValue]
              deriving (Eq, Ord, Show)

This change doesn’t affect the instances of the JSON typeclass that we’ve already written,
but we will want to write instances for our new JAry and JObj types:

-- file: ch06/JSONClass.hs
jaryFromJValue :: (JSON a) => JValue -> Either JSONError (JAry a)

jaryToJValue :: (JSON a) => JAry a -> JValue

instance (JSON a) => JSON (JAry a) where
    toJValue = jaryToJValue
    fromJValue = jaryFromJValue

Let’s take a slow walk through the individual steps of converting a JAry a to a JValue.
Given a list where we know that everything inside is a JSON instance, converting it to a
list of JValues is easy:

-- file: ch06/JSONClass.hs
listToJValues :: (JSON a) => [a] -> [JValue]
listToJValues = map toJValue

Taking this and wrapping it to become a JAry JValue is just a matter of applying the
newtype’s type constructor:

-- file: ch06/JSONClass.hs
jvaluesToJAry :: [JValue] -> JAry JValue
jvaluesToJAry = JAry

(Remember, this has no performance cost. We’re just telling the compiler to hide the
fact that we’re using a list.) To turn this into a JValue, we apply another type
constructor:
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-- file: ch06/JSONClass.hs
jaryOfJValuesToJValue :: JAry JValue -> JValue
jaryOfJValuesToJValue = JArray

Assemble these pieces using function composition, and we get a concise one-liner for
converting to a JValue:

-- file: ch06/JSONClass.hs
jaryToJValue = JArray . JAry . map toJValue . fromJAry

We have more work to do to convert from a JValue to a JAry a, but we’ll break it into
reusable parts. The basic function is straightforward:

-- file: ch06/JSONClass.hs
jaryFromJValue (JArray (JAry a)) =
    whenRight JAry (mapEithers fromJValue a)
jaryFromJValue _ = Left "not a JSON array"

The whenRight function inspects its argument. It calls a function on the argument if it
was created with the Right constructor, and leaves a Left value untouched:

-- file: ch06/JSONClass.hs
whenRight :: (b -> c) -> Either a b -> Either a c
whenRight _ (Left err) = Left err
whenRight f (Right a) = Right (f a)

More complicated is mapEithers. It acts like the regular map function, but if it ever en-
counters a Left value, it returns that immediately, instead of continuing to accumulate
a list of Right values:

-- file: ch06/JSONClass.hs
mapEithers :: (a -> Either b c) -> [a] -> Either b [c]
mapEithers f (x:xs) = case mapEithers f xs of
                        Left err -> Left err
                        Right ys -> case f x of
                                      Left err -> Left err
                                      Right y -> Right (y:ys)
mapEithers _ _ = Right []

Because the elements of the list hidden in the JObj type have a little more structure, the
code to convert to and from a JValue is a bit more complex. Fortunately, we can reuse
the functions that we just defined:

-- file: ch06/JSONClass.hs
import Control.Arrow (second)

instance (JSON a) => JSON (JObj a) where
    toJValue = JObject . JObj . map (second toJValue) . fromJObj

    fromJValue (JObject (JObj o)) = whenRight JObj (mapEithers unwrap o)
      where unwrap (k,v) = whenRight ((,) k) (fromJValue v)
    fromJValue _ = Left "not a JSON object"
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E X E R C I S E S

1. Load the Control.Arrow module into ghci and find out what the second function
does.

2. What is the type of (,)? When you use it in ghci, what does it do? What about
(,,)?

The Dreaded Monomorphism Restriction
The Haskell 98 standard has a subtle feature that can sometimes bite us in unexpected
circumstances. Here’s a simple function definition that illustrates the issue:

-- file: ch06/Monomorphism.hs
myShow = show

If we try to load this definition into ghci, it issues a peculiar complaint:

ghci> :load Monomorphism
[1 of 1] Compiling Main             ( Monomorphism.hs, interpreted )

Monomorphism.hs:2:9:
    Ambiguous type variable `a' in the constraint:
      `Show a' arising from a use of `show' at Monomorphism.hs:2:9-12
    Possible cause: the monomorphism restriction applied to the following:
      myShow :: a -> String (bound at Monomorphism.hs:2:0)
    Probable fix: give these definition(s) an explicit type signature
                  or use -fno-monomorphism-restriction
Failed, modules loaded: none.

The monomorphism restriction to which the error message refers is a part of the Haskell
98 standard. Monomorphism is simply the opposite of polymorphism: it indicates that
an expression has exactly one type. The restriction lies in the fact that Haskell sometimes
forces a declaration to be less polymorphic than we would expect.

We mention the monomorphism restriction here because although it isn’t specifically
related to typeclasses, they usually provide the circumstances in which it crops up.

It’s possible that you will not run into the monomorphism restriction
in real code for a long time. We don’t think you need to try to remember
the details of this section. It should suffice to make a mental note of its
existence, until eventually GHC complains with something such as the
just shown error message. If that occurs, simply remember that you read
about the error in this chapter, and come back for guidance.
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We won’t attempt to explain the monomorphism restriction.‡ The consensus within
the Haskell community is that it doesn’t arise often, it is tricky to explain, and it provides
almost no practical benefit. So, it mostly serves to trip people up. For an example of its
trickiness, while the definition provided previously falls afoul of it, the following two
compile without problems:

-- file: ch06/Monomorphism.hs
myShow2 value = show value

myShow3 :: (Show a) => a -> String
myShow3 = show

As these alternative definitions suggest, if GHC complains about the monomorphism
restriction, we have three easy ways to address the error:

• Make the function’s arguments explicit, instead of leaving them implicit.

• Give the definition an explicit type signature, instead of making the compiler infer
its type.

• Leave the code untouched and compile the module with the language extension
NoMonomorphismRestriction enabled. This disables the monomorphism
restriction.

Because the monomorphism restriction is unwanted and unloved, it will almost cer-
tainly be dropped from the next revision of the Haskell standard. This does not quite
mean that compiling with NoMonomorphismRestriction is always the right thing to do—
some Haskell compilers (including older versions of GHC) do not understand this
extension, but they’ll accept either of the other approaches to making the error disap-
pear. If this degree of portability isn’t a concern to you, then by all means enable the
language extension.

Conclusion
In this chapter, you learned about the need for typeclasses and how to use them. We
talked about defining our own typeclasses and then covered some of the important
typeclasses that are defined in the Haskell library. Finally, we showed how to have the
Haskell compiler automatically derive instances of certain typeclasses for your types.

‡ If you simply must read the gory details, see section 4.5.5 (http://www.haskell.org/onlinereport/decls.html
#sect4.5.5) of the Haskell 98 Report.
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CHAPTER 7

I/O

It should be obvious that most, if not all, programs are devoted to gathering data from
outside, processing it, and providing results back to the outside world. That is, input
and output are key.

Haskell’s I/O system is powerful and expressive. It is easy to work with and important
to understand. Haskell strictly separates pure code from code that could cause things
to occur in the world. That is, it provides a complete isolation from side effects in pure
code. Besides helping programmers to reason about the correctness of their code, it
also permits compilers to automatically introduce optimizations and parallelism.

We’ll begin this chapter with simple, standard-looking I/O in Haskell. Then we’ll dis-
cuss some of the more powerful options, as well as provide more detail on how I/O fits
into the pure, lazy, functional Haskell world.

Classic I/O in Haskell
Let’s get started with I/O in Haskell by looking at a program that appears to be sur-
prisingly similar to I/O in other languages such as C or Perl:

-- file: ch07/basicio.hs
main = do
       putStrLn "Greetings!  What is your name?"
       inpStr <- getLine
       putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!"

You can compile this program to a standalone executable, run it with runghc, or invoke
main from within ghci. Here’s a sample session using runghc:

$ runghc basicio.hs
Greetings!  What is your name?
John
Welcome to Haskell, John!

That’s a fairly simple, obvious result. You can see that putStrLn writes out a String,
followed by an end-of-line character. getLine reads a line from standard input. The
<- syntax may be new to you. Put simply, that binds the result from executing an I/O
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action to a name.* We use the simple list concatenation operator ++ to join the input
string with our own text.

Let’s take a look at the types of putStrLn and getLine. You can find that information
in the library reference, or just ask ghci:

ghci> :type putStrLn
putStrLn :: String -> IO ()
ghci> :type getLine
getLine :: IO String

Notice that both of these types have IO in their return value. That is your key to knowing
that they may have side effects, or they may return different values even when called
with the same arguments, or both. The type of putStrLn looks like a function. It takes
a parameter of type String and returns value of type IO (). Just what is an IO () though?

Anything that is type IO something is an I/O action. You can store it and nothing will
happen. I could say writefoo = putStrLn "foo" and nothing happens right then. But if
I later use writefoo in the middle of another I/O action, the writefoo action will be
executed when its parent action is executed—I/O actions can be glued together to form
bigger I/O actions. The () is an empty tuple (pronounced “unit”), indicating that there
is no return value from putStrLn. This is similar to void in Java or C.†

Actions can be created, assigned, and passed anywhere. However, they
may only be performed (executed) from within another I/O action.

Let’s look at this with ghci:

ghci> let writefoo = putStrLn "foo"
ghci> writefoo
foo

In this example, the output foo is not a return value from putStrLn. Rather, it’s the side
effect of putStrLn actually writing foo to the terminal.

Notice one other thing: ghci actually executed writefoo. This means that, when given
an I/O action, ghci will perform it for you on the spot.

* You will later see that it has a more broad application, but it is sufficient to think of it in these terms for now.

† The type of the value () is also ().
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What is an I/O action?
Actions:

• Have the type IO t.

• Are first-class values in Haskell and fit seamlessly with Haskell’s
type system.

• Produce an effect when performed, but not when evaluated. That
is, they produce an effect only when called by something else in an
I/O context.

• Any expression may produce an action as its value, but the action
will not perform I/O until it is executed inside another I/O action
(or it is main).

• Performing (executing) an action of type IO t may perform I/O and
will ultimately deliver a result of type t.

The type of getLine may look strange to you. It looks like a value, rather than a function.
And in fact, that is one way to look at it: getLine is storing an I/O action. When that
action is performed, you get a String. The <- operator is used to “pull out” the result
from performing an I/O action and store it in a variable.

main itself is an I/O action with type IO (). You can only perform I/O actions from
within other I/O actions. All I/O in Haskell programs is driven from the top at main,
which is where execution of every Haskell program begins. This, then, is the mechanism
that provides isolation from side effects in Haskell: you perform I/O in your IO actions,
and call pure (non-I/O) functions from there. Most Haskell code is pure; the I/O actions
perform I/O and call that pure code.

do is a convenient way to define a sequence of actions. As you’ll see later, there are other
ways. When you use do in this way, indentation is significant; make sure you line up
your actions properly.

You need to use do only if you have more than one action that you need to perform.
The value of a do block is the value of the last action executed. For a complete descrip-
tion of do syntax, see “Desugaring of do Blocks” on page 344.

Let’s consider an example of calling pure code from within an I/O action:

-- file: ch07/callingpure.hs
name2reply :: String -> String
name2reply name =
    "Pleased to meet you, " ++ name ++ ".\n" ++
    "Your name contains " ++ charcount ++ " characters."
    where charcount = show (length name)

main :: IO ()
main = do
       putStrLn "Greetings once again.  What is your name?"
       inpStr <- getLine
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       let outStr = name2reply inpStr
       putStrLn outStr

Notice the name2reply function in this example. It is a regular Haskell function and
obeys all the rules we’ve told you about: it always returns the same result when given
the same input, it has no side effects, and it operates lazily. It uses other Haskell func-
tions: (++), show, and length.

Down in main, we bind the result of name2reply inpStr to outStr. When you’re working
in a do block, use <- to get results from IO actions and let to get results from pure code.
When used in a do block, you should not put in after your let statement.

You can see here how we read the person’s name from the keyboard. Then, that data
got passed to a pure function, and its result was printed. In fact, the last two lines of
main could have been replaced with putStrLn (name2reply inpStr). So, while main did
have side effects—it caused things to appear on the terminal, for instance—
name2reply did not and could not. That’s because name2reply is a pure function, not an
action.

Let’s examine this with ghci:

ghci> :load callingpure.hs
[1 of 1] Compiling Main             ( callingpure.hs, interpreted )
Ok, modules loaded: Main.
ghci> name2reply "John"
"Pleased to meet you, John.\nYour name contains 4 characters."
ghci> putStrLn (name2reply "John")
Pleased to meet you, John.
Your name contains 4 characters.

The \n within the string is the end-of-line (newline) character, which causes the terminal
to begin a new line in its output. Just calling name2reply "John" in ghci will show you
the \n literally, because it is using show to display the return value. But using putStrLn
sends it to the terminal, and the terminal interprets \n to start a new line.

What do you think will happen if you simply type main at the ghci prompt? Give it a try.

After looking at these example programs, you may be wondering if Haskell is really
imperative rather than pure, lazy, and functional. Some of these examples look like a
sequence of actions to be followed in order. There’s more to it than that, though. We’ll
discuss that question later in this chapter in “Is Haskell Really Imperative?” on page
188 and “Lazy I/O” on page 178.

Pure Versus I/O
Table 7-1 is a comparison table to help you understand the differences between pure
code and I/O. When we speak of pure code, we are talking about Haskell functions
that always return the same result when given the same input and have no side effects.
In Haskell, only the execution of I/O actions avoid these rules.
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Table 7-1. Pure versus impure

Pure Impure

Always produces the same result when given the same parameters May produce different results for the same parameters

Never has side effects May have side effects

Never alters state May alter the global state of the program, system, or
world

Why Purity Matters
In this section, we’ve discussed how Haskell, unlike most languages, draws a clear
distinction between pure code and I/O actions. In languages such as C or Java, there
is no such thing as a function that is guaranteed by the compiler to always return the
same result for the same arguments or a function that is guaranteed to never have side
effects. The only way to know if a given function has side effects is to read its docu-
mentation and hope that it’s accurate.

Many bugs in programs are caused by unanticipated side effects. Still more are caused
by misunderstanding circumstances in which functions may return different results for
the same input. As multithreading and other forms of parallelism grow increasingly
common, it becomes more difficult to manage global side effects.

Haskell’s method of isolating side effects into I/O actions provides a clear boundary.
You can always know which parts of the system may alter state and which won’t. You
can always be sure that the pure parts of your program aren’t having unanticipated
results. This helps you to think about the program. It also helps the compiler to think
about it. Recent versions of ghc, for instance, can provide a level of automatic paral-
lelism for the pure parts of your code—something of a holy grail for computing.

For more discussion on this topic, refer to “Side Effects with Lazy I/O” on page 188.

Working with Files and Handles
So far, you’ve seen how to interact with the user at the computer’s terminal. Of course,
you’ll often need to manipulate specific files. That’s easy to do, too.

Haskell defines quite a few basic functions for I/O, many of which are similar to func-
tions seen in other programming languages. The library reference for System.IO pro-
vides a good summary of all the basic I/O functions, should you need one that we aren’t
touching upon here.

You will generally begin by using openFile, which will give you a file Handle. That
Handle is then used to perform specific operations on the file. Haskell provides func-
tions such as hPutStrLn that work just like putStrLn but take an additional argument,
a Handle, that specifies which file to operate upon. When you’re done, you’ll use
hClose to close the Handle. These functions are all defined in System.IO, so you’ll need
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to import that module when working with files. There are “h” functions corresponding
to virtually all of the non-“h” functions; for instance, there is print for printing to the
screen and hPrint for printing to a file.

Let’s start with an imperative way to read and write files. This should seem similar to
a while loop that you may find in other languages. This isn’t the best way to write it in
Haskell; later, you’ll see examples of more Haskellish approaches.

-- file: ch07/toupper-imp.hs
import System.IO
import Data.Char(toUpper)

main :: IO ()
main = do 
       inh <- openFile "input.txt" ReadMode
       outh <- openFile "output.txt" WriteMode
       mainloop inh outh
       hClose inh
       hClose outh

mainloop :: Handle -> Handle -> IO ()
mainloop inh outh = 
    do ineof <- hIsEOF inh
       if ineof
           then return ()
           else do inpStr <- hGetLine inh
                   hPutStrLn outh (map toUpper inpStr)
                   mainloop inh outh

Like every Haskell program, execution of this program begins with main. Two files are
opened: input.txt is opened for reading, and output.txt is opened for writing. Then we
call mainloop to process the file.

mainloopbegins by checking to see if we’re at the end of file (EOF) for the input. If not,
we read a line from the input. We write out the same line to the output, after first
converting it to uppercase. Then we recursively call mainloop again to continue pro-
cessing the file.‡

Notice that return call. This is not really the same as return in C or Python. In those
languages, return is used to terminate execution of the current function immediately,
and to return a value to the caller. In Haskell, return is the opposite of <-. That is,
return takes a pure value and wraps it inside IO. Since every I/O action must return
some IO type, if your result came from pure computation, you must use return to wrap
it in IO. As an example, if 7 is an Int, then return 7 would create an action stored in a
value of type IO Int. When executed, that action would produce the result 7. For more
details on return, see “The True Nature of Return” on page 187.

‡ Imperative programmers might be concerned that such a recursive call would consume large amounts of
stack space. In Haskell, recursion is a common idiom, and the compiler is smart enough to avoid consuming
much stack by optimizing tail-recursive functions.
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Let’s try running the program. We’ve got a file named input.txt that looks like this:

This is ch07/input.txt

Test Input
I like Haskell
Haskell is great
I/O is fun

123456789

Now, you can use runghc toupper-imp.hs and you’ll find output.txt in your directory.
It should look like this:

THIS IS CH07/INPUT.TXT

TEST INPUT
I LIKE HASKELL
HASKELL IS GREAT
I/O IS FUN

123456789

More on openFile
Let’s use ghci to check on the type of openFile:

ghci> :module System.IO
ghci> :type openFile
openFile :: FilePath -> IOMode -> IO Handle

FilePath is simply another name for String. It is used in the types of I/O functions to
help clarify that the parameter is being used as a filename, and not as regular data.

IOMode specifies how the file is to be managed. The possible values for IOMode are listed
in Table 7-2.

Table 7-2. Possible IOMode values

IOMode Can read? Can write? Starting position Notes

ReadMode Yes No Beginning of file File must exist already.

WriteMode No Yes Beginning of file File is truncated (completely emptied) if it already
existed.

ReadWriteMode Yes Yes Beginning of file File is created if it didn’t exist; otherwise, existing
data is left intact.

AppendMode No Yes End of file File is created if it didn’t exist; otherwise, existing
data is left intact.

While we are mostly working with text examples in this chapter, binary files can also
be used in Haskell. If you are working with a binary file, you should use
openBinaryFile instead of openFile. Operating systems such as Windows process files
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differently if they are opened as binary instead of as text. On operating systems such
as Linux, both openFile and openBinaryFile perform the same operation. Nevertheless,
for portability, it is still wise to always use openBinaryFile if you will be dealing with
binary data.

Closing Handles
You’ve already seen that hClose is used to close file handles. Let’s take a moment and
think about why this is important.

As you’ll see in “Buffering” on page 189, Haskell maintains internal buffers for files.
This provides an important performance boost. However, it means that until you call
hClose on a file that is open for writing, your data may not be flushed out to the oper-
ating system.

Another reason to make sure to hClose files is that open files take up resources on the
system. If your program runs for a long time, and opens many files but fails to close
them, it is conceivable that your program could even crash due to resource exhaustion.
All of this is no different in Haskell than in other languages.

When a program exits, Haskell will normally take care of closing any files that remain
open. However, there are some circumstances in which this may not happen,§ so once
again, it is best to be responsible and call hClose all the time.

Haskell provides several tools for you to use to easily ensure this happens, regardless
of whether errors are present. You can read about finally in “Extended Example:
Functional I/O and Temporary Files” on page 175 and bracket in “The Acquire-Use-
Release Cycle” on page 221.

Seek and Tell
When reading and writing from a Handle that corresponds to a file on disk, the operating
system maintains an internal record of the current position. Each time you do another
read, the operating system returns the next chunk of data that begins at the current
position, and increments the position to reflect the data that you read.

You can use hTell to find out your current position in the file. When the file is initially
created, it is empty and your position will be 0. After you write out 5 bytes, your position
will be 5, and so on. hTell takes a Handle and returns an IO Integer with your position.

The companion to hTell is hSeek. hSeek lets you change the file position. It takes three
parameters: a Handle, a SeekMode, and a position.

SeekMode can be one of three different values, which specify how the given position is
to be interpreted. AbsoluteSeek means that the position is a precise location in the file.

§ If there was a bug in the C part of a hybrid program, for instance.
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This is the same kind of information that hTell gives you. RelativeSeek means to seek
from the current position. A positive number requests going forwards in the file, and
a negative number means going backwards. Finally, SeekFromEnd will seek to the speci-
fied number of bytes before the end of the file. hSeek handle SeekFromEnd 0 will take
you to the end of the file. For an example of hSeek, refer to “Extended Example: Func-
tional I/O and Temporary Files” on page 175.

Not all Handles are seekable. A Handle usually corresponds to a file, but it can also
correspond to other things such as network connections, tape drives, or terminals. You
can use hIsSeekable to see if a given Handle is seekable.

Standard Input, Output, and Error
Earlier, we pointed out that for each non-“h” function, there is usually also a corre-
sponding “h” function that works on any Handle. In fact, the non-“h” functions are
nothing more than shortcuts for their “h” counterparts.

There are three predefined Handles in System.IO. These Handles are always available for
your use. They are stdin, which corresponds to standard input; stdout for standard
output; and stderr for standard error. Standard input normally refers to the keyboard,
standard output to the monitor, and standard error also normally goes to the monitor.

Functions such as getLine can thus be trivially defined like this:

getLine = hGetLine stdin
putStrLn = hPutStrLn stdout
print = hPrint stdout

We’re using partial application here. If this isn’t making sense, consult
“Partial Function Application and Currying” on page 100 for a refresher.

Earlier, we told you what the three standard file handles “normally” correspond to.
That’s because some operating systems let you redirect the file handles to come from
(or go to) different places—files, devices, or even other programs. This feature is used
extensively in shell scripting on POSIX (Linux, BSD, Mac) operating systems, but can
also be used on Windows.

It often makes sense to use standard input and output instead of specific files. This lets
you interact with a human at the terminal. But it also lets you work with input and
output files—or even combine your code with other programs—if that’s what’s
requested.‖

As an example, we can provide input to callingpure.hs in advance like this:

‖ For more information on interoperating with other programs with pipes, see “Extended Example: Piping”
on page 476.
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$ echo John|runghc callingpure.hs
Greetings once again.  What is your name?
Pleased to meet you, John.
Your name contains 4 characters.

While callingpure.hs was running, it did not wait for input at the keyboard; instead
it received John from the echo program. Notice also that the output didn’t contain the
word John on a separate line as it did when this program was run at the keyboard. The
terminal normally echoes everything you type back to you, but that is technically input
and not included in the output stream.

Deleting and Renaming Files
So far in this chapter, we’ve discussed the contents of the files. Let’s now talk a bit
about the files themselves.

System.Directory provides two functions you may find useful. removeFile takes a single
argument, a filename, and deletes that file.# renameFile takes two filenames: the first
is the old name and the second is the new name. If the new filename is in a different
directory, you can also think of this as a move. The old filename must exist prior to the
call to renameFile. If the new file already exists, it is removed before the rename takes
place.

Like many other functions that take a filename, if the “old” name doesn’t exist,
renameFile will raise an exception. More information on exception handling can be
found in Chapter 19.

There are many other functions in System.Directory for doing things such as creating
and removing directories, finding lists of files in directories, and testing for file exis-
tence. These are discussed in “Directory and File Information” on page 468.

Temporary Files
Programmers frequently need temporary files. These files may be used to store large
amounts of data needed for computations, data to be used by other programs, or any
number of other uses.

While you could craft a way to manually open files with unique names, the details of
doing this in a secure way differ from platform to platform. Haskell provides a con-
venient function called openTempFile (and a corresponding openBinaryTempFile) to
handle the difficult bits for you.

openTempFile takes two parameters: the directory in which to create the file, and a
“template” for naming the file. The directory could simply be "." for the current
working directory. Or you could use System.Directory.getTemporaryDirectory to find
the best place for temporary files on a given machine. The template is used as the basis

# POSIX programmers may be interested to know that this corresponds to unlink() in C.
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for the filename; it will have some random characters added to it to ensure that the
result is truly unique. It guarantees that it will be working on a unique filename, in fact.

The return type of openTempFile is IO (FilePath, Handle). The first part of the tuple is
the name of the file created, and the second is a Handle opened in ReadWriteMode over
that file. When you’re done with the file, you’ll want to hClose it and then call remove
File to delete it. See the following example for a sample function to use.

Extended Example: Functional I/O and Temporary Files
Here’s a larger example that puts together some concepts from this chapter, from some
earlier chapters, and a few you haven’t seen yet. Take a look at the program and see if
you can figure out what it does and how it works:

-- file: ch07/tempfile.hs
import System.IO
import System.Directory(getTemporaryDirectory, removeFile)
import System.IO.Error(catch)
import Control.Exception(finally)

-- The main entry point.  Work with a temp file in myAction.
main :: IO ()
main = withTempFile "mytemp.txt" myAction

{- The guts of the program.  Called with the path and handle of a temporary
   file.  When this function exits, that file will be closed and deleted
   because myAction was called from withTempFile. -}
myAction :: FilePath -> Handle -> IO ()
myAction tempname temph = 
    do -- Start by displaying a greeting on the terminal
       putStrLn "Welcome to tempfile.hs"
       putStrLn $ "I have a temporary file at " ++ tempname

       -- Let's see what the initial position is
       pos <- hTell temph
       putStrLn $ "My initial position is " ++ show pos

       -- Now, write some data to the temporary file
       let tempdata = show [1..10]
       putStrLn $ "Writing one line containing " ++ 
                  show (length tempdata) ++ " bytes: " ++
                  tempdata
       hPutStrLn temph tempdata

       -- Get our new position.  This doesn't actually modify pos
       -- in memory, but makes the name "pos" correspond to a different 
       -- value for the remainder of the "do" block.
       pos <- hTell temph
       putStrLn $ "After writing, my new position is " ++ show pos

       -- Seek to the beginning of the file and display it
       putStrLn $ "The file content is: "
       hSeek temph AbsoluteSeek 0
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       -- hGetContents performs a lazy read of the entire file
       c <- hGetContents temph

       -- Copy the file byte-for-byte to stdout, followed by \n
       putStrLn c

       -- Let's also display it as a Haskell literal
       putStrLn $ "Which could be expressed as this Haskell literal:"
       print c

{- This function takes two parameters: a filename pattern and another
   function.  It will create a temporary file, and pass the name and Handle
   of that file to the given function.

   The temporary file is created with openTempFile.  The directory is the one
   indicated by getTemporaryDirectory, or, if the system has no notion of
   a temporary directory, "." is used.  The given pattern is passed to
   openTempFile.

   After the given function terminates, even if it terminates due to an
   exception, the Handle is closed and the file is deleted. -}
withTempFile :: String -> (FilePath -> Handle -> IO a) -> IO a
withTempFile pattern func =
    do -- The library ref says that getTemporaryDirectory may raise on
       -- exception on systems that have no notion of a temporary directory.
       -- So, we run getTemporaryDirectory under catch.  catch takes
       -- two functions: one to run, and a different one to run if the
       -- first raised an exception.  If getTemporaryDirectory raised an
       -- exception, just use "." (the current working directory).
       tempdir <- catch (getTemporaryDirectory) (\_ -> return ".")
       (tempfile, temph) <- openTempFile tempdir pattern 

       -- Call (func tempfile temph) to perform the action on the temporary
       -- file.  finally takes two actions.  The first is the action to run.
       -- The second is an action to run after the first, regardless of
       -- whether the first action raised an exception.  This way, we ensure
       -- the temporary file is always deleted.  The return value from finally
       -- is the first action's return value.
       finally (func tempfile temph) 
               (do hClose temph
                   removeFile tempfile)

Let’s start looking at this program from the end. The withTempFile function demon-
strates that Haskell doesn’t forget its functional nature when I/O is introduced. This
function takes a String and another function. The function passed to withTempFile is
invoked with the name and Handle of a temporary file. When that function exits, the
temporary file is closed and deleted. So even when dealing with I/O, we can still find
the idiom of passing functions as parameters to be convenient. Lisp programmers might
find our withTempFile function similar to Lisp’s with-open-file function.

There is some exception handling going on to make the program more robust in the
face of errors. You normally want the temporary files to be deleted after processing
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completes, even if something went wrong. So we make sure that happens. For more on
exception handling, see Chapter 19.

Let’s return to the start of the program. main is defined simply as withTempFile
"mytemp.txt" myAction. myAction, then, will be invoked with the name and Handle of
the temporary file.

myAction displays some information to the terminal, writes some data to the file, seeks
to the beginning of the file, and reads the data back with hGetContents.* It then displays
the contents of the file byte for byte and also as a Haskell literal via print c. That’s the
same as putStrLn (show c).

Let’s look at the output:

$ runhaskell tempfile.hs
Welcome to tempfile.hs
I have a temporary file at /tmp/mytemp8572.txt
My initial position is 0
Writing one line containing 22 bytes: [1,2,3,4,5,6,7,8,9,10]
After writing, my new position is 23
The file content is:
[1,2,3,4,5,6,7,8,9,10]

Which could be expressed as this Haskell literal:
"[1,2,3,4,5,6,7,8,9,10]\n"

Every time you run this program, your temporary filename should be slightly different,
since it contains a randomly generated component. Looking at this output, there are a
few questions that might occur to you:

1. Why is your position 23 after writing a line with 22 bytes?

2. Why is there an empty line after the file content display?

3. Why is there a \n at the end of the Haskell literal display?

You might be able to guess that the answers to all three questions are related. See if you
can work out the answers for a moment. If you need some help, here are the
explanations:

1. Because we used hPutStrLn instead of hPutStr to write the data. hPutStrLn always
terminates the line by writing a \n at the end, which didn’t appear in tempdata.

2. We used putStrLn c to display the file contents c. Because the data was written
originally with hPutStrLn, c ends with the newline character, and putStrLn adds a
second newline character. The result is a blank line.

3. The \n is the newline character from the original hPutStrLn.

* hGetContents is discussed in “Lazy I/O” on page 178
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As a final note, the byte counts may be different on some operating systems. Windows,
for instance, uses the two-byte sequence \r\n as the end-of-line marker, so you may see
differences on that platform.

Lazy I/O
So far in this chapter, you’ve seen examples of fairly traditional I/O. Each line, or block
of data, is requested and processed individually.

Haskell has another approach available to you as well. Since Haskell is a lazy language,
meaning that any given piece of data is only evaluated when its value must be known,
there are some novel ways of approaching I/O.

hGetContents
One novel way to approach I/O is with the hGetContents function.† hGetContents has
the type Handle -> IO String. The String it returns represents all of the data in the file
given by the Handle.‡

In a strictly evaluated language, using such a function is often a bad idea. It may be fine
to read the entire contents of a 2 KB file, but if you try to read the entire contents of a
500 GB file, you are likely to crash due to lack of RAM to store all that data. In these
languages, you would traditionally use mechanisms such as loops to process the file’s
entire data.

But hGetContents is different. The String it returns is evaluated lazily. At the moment
you call hGetContents, nothing is actually read. Data is only read from the Handle as the
elements (characters) of the list are processed. As elements of the String are no longer
used, Haskell’s garbage collector automatically frees that memory. All of this happens
completely transparently to you. And since you have what looks like (and, really, is) a
pure String, you can pass it to pure (non-IO) code.

Let’s take a quick look at an example. Back in “Working with Files and Handles” on
page 169, you saw an imperative program that converted the entire content of a file to
uppercase. Its imperative algorithm was similar to what you’d see in many other lan-
guages. Here now is the much simpler algorithm that exploits lazy evaluation:

-- file: ch07/toupper-lazy1.hs
import System.IO
import Data.Char(toUpper)

main :: IO ()
main = do 
       inh <- openFile "input.txt" ReadMode

† There is also a shortcut function called getContents that operates on standard input.

‡ More precisely, it is the entire data from the current position of the file pointer to the end of the file.

178 | Chapter 7: I/O



       outh <- openFile "output.txt" WriteMode
       inpStr <- hGetContents inh
       let result = processData inpStr
       hPutStr outh result
       hClose inh
       hClose outh

processData :: String -> String
processData = map toUpper

Notice that hGetContents handled all of the reading for us. Also, take a look at
processData. It’s a pure function since it has no side effects and always returns the same
result each time it is called. It has no need to know—and no way to tell—that its input
is being read lazily from a file in this case. It can work perfectly well with a 20-character
literal or a 500 GB data dump on disk.

You can even verify that with ghci:

ghci> :load toupper-lazy1.hs
[1 of 1] Compiling Main             ( toupper-lazy1.hs, interpreted )
Ok, modules loaded: Main.
ghci> processData "Hello, there!  How are you?"
"HELLO, THERE!  HOW ARE YOU?"
ghci> :type processData
processData :: String -> String
ghci> :type processData "Hello!"
processData "Hello!" :: String

If we had tried to hang on to inpStr in the example just shown past the
one place where it was used (the call to processData), the program would
have lost its memory efficiency. That’s because the compiler would have
been forced to keep inpStr’s value in memory for future use. Here it
knows that inpStr will never be reused and frees the memory as soon
as it is done with it. Just remember: memory is only freed after its last
use.

This program was a bit verbose to make it clear that there was pure code in use. Here’s
a bit more concise version, which we will build on in the following examples:

-- file: ch07/toupper-lazy2.hs
import System.IO
import Data.Char(toUpper)

main = do 
       inh <- openFile "input.txt" ReadMode
       outh <- openFile "output.txt" WriteMode
       inpStr <- hGetContents inh
       hPutStr outh (map toUpper inpStr)
       hClose inh
       hClose outh

You are not required to ever consume all the data from the input file when using
hGetContents. Whenever the Haskell system determines that the entire string
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hGetContents returned can be garbage collected—which means it will never be used
again—the file is closed for you automatically. The same principle applies to data read
from the file. Whenever a given piece of data will never again be needed, the Haskell
environment releases the memory it was stored within. Strictly speaking, we wouldn’t
have to call hClose at all in this example program. However, it is still a good practice
to get into, as later changes to a program could make the call to hClose important.

When using hGetContents, it is important to remember that even though
you may never again explicitly reference Handle directly in the rest of the
program, you must not close the Handle until you have finished con-
suming its results via hGetContents. Doing so would cause you to miss
on some or all of the file’s data. Since Haskell is lazy, you generally can
assume that you have consumed input only after you have output the
result of the computations involving the input.

readFile and writeFile
Haskell programmers use hGetContents as a filter quite often. They read from one file,
do something to the data, and write the result out elsewhere. This is so common that
there are some shortcuts for doing it. readFile and writeFile are shortcuts for working
with files as strings. They handle all the details of opening files, closing files, reading
data, and writing data. readFile uses hGetContents internally.

Can you guess the Haskell types of these functions? Let’s check with ghci:

ghci> :type readFile
readFile :: FilePath -> IO String
ghci> :type writeFile
writeFile :: FilePath -> String -> IO ()

Now, here’s an example program that uses readFile and writeFile:

-- file: ch07/toupper-lazy3.hs
import Data.Char(toUpper)

main = do 
       inpStr <- readFile "input.txt"
       writeFile "output.txt" (map toUpper inpStr)

Look at that—the guts of the program take up only two lines! readFile returned a lazy
String, which we stored in inpStr. We then took that, processed it, and passed it to
writeFile for writing.

Neither readFile nor writeFile ever provide a Handle for you to work with, so there is
nothing to ever hClose. readFile uses hGetContents internally, and the underlying
Handle will be closed when the returned String is garbage-collected or all the input has
been consumed. writeFile will close its underlying Handle when the entire String sup-
plied to it has been written.
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A Word on Lazy Output
By now, you should understand how lazy input works in Haskell. But what about
laziness during output?

As you know, nothing in Haskell is evaluated before its value is needed. Since functions
such as writeFile and putStr write out the entire String passed to them, that entire
String must be evaluated. So you are guaranteed that the argument to putStr will be
evaluated in full.§

But what does that mean for laziness of the input? In the earlier examples, will the call
to putStr or writeFile force the entire input string to be loaded into memory at once,
just to be written out?

The answer is no. putStr (and all the similar output functions) write out data as it
becomes available. They also have no need for keeping around data already written, so
as long as nothing else in the program needs it, the memory can be freed immediately.
In a sense, you can think of the String between readFile and writeFile as a pipe linking
the two. Data goes in one end, is transformed some way, and flows back out the other.

You can verify this yourself by generating a large input.txt for toupper-lazy3.hs. It
may take a bit to process, but you should see a constant—and low—memory usage
while it is being processed.

interact
You learned that readFile and writeFile address the common situation of reading from
one file, making a conversion, and writing to a different file. There’s a situation that’s
even more common than that: reading from standard input, making a conversion, and
writing the result to standard output. For that situation, there is a function called
interact. The type of interact is (String -> String) -> IO (). That is, it takes one
argument: a function of type String -> String. That function is passed the result of
getContents—that is, standard input read lazily. The result of that function is sent to
standard output.

We can convert our example program to operate on standard input and standard output
by using interact. Here’s one way to do that:

-- file: ch07/toupper-lazy4.hs
import Data.Char(toUpper)

main = interact (map toUpper)

Look at that—one line of code to achieve our transformation! To achieve the same
effect as with the previous examples, you could run this one like this:

$ runghc toupper-lazy4.hs < input.txt > output.txt

§ Excepting I/O errors such as a full disk, of course.
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Or, if you’d like to see the output printed to the screen, you could type:

$ runghc toupper-lazy4.hs < input.txt

If you want to see that Haskell output truly does write out chunks of data as soon as
they are received, run runghc toupper-lazy4.hs without any other command-line pa-
rameters. You should see each character echoed back out as soon as you type it, but in
uppercase. Buffering may change this behavior; see “Buffering” on page 189 for more
on buffering. If you see each line echoed as soon as you type it, or even nothing at all
for a while, buffering is causing this behavior.

You can also write simple interactive programs using interact. Let’s start with a simple
example—adding a line of text before the uppercase output:

-- file: ch07/toupper-lazy5.hs
import Data.Char(toUpper)

main = interact (map toUpper . (++) "Your data, in uppercase, is:\n\n")

If the use of the . operator is confusing, you might wish to refer to
“Code Reuse Through Composition” on page 104.

Here we add a string at the beginning of the output. Can you spot the problem, though?

Since we’re calling map on the result of (++), that header itself will appear in uppercase.
We can fix that in this way:

-- file: ch07/toupper-lazy6.hs
import Data.Char(toUpper)

main = interact ((++) "Your data, in uppercase, is:\n\n" . 
                 map toUpper)

This moved the header outside of the map.

Filters with interact

Another common use of interact is filtering. Let’s say that you want to write a program
that reads a file and prints out every line that contains the character “a”. Here’s how
you might do that with interact:

-- file: ch07/filter.hs
main = interact (unlines . filter (elem 'a') . lines)

This may have introduced three functions that you aren’t familiar with yet. Let’s inspect
their types with ghci:

ghci> :type lines
lines :: String -> [String]
ghci> :type unlines
unlines :: [String] -> String
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ghci> :type elem
elem :: (Eq a) => a -> [a] -> Bool

Can you guess what these functions do just by looking at their types? If not, you can
find them explained in “Warming Up: Portably Splitting Lines of Text” on page 72 and
“Special String-Handling Functions” on page 84. You’ll frequently see lines and
unlines used with I/O. Finally, elem takes a element and a list and returns True if that
element occurs anywhere in the list.

Try running this over our standard example input:

$ runghc filter.hs < input.txt
I like Haskell
Haskell is great

Sure enough, you got back the two lines that contain an “a”. Lazy filters are a powerful
way to use Haskell. When you think about it, a filter—such as the standard Unix pro-
gram grep—sounds a lot like a function. It takes some input, applies some computation,
and generates a predictable output.

The IO Monad
You’ve seen a number of examples of I/O in Haskell by this point. Let’s take a moment
to step back and think about how I/O relates to the broader Haskell language.

Since Haskell is a pure language, if you give a certain function a specific argument, the
function will return the same result every time you give it that argument. Moreover,
the function will not change anything about the program’s overall state.

You may be wondering, then, how I/O fits into this picture. Surely if you want to read
a line of input from the keyboard, the function to read input can’t possibly return the
same result every time it is run, right? Moreover, I/O is all about changing state. I/O
could cause pixels on a terminal to light up, cause paper to start coming out of a printer,
or even to cause a package to be shipped from a warehouse on a different continent.
I/O doesn’t just change the state of a program. You can think of I/O as changing the
state of the world.

Actions
Most languages do not make a distinction between a pure function and an impure one.
Haskell has functions in the mathematical sense: they are purely computations that
cannot be altered by anything external. Moreover, the computation can be performed
at any time—or even never, if its result is never needed.

Clearly, then, we need some other tool to work with I/O. That tool in Haskell is called
actions. Actions resemble functions. They do nothing when they are defined, but per-
form some task when they are invoked. I/O actions are defined within the IO monad.
Monads are a powerful way of chaining functions together purely and are covered in
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Chapter 14. It’s not necessary to understand monads in order to understand I/O. Just
understand that the result type of actions is “tagged” with IO. Let’s take a look at some
types:

ghci> :type putStrLn
putStrLn :: String -> IO ()
ghci> :type getLine
getLine :: IO String

The type of putStrLn is just like any other function. The function takes one parameter
and returns an IO (). This IO () is the action. You can store and pass actions in pure
code if you wish, though this isn’t frequently done. An action doesn’t do anything until
it is invoked. Let’s look at an example of this:

-- file: ch07/actions.hs
str2action :: String -> IO ()
str2action input = putStrLn ("Data: " ++ input)

list2actions :: [String] -> [IO ()]
list2actions = map str2action

numbers :: [Int]
numbers = [1..10]

strings :: [String]
strings = map show numbers

actions :: [IO ()]
actions = list2actions strings

printitall :: IO ()
printitall = runall actions

-- Take a list of actions, and execute each of them in turn.
runall :: [IO ()] -> IO ()
runall [] = return ()
runall (firstelem:remainingelems) = 
    do firstelem
       runall remainingelems

main = do str2action "Start of the program"
          printitall
          str2action "Done!"

str2action is a function that takes one parameter and returns an IO (). As you can see
at the end of main, you could use this directly in another action and it will print out a
line right away. Or, you can store—but not execute—the action from pure code. You
can see an example of that in list2actions—we use map over str2action and return a
list of actions, just like we would with other pure data. You can see that everything up
through printitall is built up with pure tools.
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Although we define printitall, it doesn’t get executed until its action is evaluated
somewhere else. Notice in main how we use str2action as an I/O action to be executed,
but earlier we used it outside of the I/O monad and assembled results into a list.

You could think of it this way: every statement, except let, in a do block must yield an
I/O action that will be executed.

The call to printitall finally executes all those actions. Actually, since Haskell is lazy,
the actions aren’t generated until here either.

When you run the program, your output will look like this:

Data: Start of the program
Data: 1
Data: 2
Data: 3
Data: 4
Data: 5
Data: 6
Data: 7
Data: 8
Data: 9
Data: 10
Data: Done!

We can actually write this in a much more compact way. Consider this revision of the
example:

-- file: ch07/actions2.hs
str2message :: String -> String
str2message input = "Data: " ++ input

str2action :: String -> IO ()
str2action = putStrLn . str2message

numbers :: [Int]
numbers = [1..10]

main = do str2action "Start of the program"
          mapM_ (str2action . show) numbers
          str2action "Done!"

Notice in str2action the use of the standard function composition operator. In main,
there’s a call to mapM_. This function is similar to map. It takes a function and a list. The
function supplied to mapM_ is an I/O action that is executed for every item in the list.
mapM_ throws out the result of the function, though you can use mapM to return a list of
I/O results if you want them. Take a look at their types:

ghci> :type mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :type mapM_
mapM_ :: (Monad m) => (a -> m b) -> [a] -> m ()
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These functions actually work for more than just I/O; they work for any
Monad. For now, wherever you see “M,” just think “IO.” Also, functions
that end with an underscore typically discard their result.

Why a mapM when we already have map? Because map is a pure function that returns a
list. It doesn’t—and can’t—actually execute actions directly. mapM is a utility that lives
in the IO monad and thus can actually execute the actions.‖

Going back to main, mapM_ applies (str2action . show) to every element in numbers.
show converts each number to a String and str2action converts each String to an ac-
tion. mapM_ combines these individual actions into one big action that prints out lines.

Sequencing
do blocks are actually shortcut notations for joining together actions. There are two
operators that you can use instead of do blocks: >> and >>=. Let’s look at their types in
ghci:

ghci> :type (>>)
(>>) :: (Monad m) => m a -> m b -> m b
ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

The >> operator sequences two actions together: the first action is performed, and then
the second. The result of the computation is the result of the second action. The result
of the first action is thrown away. This is similar to simply having a line in a do block.
You might write putStrLn "line 1" >> putStrLn "line 2" to test this out. It will print
out two lines, discard the result from the first putStrLn, and provide the result from the
second.

The >>= operator runs an action, and then passes its result to a function that returns an
action. That second action is run as well, and the result of the entire expression is the
result of that second action. As an example, you could write getLine >>= putStrLn,
which would read a line from the keyboard and then display it back out.

Let’s rewrite one of our examples to avoid do blocks. Remember this example from the
start of the chapter?

-- file: ch07/basicio.hs
main = do
       putStrLn "Greetings!  What is your name?"
       inpStr <- getLine
       putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!"

Let’s write that without a do block:

‖ Technically speaking, mapM combines a bunch of separate I/O actions into one big action. The separate actions
are executed when the big action is.
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-- file: ch07/basicio-nodo.hs
main =
    putStrLn "Greetings!  What is your name?" >>
    getLine >>=
    (\inpStr -> putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!")

The Haskell compiler internally performs a translation just like this when you define a
do block.

Forgetting how to use \ (lambda expressions)? See “Anonymous
(lambda) Functions” on page 99.

The True Nature of Return
Earlier in this chapter, we mentioned that return is probably not what it looks like.
Many languages have a keyword named return that aborts execution of a function
immediately and returns a value to the caller.

The Haskell return function is quite different. In Haskell, return is used to wrap data
in a monad. When speaking about I/O, return is used to take pure data and bring it
into the IO monad.

Now, why would we want to do that? Remember that anything whose result depends
on I/O must be within the IO monad. So if we are writing a function that performs
I/O, and then a pure computation, we will need to use return to make this pure com-
putation the proper return value of the function. Otherwise, a type error would occur.
Here’s an example:

-- file: ch07/return1.hs
import Data.Char(toUpper)

isGreen :: IO Bool
isGreen =
    do putStrLn "Is green your favorite color?"
       inpStr <- getLine
       return ((toUpper . head $ inpStr) == 'Y')

We have a pure computation that yields a Bool. That computation is passed to
return, which puts it into the IO monad. Since it is the last value in the do block, it
becomes the return value of isGreen, but this is not because we used the return function.

Here’s a version of the same program with the pure computation broken out into a
separate function. This helps keep the pure code separate and can also make the intent
more clear:

-- file: ch07/return2.hs
import Data.Char(toUpper)

isYes :: String -> Bool
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isYes inpStr = (toUpper . head $ inpStr) == 'Y'

isGreen :: IO Bool
isGreen =
    do putStrLn "Is green your favorite color?"
       inpStr <- getLine
       return (isYes inpStr)

Finally, here’s a contrived example to show that return truly does not have to occur at
the end of a do block. In practice, it usually does, but it need not be so.

-- file: ch07/return3.hs
returnTest :: IO ()
returnTest =
    do one <- return 1
       let two = 2
       putStrLn $ show (one + two)

Notice that we used <- in combination with return, but let in combination with the
simple literal. That’s because we needed both values to be pure in order to add them,
and <- pulls things out of monads, effectively reversing the effect of return. Run this in
ghci and you’ll see 3 displayed, as expected.

Is Haskell Really Imperative?
These do blocks may look a lot like an imperative language. After all, you’re giving
commands to run in sequence most of the time.

But Haskell remains a lazy language at its core. While it is sometimes necessary to
sequence actions for I/O, this is done using tools that are part of Haskell already. Has-
kell achieves a nice separation of I/O from the rest of the language through the IO monad
as well.

Side Effects with Lazy I/O
Earlier in this chapter, you read about hGetContents. We explained that the String it
returns can be used in pure code.

We need to get a bit more specific about what side effects are. When we say Haskell
has no side effects, what exactly does that mean?

At a certain level, side effects are always possible. A poorly written loop, even if written
in pure code, could cause the system’s RAM to be exhausted and the machine to crash.
Or it could cause data to be swapped to disk.

When we speak of no side effects, we mean that pure code in Haskell can’t run com-
mands that trigger side effects. Pure functions can’t modify a global variable, request
I/O, or run a command to take down a system.
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When you have a String from hGetContents that is passed to a pure function, the func-
tion has no idea that this String is backed by a disk file. It will behave just as it always
would, but processing that String may cause the environment to issue I/O commands.
The pure function isn’t issuing them; they are happening as a result of the processing
the pure function is doing, just as with the example of swapping RAM to disk.

In some cases, you may need more control over exactly when your I/O occurs. Perhaps
you are reading data interactively from the user, or via a pipe from another program,
and need to communicate directly with the user. In those cases, hGetContents will
probably not be appropriate.

Buffering
The I/O subsystem is one of the slowest parts of a modern computer. Completing a
write to disk can take thousands of times as long as a write to memory. A write over
the network can be hundreds or thousands of times slower yet. Even if your operation
doesn’t directly communicate with the disk—perhaps because the data is cached—
I/O still involves a system call, which slows things down by itself.

For this reason, modern operating systems and programming languages both provide
tools to help programs perform better where I/O is concerned. The operating system
typically performs caching—storing frequently used pieces of data in memory for faster
access.

Programming languages typically perform buffering. This means that they may request
one large chunk of data from the operating system, even if the code underneath is
processing data one character at a time. By doing this, they can achieve remarkable
performance gains because each request for I/O to the operating system carries a pro-
cessing cost. Buffering allows us to read the same amount of data with far fewer I/O
requests.

Haskell, too, provides buffering in its I/O system. In many cases, it is even on by default.
Up until now, we have pretended it isn’t there. Haskell usually is good about picking
a good default buffering mode, but it is rarely the fastest. If you have speed-critical
I/O code, changing buffering could have a significant impact on your program.

Buffering Modes
There are three different buffering modes in Haskell. They are defined as the
BufferMode type: NoBuffering, LineBuffering, and BlockBuffering.

NoBuffering does just what it sounds like—no buffering. Data read via functions like
hGetLine will be read from the OS one character at a time. Data written will be written
immediately, and also often will be written one character at a time. For this reason,
NoBuffering is usually a very poor performer and not suitable for general-purpose use.
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LineBuffering causes the output buffer to be written whenever the newline character
is output, or whenever it gets too large. On input, it will usually attempt to read what-
ever data is available in chunks until it first sees the newline character. When reading
from the terminal, it should return data immediately after each press of Enter. It is often
a reasonable default.

BlockBuffering causes Haskell to read or write data in fixed-size chunks when possible.
This is the best performer when processing large amounts of data in batch, even if that
data is line-oriented. However, it is unusable for interactive programs because it will
block input until a full block is read. BlockBuffering accepts one parameter of type
Maybe; if Nothing, it will use an implementation-defined buffer size. Or, you can use a
setting such as Just 4096 to set the buffer to 4096 bytes.

The default buffering mode is dependent upon the operating system and Haskell im-
plementation. You can ask the system for the current buffering mode by calling
hGetBuffering. The current mode can be set with hSetBuffering, which accepts a
Handle and BufferMode. You can say hSetBuffering stdin (BlockBuffering Nothing),
for example.

Flushing The Buffer
For any type of buffering, you may sometimes want to force Haskell to write out any
data that has been saved up in the buffer. There are a few times when this will happen
automatically: a call to hClose, for instance. Sometimes you may want to instead call
hFlush, which will force any pending data to be written immediately. This could be
useful when the Handle is a network socket and you want the data to be transmitted
immediately, or when you want to make the data on disk available to other programs
that might be reading it concurrently.

Reading Command-Line Arguments
Many command-line programs are interested in the parameters passed on the com-
mand line. System.Environment.getArgs returns IO [String] listing each argument.
This is the same as argv in C, starting with argv[1]. The program name (argv[0] in C)
is available from System.Environment.getProgName.

The System.Console.GetOpt module provides some tools for parsing command-line
options. If you have a program with complex options, you may find it useful. You can
find an example of its use in “Command-Line Parsing” on page 636.
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Environment Variables
If you need to read environment variables, you can use one of two functions in
System.Environment: getEnv or getEnvironment. getEnv looks for a specific variable and
raises an exception if it doesn’t exist. getEnvironment returns the whole environment
as a [(String, String)], and then you can use functions such as lookup to find the
environment entry you want.

Setting environment variables is not defined in a cross-platform way in Haskell. If you
are on a POSIX platform such as Linux, you can use putEnv or setEnv from the
System.Posix.Env module. Environment setting is not defined for Windows.
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CHAPTER 8

Efficient File Processing, Regular
Expressions, and Filename Matching

Efficient File Processing
This simple microbenchmark reads a text file full of numbers and prints their sum:

-- file: ch08/SumFile.hs
main = do
    contents <- getContents
    print (sumFile contents)
  where sumFile = sum . map read . words

Although the String type is the default used for reading and writing files, it is not
efficient, so a simple program like this will perform badly.

A String is represented as a list of Char values; each element of a list is allocated
individually and has some bookkeeping overhead. These factors affect the memory
consumption and performance of a program that must read or write text or binary data.
On simple benchmarks like this, even programs written in interpreted languages such
as Python can outperform Haskell code that uses String by an order of magnitude.

The bytestring library provides a fast, cheap alternative to the String type. Code writ-
ten with bytestring can often match or exceed the performance and memory footprint
of C, while maintaining Haskell’s expressivity and conciseness.

The library supplies two modules—each defines functions that are nearly drop-in
replacements for their String counterparts:

Data.ByteString
Defines a strict type named ByteString. This represents a string of binary or text
data in a single array.

Data.ByteString.Lazy
Provides a lazy type, also named ByteString. This represents a string of data as a
list of chunks, arrays of up to 64 KB in size.
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Each ByteString type performs better under particular circumstances. For streaming a
large quantity (hundreds of megabytes to terabytes) of data, the lazy ByteString type
is usually best. Its chunk size is tuned to be friendly to a modern CPU’s L1 cache, and
a garbage collector can quickly discard chunks of streamed data that are no longer being
used.

The strict ByteString type performs best for applications that are less concerned with
memory footprint or that need to access data randomly.

Binary I/O and Qualified Imports
Let’s develop a small function to illustrate some of the ByteString API. We will deter-
mine if a file is an ELF object file—this is the format used for executables on almost all
modern Unix-like systems.

This is a simple matter of looking at the first four bytes in the file and seeing if they
match a specific sequence of bytes. A byte sequence that identifies a file’s type is often
known as a magic number:

-- file: ch08/ElfMagic.hs
import qualified Data.ByteString.Lazy as L

hasElfMagic :: L.ByteString -> Bool
hasElfMagic content = L.take 4 content == elfMagic
    where elfMagic = L.pack [0x7f, 0x45, 0x4c, 0x46]

We import the ByteString modules using Haskell’s qualified import syntax, the import
qualified that we just saw. This lets us refer to a module with a name of our choosing.

For instance, when we want to refer to the lazy ByteString module’s take function, we
must write L.take, since we imported the module under the name L. If we are not
explicit about which version of, for example, take we want, the compiler will report an
error.

We will always use qualified import syntax with the ByteString modules, because they
provide many functions that have the same names as Prelude functions.

Qualified imports make it easy to switch between ByteString types. All
you should need to do is modify an import declaration at the top of your
source file; the rest of your code will probably not need any changes.
You can thus handily benchmark the two types, to see which is best
suited to your application’s needs

Whether or not we use qualified imports, we can always use the entire name of a module
to identify something unambiguously. Both Data.ByteString.Lazy.length and
L.length, for instance, identify the same function, as do Prelude.sum and sum.
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The lazy and strict ByteString modules are intended for binary I/O. The Haskell data
type for representing bytes is Word8; if we need to refer to it by name, we import it from
the Data.Word module.

The L.pack function takes a list of Word8 values, and packs them into a lazy
ByteString. (The L.unpack function performs the reverse conversion.) Our
hasElfMagic function simply compares the first four bytes of a ByteString against a
magic number.

We are writing in classic Haskell style, where our hasElfMagic function does not per-
form I/O. Here is the function that uses it on a file:

-- file: ch08/ElfMagic.hs
isElfFile :: FilePath -> IO Bool
isElfFile path = do
  content <- L.readFile path
  return (hasElfMagic content)

The L.readFile function is the lazy ByteString equivalent of readFile. It operates lazily,
reading the file as data is demanded. It is also efficient, reading chunks of up to 64 KB
at once. The lazy ByteString is a good choice for our task: since we only need to read
at most the first four bytes of the file, we can safely use this function on a file of any size.

Text I/O
For convenience, the bytestring library provides two other modules with limited text
I/O capabilities, Data.ByteString.Char8 and Data.ByteString.Lazy.Char8. These ex-
pose individual string elements as Char instead of Word8.

The functions in these modules only work with byte-sized Char values,
so they are only suitable for use with ASCII and some European char-
acter sets. Values above 255 are truncated.

The character-oriented bytestring modules provide useful functions for text process-
ing. Here is a file that contains monthly stock prices for a well-known Internet company
from mid-2008:

ghci> putStr =<< readFile "prices.csv"
Date,Open,High,Low,Close,Volume,Adj Close
2008-08-01,20.09,20.12,19.53,19.80,19777000,19.80
2008-06-30,21.12,21.20,20.60,20.66,17173500,20.66
2008-05-30,27.07,27.10,26.63,26.76,17754100,26.76
2008-04-30,27.17,27.78,26.76,27.41,30597400,27.41

How can we find the highest closing price from a series of entries like this? Closing
prices are in the fourth comma-separated column. This function obtains a closing price
from one line of data:
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-- file: ch08/HighestClose.hs
import qualified Data.ByteString.Lazy.Char8 as L

closing = readPrice . (!!4) . L.split ','

Since this function is written in point-free style, we read from right to left. The
L.split function splits a lazy ByteString into a list of them, every time it finds a match-
ing character. The (!!) operator retrieves the kth element of a list. Our readPrice func-
tion turns a string representing a fractional price into a whole number:

-- file: ch08/HighestClose.hs
readPrice :: L.ByteString -> Maybe Int
readPrice str =
    case L.readInt str of
      Nothing             -> Nothing
      Just (dollars,rest) ->
        case L.readInt (L.tail rest) of
          Nothing           -> Nothing
          Just (cents,more) ->
            Just (dollars * 100 + cents)

We use the L.readInt function, which parses an integer. It returns both the integer and
the remainder of the string once a run of digits is consumed. Our definition is slightly
complicated by L.readInt returning Nothing if parsing fails.

Our function for finding the highest closing price is straightforward:

-- file: ch08/HighestClose.hs
highestClose = maximum . (Nothing:) . map closing . L.lines

highestCloseFrom path = do
    contents <- L.readFile path
    print (highestClose contents)

We use one trick to work around the fact that we cannot supply an empty list to the
maximum function:

ghci> maximum [3,6,2,9]
9
ghci> maximum []
*** Exception: Prelude.maximum: empty list

Since we do not want our code to throw an exception if we have no stock data, the
(Nothing:) expression ensures that the list of Maybe Int values that we supply to
maximum will never be empty:

ghci> maximum [Nothing, Just 1]
Just 1
ghci> maximum [Nothing]
Nothing

Does our function work?

ghci> :load HighestClose
[1 of 1] Compiling Main             ( HighestClose.hs, interpreted )
Ok, modules loaded: Main.
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ghci> highestCloseFrom "prices.csv"
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Just 2741

Since we have separated our I/O from our logic, we can test the no-data case without
having to create an empty file:

ghci> highestClose L.empty
Nothing

Filename Matching
Many systems-oriented programming languages provide library routines that let us
match a filename against a pattern, or that will give a list of files that match the pattern.
In other languages, this function is often named fnmatch.) Although Haskell’s standard
library generally has good systems programming facilities, it doesn’t provide these kinds
of pattern matching functions. We’ll take this as an opportunity to develop our own.

The kinds of patterns we’ll be dealing with are commonly referred to as glob patterns
(the term we’ll use), wild card patterns, or shell-style patterns. They have just a few
simple rules. You probably already know them, but we’ll quickly recap here:

• Matching a string against a pattern starts at the beginning of the string, and finishes
at the end.

• Most literal characters match themselves. For example, the text foo in a pattern
will match foo, and only foo, in an input string.

• The * (asterisk) character means “match anything”; it will match any text, includ-
ing the empty string. For instance, the pattern foo* will match any string that begins
with foo, such as foo itself, foobar, or foo.c. The pattern quux*.c will match any
string that begins with quux and ends in .c, such as quuxbaz.c.

• The ? (question mark) character matches any single character. The pattern
pic??.jpg will match names like picaa.jpg or pic01.jpg.

• A [ (open square bracket) character begins a character class, which is ended by
a ]. Its meaning is “match any character in this class”. A character class can be
negated by following the opening [ with a !, so that it means “match any character
not in this class”.

As a shorthand, a character followed by a - (dash), followed by another character,
denotes a range: “match any character within this set.”

Character classes have an added subtlety; they can’t be empty. The first character
after the opening [ or [! is part of the class, so we can write a class containing
the ] character as []aeiou]. The pattern pic[0-9].[pP][nN][gG] will match a name
consisting of the string pic, followed by a single digit, followed by any capitalization
of the strig .png.
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While Haskell doesn’t provide a way to match glob patterns among its standard libra-
ries, it provides a good regular expression matching library. Glob patterns are nothing
more than cut-down regular expressions with slightly different syntax. It’s easy to con-
vert glob patterns into regular expressions, but to do so, we must first understand how
to use regular expressions in Haskell.

Regular Expressions in Haskell
In this section, we assume that you are already familiar with regular expressions by way
of some other language, such as Python, Perl, or Java.*

For brevity, we will abbreviate “regular expression” as regexp from here on.

Rather than introduce regexps as something new, we will focus on what’s different
about regexp handling in Haskell, compared to other languages. Haskell’s regular ex-
pression matching libraries are a lot more expressive than those of other languages, so
there’s plenty to talk about.

To begin our exploration of the regexp libraries, the only module we’ll need to work
with is Text.Regex.Posix. As usual, the most convenient way to explore this module is
by interacting with it via ghci:

ghci> :module +Text.Regex.Posix

The only function that we’re likely to need for normal use is the regexp matching func-
tion, an infix operator named (=~) (borrowed from Perl). The first hurdle to overcome
is that Haskell’s regexp libraries make heavy use of polymorphism. As a result, the type
signature of the (=~) operator is difficult to understand, so we will not explain it here.

The =~ operator uses typeclasses for both of its arguments and also for its return type.
The first argument (on the left of the =~) is the text to match; the second (on the right)
is the regular expression to match against. We can pass either a String or a
ByteString as argument.

The Many Types of Result
The =~ operator is polymorphic in its return type, so the Haskell compiler needs some
way to know what type of result we would like. In real code, it may be able to infer the
right type, due to the way we subsequently use the result. But such cues are often lacking
when we’re exploring with ghci. If we omit a specific type for the result, we’ll get an
error from the interpreter, as it does not have enough information to successfuly infer
the result type.

* If you are not acquainted with regular expressions, we recommend Jeffrey Friedl’s book Mastering Regular
Expressions (O’Reilly).
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When ghci can’t infer the target type, we tell it what we’d like the type to be. If we
want a result of type Bool, we’ll get a pass/fail answer:

ghci> "my left foot" =~ "foo" :: Bool
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
True
ghci> "your right hand" =~ "bar" :: Bool
False
ghci> "your right hand" =~ "(hand|foot)" :: Bool
True

In the bowels of the regexp libraries, there’s a typeclass named RegexContext that de-
scribes how a target type should behave; the base library defines many instances of
this typeclass for us. The Bool type is an instance of this typeclass, so we get back a
usable result. Another such instance is Int, which gives us a count of the number of
times the regexp matches:

ghci> "a star called henry" =~ "planet" :: Int
0
ghci> "honorificabilitudinitatibus" =~ "[aeiou]" :: Int
13

If we ask for a String result, we’ll get the first substring that matches or an empty string
if nothing matches:

ghci> "I, B. Ionsonii, uurit a lift'd batch" =~ "(uu|ii)" :: String
"ii"
ghci> "hi ludi, F. Baconis nati, tuiti orbi" =~ "Shakespeare" :: String
""

Another valid type of result is [String], which returns a list of all matching strings:

ghci> "I, B. Ionsonii, uurit a lift'd batch" =~ "(uu|ii)" :: [String]
["ii","uu"]
ghci> "hi ludi, F. Baconis nati, tuiti orbi" =~ "Shakespeare" :: [String]
[]

Watch out for String results
If you want a result that’s a plain String, beware. Since (=~) returns an
empty string to signify “no match”, this poses an obvious difficulty if
the empty string could also be a valid match for the regexp. If such a
case arises, you should use a different return type instead, such as
[String].

That’s about it for “simple” result types, but we’re not by any means finished. Before
we continue, let’s use a single pattern for our remaining examples. We can define this
pattern as a variable in ghci, to save a little typing:

ghci> let pat = "(foo[a-z]*bar|quux)"
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We can obtain quite a lot of information about the context in which a match occurs.
If we ask for a (String, String, String) tuple, we’ll get back the text before the first
match, the text of that match, and the text that follows it:

ghci> "before foodiebar after" =~ pat :: (String,String,String)
("before ","foodiebar"," after")

If the match fails, the entire text is returned as the “before” element of the tuple, with
the other two elements left empty:

ghci> "no match here" =~ pat :: (String,String,String)
("no match here","","")

Asking for a four-element tuple gives us a fourth element that’s a list of all groups in
the pattern that matched:

ghci> "before foodiebar after" =~ pat :: (String,String,String,[String])
("before ","foodiebar"," after",["foodiebar"])

We can get numeric information about matches, too. A pair of Ints gives us the starting
offset of the first match, and its length. If we ask for a list of these pairs, we’ll get this
information for all matches:

ghci> "before foodiebar after" =~ pat :: (Int,Int)
(7,9)
ghci> "i foobarbar a quux" =~ pat :: [(Int,Int)]
[(2,9),(14,4)]

A failed match is represented by the value -1 as the first element of the tuple (the match
offset) if we’ve asked for a single tuple, or an empty list if we’ve asked for a list of tuples:

ghci> "eleemosynary" =~ pat :: (Int,Int)
(-1,0)
ghci> "mondegreen" =~ pat :: [(Int,Int)]
[]

This is not a comprehensive list of built-in instances of the RegexContext typeclass. For
a complete list, see the documentation for the Text.Regex.Base.Context module.

This ability to make a function polymorphic in its result type is an unusual feature for
a statically typed language.

More About Regular Expressions

Mixing and Matching String Types
As we noted earlier, the =~ operator uses typeclasses for its argument types and its return
type. We can use either String or strict ByteString values for both the regular expression
and the text to match against:

ghci> :module +Data.ByteString.Char8
ghci> :type pack "foo"
pack "foo" :: ByteString
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We can then try using different combinations of String and ByteString:

ghci> pack "foo" =~ "bar" :: Bool
False
ghci> "foo" =~ pack "bar" :: Int
0
ghci> pack "foo" =~ pack "o" :: [(Int, Int)]
[(1,1),(2,1)]

However, we need to be aware that if we want a string value in the result of a match,
the text we’re matching against must be the same type of string. Let’s see what this
means in practice:

ghci> pack "good food" =~ ".ood" :: [ByteString]
["good","food"]

In the above example, we’ve used the pack to turn a String into a ByteString. The type
checker accepts this because ByteString appears in the result type. But if we try getting
a String out, that won’t work:

ghci> "good food" =~ ".ood" :: [ByteString]

<interactive>:1:0:
    No instance for (Text.Regex.Base.RegexLike.RegexContext
                       Regex [Char] [ByteString])
      arising from a use of `=~' at <interactive>:1:0-20
    Possible fix:
      add an instance declaration for
      (Text.Regex.Base.RegexLike.RegexContext Regex [Char] [ByteString])
    In the expression: "good food" =~ ".ood" :: [ByteString]
    In the definition of `it':
        it = "good food" =~ ".ood" :: [ByteString]

We can easily fix this problem by making the string types of the lefthand side and the
result match once again:

ghci> "good food" =~ ".ood" :: [String]
["good","food"]

This restriction does not apply to the type of the regexp we’re matching against. It can
be either a String or ByteString, unconstrained by the other types in use.

Other Things You Should Know
When you look through Haskell library documentation, you’ll see several regexp-
related modules. The modules under Text.Regex.Base define the common API adhered
to by all of the other regexp modules. It’s possible to have multiple implementations
of the regexp API installed at one time. At the time of this writing, GHC is bundled
with one implementation, Text.Regex.Posix. As its name suggests, this package pro-
vides POSIX regexp semantics.
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Perl and POSIX Regular Expressions
If you’re coming to Haskell from a language like Perl, Python, or Java, and you’ve used
regular expressions in one of those languages, you should be aware that the POSIX
regexps handled by the Text.Regex.Posix module are different in some significant ways
from Perl-style regexps. Here are a few of the more notable differences.

Perl regexp engines perform left-biased matching when matching alternatives, whereas
POSIX engines choose the greediest match. What this means is that given a regexp of
(foo|fo*) and a text string of foooooo, a Perl-style engine will give a match of foo (the
leftmost match), while a POSIX engine will match the entire string (the greediest
match).

POSIX regexps have less uniform syntax than Perl-style regexps. They also lack a num-
ber of capabilities provided by Perl-style regexps, such as zero-width assertions and
control over greedy matching.

Other Haskell regexp packages are available for download from Hackage. Some provide
better performance than the current POSIX engine (e.g., regex-tdfa); others provide
the Perl-style matching that most programmers are now familiar with (e.g., regex-
pcre). All follow the standard API that we have covered in this section.

Translating a glob Pattern into a Regular Expression
Now that we’ve seen the myriad of ways to match text against regular expressions, let’s
turn our attention back to glob patterns. We want to write a function that will take a
glob pattern and return its representation as a regular expression. Both glob patterns
and regexps are text strings, so the type that our function ought to have seems clear:

-- file: ch08/GlobRegex.hs
module GlobRegex
    (
      globToRegex
    , matchesGlob
    ) where

import Text.Regex.Posix ((=~))

globToRegex :: String -> String

The regular expression that we generate must be anchored so that it starts matching
from the beginning of a string and finishes at the end:

-- file: ch08/GlobRegex.hs
globToRegex cs = '^' : globToRegex' cs ++ "$"

Recall that the String is just a synonym for [Char], a list of Chars. The : operator puts
a value (the ^ character in this case) onto the front of a list, where the list is the value
returned by the yet-to-be-seen globToRegex' function.
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Using a value before defining it
Haskell does not require that a value or function be declared or defined
in a source file before it’s used. It’s perfectly normal for a definition to
come after the first place it’s used. The Haskell compiler doesn’t care
about ordering at this level. This grants us the flexibility to structure our
code in the manner that makes most logical sense to us, rather than
follow an order that makes the compiler writer’s life easiest.

Haskell module writers often use this flexibility to put “more impor-
tant” code earlier in a source file, relegating “plumbing” to later. This
is exactly how we are presenting the globToRegex function and its helpers
here.

With the regular expression rooted, the globToRegex' function will do the bulk of the
translation work. We’ll use the convenience of Haskell’s pattern matching to enumerate
each of the cases we’ll need to cover:

-- file: ch08/GlobRegex.hs
globToRegex' :: String -> String
globToRegex' "" = ""

globToRegex' ('*':cs) = ".*" ++ globToRegex' cs

globToRegex' ('?':cs) = '.' : globToRegex' cs

globToRegex' ('[':'!':c:cs) = "[^" ++ c : charClass cs
globToRegex' ('[':c:cs)     = '['  :  c : charClass cs
globToRegex' ('[':_)        = error "unterminated character class"

globToRegex' (c:cs) = escape c ++ globToRegex' cs

Our first clause stipulates that if we hit the end of our glob pattern (by which time we’ll
be looking at the empty string), we return $, the regular expression symbol for “match
end-of-line.” Following this is a series of clauses that switch our pattern from glob
syntax to regexp syntax. The last clause passes every other character through, possibly
escaping it first.

The escape function ensures that the regexp engine will not interpret certain characters
as pieces of regular expression syntax:

-- file: ch08/GlobRegex.hs
escape :: Char -> String
escape c | c `elem` regexChars = '\\' : [c]
         | otherwise = [c]
    where regexChars = "\\+()^$.{}]|"

The charClass helper function only checks that a character class is correctly terminated.
It passes its input through unmodified until it hits a ], when it hands control back to
globToRegex':

-- file: ch08/GlobRegex.hs
charClass :: String -> String
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charClass (']':cs) = ']' : globToRegex' cs
charClass (c:cs)   = c : charClass cs
charClass []       = error "unterminated character class"

Now that we’ve finished defining globToRegex and its helpers, let’s load it into ghci and
try it out:

ghci> :load GlobRegex.hs
[1 of 1] Compiling GlobRegex        ( GlobRegex.hs, interpreted )
Ok, modules loaded: GlobRegex.
ghci> :module +Text.Regex.Posix
ghci> globToRegex "f??.c"
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
"^f..\\.c$"

Sure enough, that looks like a reasonable regexp. Can we use it to match against a string?

ghci> "foo.c" =~ globToRegex "f??.c" :: Bool
True
ghci> "test.c" =~ globToRegex "t[ea]s*" :: Bool
True
ghci> "taste.txt" =~ globToRegex "t[ea]s*" :: Bool
True

It works! Now let’s play around a little with ghci. We can create a temporary definition
for fnmatch and try it out:

ghci> let fnmatch pat name  =  name =~ globToRegex pat :: Bool
ghci> :type fnmatch
fnmatch :: (Text.Regex.Base.RegexLike.RegexLike Regex source1) =>
           String -> source1 -> Bool
ghci> fnmatch "d*" "myname"
False

The name fnmatch doesn’t really have the “Haskell nature,” though. By far the most
common Haskell style is for functions to have descriptive, “camel cased” names. Camel
casing concatenates words, capitalizing all but possibly the first word. For instance, the
words “filename matches” would become the name fileNameMatches. The name “camel
case” comes from the “humps” introduced by the capital letters. In our library, we’ll
give this function the name matchesGlob:

-- file: ch08/GlobRegex.hs
matchesGlob :: FilePath -> String -> Bool
name `matchesGlob` pat = name =~ globToRegex pat

You may have noticed that most of the names that we have used for variables so far
have been short. As a rule of thumb, descriptive variable names are more useful in longer
function definitions, as they aid readability. For a two-line function, a long variable
name has less value.
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E X E R C I S E S

1. Use ghci to explore what happens if you pass a malformed pattern, such as [, to
globToRegex. Write a small function that calls globToRegex, and pass it a malformed
pattern. What happens?

2. While filesystems on Unix are usually case-sensitive (e.g., “G” vs. “g”) in filenames,
Windows filesystems are not. Add a parameter to the globToRegex and
matchesGlob functions that allows control over case sensitive matching.

An important Aside: Writing Lazy Functions
In an imperative language, the globToRegex' function is one that we’d usually express
as a loop. For example, Python’s standard fnmatch module includes a function named
translate that does exactly the same job as our globToRegex function. It’s written as a
loop.

If you’ve been exposed to functional programming through a language such as Scheme
or ML, you’ve probably had drilled into your head the notion that “the way to emulate
a loop is via tail recursion.”

Looking at the globToRegex' function, we can see that it is not tail recursive. To see
why, examine its final clause again (several of its other clauses are structured similarly):

-- file: ch08/GlobRegex.hs
globToRegex' (c:cs) = escape c ++ globToRegex' cs

It applies itself recursively, and the result of the recursive application is used as a pa-
rameter to the (++) function. Since the recursive application isn’t the last thing the
function does, globToRegex' is not tail recursive.

Why is our definition of this function not tail recursive? The answer lies with Haskell’s
nonstrict evaluation strategy. Before we start talking about that, let’s quickly talk about
why, in a traditional language, we’d try to avoid this kind of recursive definition. Here
is a simpler definition of the (++) operator. It is recursive, but not tail recursive:

-- file: ch08/append.hs
(++) :: [a] -> [a] -> [a]

(x:xs) ++ ys = x : (xs ++ ys)
[]     ++ ys = ys

In a strict language, if we evaluate "foo" ++ "bar", the entire list is constructed, and
then returned. Non-strict evaluation defers much of the work until it is needed.

If we demand an element of the expression "foo" ++ "bar", the first pattern of the
function’s definition matches, and we return the expression x : (xs ++ ys). Because
the (:) constructor is nonstrict, the evaluation of xs ++ ys can be deferred: we generate
more elements of the result at whatever rate they are demanded. When we generate
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more of the result, we will no longer be using x, so the garbage collector can reclaim it.
Since we generate elements of the result on demand, and do not hold onto parts that
we are done with, the compiler can evaluate our code in constant space.

Making Use of Our Pattern Matcher
It’s all very well to have a function that can match glob patterns, but we’d like to be
able to put this to practical use. On Unix-like systems, the glob function returns the
names of all files and directories that match a given glob pattern. Let’s build a similar
function in Haskell. Following the Haskell norm of descriptive naming, we’ll call our
function namesMatching:

-- file: ch08/Glob.hs
module Glob (namesMatching) where

We specify that namesMatching is the only name that users of our Glob module will be
able to see.

This function will obviously have to manipulate filesystem paths a lot, splicing and
joining them as it goes. We’ll need to use a few previously unfamiliar modules along
the way.

The System.Directory module provides standard functions for working with directories
and their contents:

-- file: ch08/Glob.hs
import System.Directory (doesDirectoryExist, doesFileExist,
                         getCurrentDirectory, getDirectoryContents)

The System.FilePath module abstracts the details of an operating system’s path name
conventions. The (</>) function joins two path components:

ghci> :m +System.FilePath
ghci> "foo" </> "bar"
Loading package filepath-1.1.0.0 ... linking ... done.
"foo/bar"

The name of the dropTrailingPathSeparator function is perfectly descriptive:

ghci> dropTrailingPathSeparator "foo/"
"foo"

The splitFileName function splits a path at the last slash:

ghci> splitFileName "foo/bar/Quux.hs"
("foo/bar/","Quux.hs")
ghci> splitFileName "zippity"
("","zippity")

Using System.FilePath together with the System.Directory module, we can write a
portable namesMatching function that will run on both Unix-like and Windows systems:

-- file: ch08/Glob.hs
import System.FilePath (dropTrailingPathSeparator, splitFileName, (</>))
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In this module, we’ll be emulating a “for” loop; getting our first taste of exception
handling in Haskell; and of course using the matchesGlob function we just wrote:

-- file: ch08/Glob.hs
import Control.Exception (handle)
import Control.Monad (forM)
import GlobRegex (matchesGlob)

Since directories and files live in the “real world” of activities that have effects, our
globbing function will have to have IO in its result type.

If the string we’re passed contains no pattern characters, we simply check that the given
name exists in the filesystem. (Notice that we use Haskell’s function guard syntax here
to write a nice tidy definition. An “if” would do but isn’t as aesthetically pleasing.)

-- file: ch08/Glob.hs
isPattern :: String -> Bool
isPattern = any (`elem` "[*?")

namesMatching pat
  | not (isPattern pat) = do
    exists <- doesNameExist pat
    return (if exists then [pat] else [])

The name doesNameExist refers to a function that we will define shortly.

What if the string is a glob pattern? Our function definition continues:

-- file: ch08/Glob.hs
  | otherwise = do
    case splitFileName pat of
      ("", baseName) -> do
          curDir <- getCurrentDirectory
          listMatches curDir baseName
      (dirName, baseName) -> do
          dirs <- if isPattern dirName
                  then namesMatching (dropTrailingPathSeparator dirName)
                  else return [dirName]
          let listDir = if isPattern baseName
                        then listMatches
                        else listPlain
          pathNames <- forM dirs $ \dir -> do
                           baseNames <- listDir dir baseName
                           return (map (dir </>) baseNames)
          return (concat pathNames)

We use splitFileName to split the string into a pair of “everything but the final name”
and “the final name.” If the first element is empty, we’re looking for a pattern in the
current directory. Otherwise, we must check the directory name and see if it contains
patterns. If it does not, we create a singleton list of the directory name. If it contains a
pattern, we list all of the matching directories.
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Things to watch out for
The System.FilePath module can be a little tricky. The example just
shown is a case in point; the splitFileName function leaves a trailing
slash on the end of the directory name that it returns:

ghci> :module +System.FilePath
ghci> splitFileName "foo/bar"
Loading package filepath-1.1.0.0 ... linking ... done.
("foo/","bar")

If we didn’t remember (or know enough) to remove that slash, we’d
recurse endlessly in namesMatching, because of the following behavior of
splitFileName:

ghci> splitFileName "foo/"
("foo/","")

(You can guess what happened to us that led us to add this note!)

Finally, we collect all matches in every directory, giving us a list of lists, and concatenate
them into a single list of names.

The unfamiliar forM function above acts a little like a “for” loop: it maps its second
argument (an action) over its first (a list), and returns the list of results.

We have a few loose ends to clean up. The first is the definition of the doesNameExist
function, used above. The System.Directory module doesn’t let us check to see if a
name exists in the filesystem. It forces us to decide whether we want to check for a file
or a directory. This API is ungainly, so we roll the two checks into a single function. In
the name of performance, we make the check for a file first, since files are far more
common than directories:

-- file: ch08/Glob.hs
doesNameExist :: FilePath -> IO Bool

doesNameExist name = do
    fileExists <- doesFileExist name
    if fileExists
      then return True
      else doesDirectoryExist name

We have two other functions to define, each of which returns a list of names in a
directory. The listMatches function returns a list of all files matching the given glob
pattern in a directory:

-- file: ch08/Glob.hs
listMatches :: FilePath -> String -> IO [String]
listMatches dirName pat = do
    dirName' <- if null dirName
                then getCurrentDirectory
                else return dirName
    handle (const (return [])) $ do
        names <- getDirectoryContents dirName'
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        let names' = if isHidden pat
                     then filter isHidden names
                     else filter (not . isHidden) names
        return (filter (`matchesGlob` pat) names')

isHidden ('.':_) = True
isHidden _       = False

The listPlain function returns either an empty or singleton list, depending on whether
the single name it’s passed exists:

-- file: ch08/Glob.hs
listPlain :: FilePath -> String -> IO [String]
listPlain dirName baseName = do
    exists <- if null baseName
              then doesDirectoryExist dirName
              else doesNameExist (dirName </> baseName)
    return (if exists then [baseName] else [])

If we look closely at the definition of listMatches, we’ll see a call to a function named
handle. Earlier on, we imported this from the Control.Exception module; as that import
implies, this gives us our first taste of exception handling in Haskell. Let’s drop into
ghci and see what we can find out:

ghci> :module +Control.Exception
ghci> :type handle
handle :: (Exception -> IO a) -> IO a -> IO a

This is telling us that handle takes two arguments. The first is a function that is passed
an exception value, and can have side effects (see the IO type in its return value); this
is the handler to run if an exception is thrown. The second argument is the code that
might throw an exception.

As for the exception handler, the type of the handle constrains it to return the same
type of value as the body of code that threw the exception. So its choices are to either
throw an exception or, as in our case, return a list of Strings.

The const function takes two arguments—it always returns its first argument, no matter
what its second argument is:

ghci> :type const
const :: a -> b -> a
ghci> :type return []
return [] :: (Monad m) => m [a]
ghci> :type handle (const (return []))
handle (const (return [])) :: IO [a] -> IO [a]

We use const to write an exception handler that ignores the exception it is passed.
Instead, it causes our code to return an empty list if we catch an exception.

We won’t have anything more to say about exception handling here. There’s plenty
more to cover, though, so we’ll be returning to the subject of exceptions in Chapter 19.
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E X E R C I S E S

1. Although we’ve gone to some lengths to write a portable namesMatching function,
the function uses our case sensitive globToRegex function. Find a way to modify
namesMatching to be case-sensitive on Unix, and case insensitive on Windows,
without modifying its type signature. (Hint: consider reading the documentation
for System.FilePath to look for a variable that tells us whether we’re running on a
Unix-like system or on Windows.)

2. If you’re on a Unix-like system, look through the documentation for the
System.Posix.Files module, and see if you can find a replacement for the
doesNameExist function.

3. The * wild card matches names only within a single directory. Many shells have
an extended wild card syntax, **, that matches names recursively in all directories.
For example, **.c would mean “match a name ending in .c in this directory or any
subdirectory at any depth”. Implement matching on ** wild cards.

Handling Errors Through API Design
It’s not necessarily a disaster if our globToRegex is passed a malformed pattern. Perhaps
a user mistyped a pattern, in which case, we’d like to be able to report a meaningful
error message.

Calling the error function when this kind of problem occurs can be a drastic response
(exploring its consequences was the focus of “Exercises” on page 210). The error
throws an exception. Pure Haskell code cannot deal with exceptions, so control is going
to rocket out of our pure code into the nearest caller that lives in IO and has an appro-
priate exception handler installed. If no such handler is installed, the Haskell runtime
will default to terminating our program (or print a nasty error message, in ghci).

So calling error is a little like pulling the handle of a fighter plane’s ejection seat. We’re
bailing out of a catastrophic situation that we can’t deal with gracefully, and there’s
likely to be a lot of flaming wreckage strewn about by the time we hit the ground.

We’ve established that error is for disasters, but we’re still using it in globToRegex. In
that case, malformed input should be rejected, but not turned into a big deal. What
would be a better way to handle this?

Haskell’s type system and libraries to the rescue! We can encode the possibility of failure
in the type signature of globToRegex using the predefined Either type:

-- file: ch08/GlobRegexEither.hs
type GlobError = String

globToRegex :: String -> Either GlobError String
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A value returned by globToRegex will now be either Left "an error message" or Right
"a valid regexp". This return type forces our callers to deal with the possibility of error.
(You’ll find that this use of the Either type occurs frequently in Haskell code.)

E X E R C I S E S

1. Write a version of globToRegex that uses the type signature shown earlier.

2. Modify the type signature of namesMatching so that it encodes the possibility of a
bad pattern, and make it use your rewritten globToRegex function.

You may find the amount of work involved to be surprisingly large.
Don’t worry; we will introduce more concise and sophisticated ways
of dealing with errors in later chapters.

Putting Our Code to Work
The namesMatching function isn’t very exciting by itself, but it’s a useful building block.
Combine it with a few more functions, and we can start to do interesting things.

Here’s one such example. Let’s define a renameWith function that, instead of simply
renaming a file, applies a function to the file’s name, and renames the file to whatever
that function returns:

-- file: ch08/Useful.hs
import System.FilePath (replaceExtension)
import System.Directory (doesFileExist, renameDirectory, renameFile)
import Glob (namesMatching)

renameWith :: (FilePath -> FilePath)
           -> FilePath
           -> IO FilePath

renameWith f path = do
    let path' = f path
    rename path path'
    return path'

Once again, we work around the ungainly file/directory split in System.Directory with
a helper function:

-- file: ch08/Useful.hs
rename :: FilePath -> FilePath -> IO ()

rename old new = do
    isFile <- doesFileExist old
    let f = if isFile then renameFile else renameDirectory
    f old new
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The System.FilePath module provides many useful functions for manipulating file-
names. These functions mesh nicely with our renameWith and namesMatching functions,
so that we can quickly use them to create functions with complex behavior. As an
example, this terse function changes the filename suffixing convention for C++ source
files:

-- file: ch08/Useful.hs
cc2cpp =
  mapM (renameWith (flip replaceExtension ".cpp")) =<< namesMatching "*.cc"

The cc2cpp function uses a few functions we’ll see over and over. The flip function
takes another function as argument and swaps the order of its arguments (inspect the
type of replaceExtension in ghci to see why). The =<< function feeds the result of the
action on its right side to the action on its left.

E X E R C I S E

1. Glob patterns are simple enough to interpret that it’s easy to write a matcher di-
rectly in Haskell, rather than going through the regexp machinery. Give it a try.
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CHAPTER 9

I/O Case Study: A Library for Searching
the Filesystem

The problem of “I know I have this file, but I don’t know where it is” has been around
for as long as computers have had hierarchical filesystems. The fifth edition of Unix
introduced the find command in 1974; it remains indispensable today. The state of the
art has come a long way: modern operating systems ship with advanced document
indexing and search capabilities.

There’s still a valuable place for find-like capability in the programmer’s toolbox. In
this chapter, we’ll develop a library that gives us many of find’s capabilities, without
leaving Haskell. We’ll explore several different approaches to writing this library, each
with different strengths.

The find Command
If you don’t use a Unix-like operating system, or you’re not a heavy shell user, it’s quite
possible you may not have heard of find. Given a list of directories, it searches each
one recursively and prints the name of every entry that matches an expression.

Individual expressions can take such forms as “name matches this glob pattern,” “entry
is a plain file,” “last modified before this date,” and many more. They can be stitched
together into more complex expressions using “and” and “or” operators.

Starting Simple: Recursively Listing a Directory
Before we plunge into designing our library, let’s solve a few smaller issues. Our first
problem is to recursively list the contents of a directory and its subdirectories:

-- file: ch09/RecursiveContents.hs
module RecursiveContents (getRecursiveContents) where

import Control.Monad (forM)
import System.Directory (doesDirectoryExist, getDirectoryContents)
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import System.FilePath ((</>))

getRecursiveContents :: FilePath -> IO [FilePath]

getRecursiveContents topdir = do
  names <- getDirectoryContents topdir
  let properNames = filter (`notElem` [".", ".."]) names
  paths <- forM properNames $ \name -> do
    let path = topdir </> name
    isDirectory <- doesDirectoryExist path
    if isDirectory
      then getRecursiveContents path
      else return [path]
  return (concat paths)

The filter expression ensures that a listing for a single directory won’t contain the
special directory names . or .., which refer to the current and parent directory, re-
spectively. If we forgot to filter these out, we’d recurse endlessly.

We encountered forM in the previous chapter; it is mapM with its arguments flipped:

ghci> :m +Control.Monad
ghci> :type mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :type forM
forM :: (Monad m) => [a] -> (a -> m b) -> m [b]

The body of the loop checks to see whether the current entry is a directory. If it is, it
recursively calls getRecursiveContents to list that directory. Otherwise, it returns a
single-element list that is the name of the current entry. (Don’t forget that the return
function has a unique meaning in Haskell: it wraps a value with the monad’s type
constructor.)

Another thing worth pointing out is the use of the variable isDirectory. In an imperative
language such as Python, we’d normally write if os.path.isdir(path). However, the
doesDirectoryExist function is an action; its return type is IO Bool, not Bool. Since an
if expression requires an expression of type Bool, we have to use <- to get the Bool
result of the action out of its IO wrapper so that we can use the plain, unwrapped
Bool in the if.

Each iteration of the loop body yields a list of names, so the result type of forM here is
IO [[FilePath]]. We use concat to flatten it into a single list.

Revisiting Anonymous and Named Functions
In “Anonymous (lambda) Functions” on page 99, we listed some reasons not to use
anonymous functions, and yet here we are, using one as the body of a loop. This is one
of the most common uses of anonymous functions in Haskell.
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We’ve already seen from their types that forM and mapM take functions as arguments.
Most loop bodies are blocks of code that appear only once in a program. Since we’re
most likely to use a loop body in one place only, why give it a name?

Of course, it sometimes happens that we need to deploy exactly the same code in several
different loops. Rather than cutting and pasting the same anonymous function, it makes
sense in such cases to give a name to an existing anonymous function.

Why Provide Both mapM and forM?
It might seem a bit odd that there exist two functions that are identical but for the order
in which they accept their arguments. However, mapM and forM are convenient in
different circumstances.

Consider our previous example, using an anonymous function as a loop body. If we
were to use mapM instead of forM, we’d have to place the variable properNames after the
body of the function. In order to get the code to parse correctly, we’d have to wrap the
entire anonymous function in parentheses, or replace it with a named function that
would otherwise be unnecessary. Try it yourself: copy the code just shown, replacing
forM with mapM, and see what this does to the readability of the code.

By contrast, if the body of the loop was already a named function, and the list over
which we were looping was computed by a complicated expression, we’d have a good
case for using mapM instead.

The stylistic rule of thumb to follow here is to use whichever of mapM or forM lets you
write the tidiest code. If the loop body and the expression computing the data over
which you’re looping are both short, it doesn’t matter which you use. If the loop is
short, but the data is long, use mapM. If the loop is long, but the data short, use forM.
And if both are long, use a let or where clause to make one of them short. With just a
little practice, it will become obvious which of these approaches is best in every
instance.

A Naive Finding Function
We can use our getRecursiveContents function as the basis for a simple-minded file
finder:

-- file: ch09/SimpleFinder.hs
import RecursiveContents (getRecursiveContents)

simpleFind :: (FilePath -> Bool) -> FilePath -> IO [FilePath]

simpleFind p path = do
  names <- getRecursiveContents path
  return (filter p names)
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This function takes a predicate that we use to filter the names returned by
getRecursiveContents. Each name passed to the predicate is a complete path, so how
can we perform a common operation such as “find all files ending in the extension .c”?

The System.FilePath module contains numerous invaluable functions that help us to
manipulate filenames. In this case, we want takeExtension:

ghci> :m +System.FilePath
ghci> :type takeExtension
takeExtension :: FilePath -> String
ghci> takeExtension "foo/bar.c"
Loading package filepath-1.1.0.0 ... linking ... done.
".c"
ghci> takeExtension "quux"
""

This gives us a simple matter of writing a function that takes a path, extracts its exten-
sion, and compares it with .c:

ghci> :load SimpleFinder
[1 of 2] Compiling RecursiveContents ( RecursiveContents.hs, interpreted )
[2 of 2] Compiling Main             ( SimpleFinder.hs, interpreted )
Ok, modules loaded: RecursiveContents, Main.
ghci> :type simpleFind (\p -> takeExtension p == ".c")
simpleFind (\p -> takeExtension p == ".c") :: FilePath -> IO [FilePath]

While simpleFind works, it has a few glaring problems. The first is that the predicate
is not very expressive. It can only look at the name of a directory entry; it cannot, for
example, find out whether it’s a file or a directory. This means that our attempt to use
simpleFind will list directories ending in .c as well as files with the same extension.

The second problem is that simpleFind gives us no control over how it traverses the
filesystem. To see why this is significant, consider the problem of searching for a source
file in a tree managed by the Subversion revision control system. Subversion maintains
a private .svn directory in every directory that it manages; each one contains many
subdirectories and files that are of no interest to us. While we can easily filter out any
path containing .svn, it’s more efficient to simply avoid traversing these directories in
the first place. For example, one of us has a Subversion source tree containing 45,000
files, 30,000 of which are stored in 1,200 different .svn directories. It’s cheaper to avoid
traversing those 1,200 directories than to filter out the 30,000 files they contain.

Finally, simpleFind is strict, because it consists of a series of actions executed in the
IO monad. If we have a million files to traverse, we encounter a long delay, and then
receive one huge result containing a million names. This is bad for both resource usage
and responsiveness. We might prefer a lazy stream of results delivered as they arrive.

In the sections that follow, we’ll overcome each one of these problems.
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Predicates: From Poverty to Riches, While Remaining Pure
Our predicates can only look at filenames. This excludes a wide variety of interesting
behaviors—for instance, what if we’d like to list files greater than a given size?

An easy reaction to this is to reach for IO: instead of our predicate being of type
FilePath -> Bool, why don’t we change it to FilePath -> IO Bool? This would let us
perform arbitrary I/O as part of our predicate. As appealing as this might seem, it’s also
potentially a problem: such a predicate could have arbitrary side effects, since a function
with return type IO a can have whatever side effects it pleases.

Let’s enlist the type system in our quest to write more predictable, less buggy code;
we’ll keep predicates pure by avoiding the taint of “IO.” This will ensure that they can’t
have any nasty side effects. We’ll feed them more information, too, so that they can
gain the expressiveness we want without also becoming potentially dangerous.

Haskell’s portable System.Directory module provides a useful, albeit limited, set of file
metadata:

ghci> :m +System.Directory

We can use doesFileExist and doesDirectoryExist to determine whether a directory
entry is a file or a directory. There are not yet portable ways to query for other file types
that have become widely available in recent years, such as named pipes, hard links, and
symbolic links:

ghci> :type doesFileExist
doesFileExist :: FilePath -> IO Bool
ghci> doesFileExist "."
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
False
ghci> :type doesDirectoryExist
doesDirectoryExist :: FilePath -> IO Bool
ghci> doesDirectoryExist "."
True

The getPermissions function lets us find out whether certain operations on a file or
directory are allowed:

ghci> :type getPermissions
getPermissions :: FilePath -> IO Permissions
ghci> :info Permissions
data Permissions
  = Permissions {readable :: Bool,
                 writable :: Bool,
                 executable :: Bool,
                 searchable :: Bool}
      -- Defined in System.Directory
instance Eq Permissions -- Defined in System.Directory
instance Ord Permissions -- Defined in System.Directory
instance Read Permissions -- Defined in System.Directory
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instance Show Permissions -- Defined in System.Directory
ghci> getPermissions "."
Permissions {readable = True, writable = True, executable = False, searchable = True}
ghci> :type searchable
searchable :: Permissions -> Bool
ghci> searchable it
True

Finally, getModificationTime tells us when an entry was last modified:

ghci> :type getModificationTime
getModificationTime :: FilePath -> IO System.Time.ClockTime
ghci> getModificationTime "."
Sat Aug 23 22:28:16 PDT 2008

If we stick with portable, standard Haskell code, these functions are all we have at our
disposal. (We can also find a file’s size using a small hack; see below.) They’re also
quite enough to let us illustrate the principles we’re interested in, without letting us get
carried away with an example that’s too expansive. If you need to write more demand-
ing code, the System.Posix and System.Win32 module families provide much more de-
tailed file metadata for the two major modern computing platforms. There also exists
a unix-compat package on Hackage, which provides a Unix-like API on Windows.

How many pieces of data does our new, richer predicate need to see? Since we can find
out whether an entry is a file or a directory by looking at its Permissions, we don’t need
to pass in the results of doesFileExist or doesDirectoryExist. We thus have four pieces
of data that a richer predicate needs to look at:

-- file: ch09/BetterPredicate.hs
import Control.Monad (filterM)
import System.Directory (Permissions(..), getModificationTime, getPermissions)
import System.Time (ClockTime(..))
import System.FilePath (takeExtension)
import Control.Exception (bracket, handle)
import System.IO (IOMode(..), hClose, hFileSize, openFile)

-- the function we wrote earlier
import RecursiveContents (getRecursiveContents)

type Predicate =  FilePath      -- path to directory entry
               -> Permissions   -- permissions
               -> Maybe Integer -- file size (Nothing if not file)
               -> ClockTime     -- last modified
               -> Bool

Our Predicate type is just a synonym for a function of four arguments. It will save us
a little keyboard work and screen space.

Notice that the return value of this predicate is Bool, not IO Bool: the predicate is pure
and cannot perform I/O. With this type in hand, our more expressive finder function
is still quite trim:

-- file: ch09/BetterPredicate.hs
-- soon to be defined
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getFileSize :: FilePath -> IO (Maybe Integer)

betterFind :: Predicate -> FilePath -> IO [FilePath]

betterFind p path = getRecursiveContents path >>= filterM check
    where check name = do
            perms <- getPermissions name
            size <- getFileSize name
            modified <- getModificationTime name
            return (p name perms size modified)

Let’s walk through the code. We’ll talk about getFileSize in some detail soon, so let’s
skip over it for now.

We can’t use filter to call our predicate p, as p’s purity means it cannot do the I/O
needed to gather the metadata it requires.

This leads us to the unfamiliar function filterM. It behaves like the normal filter
function, but in this case it evaluates its predicate in the IO monad, allowing the pred-
icate to perform I/O:

ghci> :m +Control.Monad
ghci> :type filterM
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

Our check predicate is an I/O-capable wrapper for our pure predicate p. It does all the
“dirty” work of I/O on p’s behalf so that we can keep p incapable of unwanted side
effects. After gathering the metadata, check calls p, and then uses return to wrap p’s
result with IO.

Sizing a File Safely
Although System.Directory doesn’t let us find out how large a file is, we can use the
similarly portable System.IO module to do this. It contains a function named
hFileSize, which returns the size in bytes of an open file. Here’s a simple function that
wraps it:

-- file: ch09/BetterPredicate.hs
simpleFileSize :: FilePath -> IO Integer

simpleFileSize path = do
  h <- openFile path ReadMode
  size <- hFileSize h
  hClose h
  return size

While this function works, it’s not yet suitable for us to use. In betterFind, we call
getFileSize unconditionally on any directory entry; it should return Nothing if an entry
is not a plain file, or it returns the size wrapped by Just otherwise. This function instead
throws an exception if an entry is not a plain file or could not be opened (perhaps due
to insufficient permissions), and returns the size unwrapped.
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Here’s a safer version of this function:

-- file: ch09/BetterPredicate.hs
saferFileSize :: FilePath -> IO (Maybe Integer)

saferFileSize path = handle (\_ -> return Nothing) $ do
  h <- openFile path ReadMode
  size <- hFileSize h
  hClose h
  return (Just size)

The body of the function is almost identical, save for the handle clause.

Our exception handler ignores the exception it’s passed and returns Nothing. The only
change to the body that follows is that it wraps the file size with Just.

The saferFileSize function now has the correct type signature, and it won’t throw any
exceptions. But it’s still not completely well behaved. There are directory entries on
which openFile will succeed, but hFileSize will throw an exception. This can happen
with, for example, named pipes. Such an exception will be caught by handle, but our
call to hClose will never occur.

A Haskell implementation will automatically close the file handle when it notices that
the handle is no longer being used. That will not occur until the garbage collector runs,
and the delay until the next garbage collection pass is not predictable.

File handles are scarce resources,  enforced by the underlying operating system. On
Linux, for example, a process is by default allowed to have only 1,024 files open
simultaneously.

It’s not hard to imagine a scenario in which a program that called a version of
betterFind that used saferFileSize could crash due to betterFind exhausting the sup-
ply of open file handles before enough garbage file handles could be closed.

This is a particularly pernicious kind of bug: it has several aspects that combine to make
it incredibly difficult to track down. It will only be triggered if betterFind visits a
sufficiently large number of nonfiles to hit the process’s limit on open file handles, and
then returns to a caller that tries to open another file before any of the accumulated
garbage file handles are closed.

To make matters worse, any subsequent error will be caused by data that is no longer
reachable from within the program and has yet to be garbage-collected. Such a bug is
thus dependent on the structure of the program, the contents of the filesystem, and
how close the current run of the program is to triggering the garbage collector.

This sort of problem is easy to overlook during development, and when it later occurs
in the field (as these awkward problems always seem to do), it will be much harder to
diagnose.

Fortunately, we can avoid this kind of error very easily, while also making our function
shorter.
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The Acquire-Use-Release Cycle
We need hClose to always be called if openFile succeeds. The Control.Exception mod-
ule provides the bracket function for exactly this purpose:

ghci> :type bracket
bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

The bracket function takes three actions as arguments. The first action acquires a re-
source. The second releases the resource. The third runs in between, while the resource
is acquired; let’s call this the “use” action. If the “acquire” action succeeds, the “re-
lease” action is always called. This guarantees that the resource will always be released.
The “use” and “release” actions are each passed the resource acquired by the
“acquire” action.

If an exception occurs while the “use” action is executing, bracket calls the “release”
action and rethrows the exception. If the “use” action succeeds, bracket calls the
“release” action and returns the value returned by the “use” action.

We can now write a function that is completely safe—it will not throw exceptions,
neither will it accumulate garbage file handles that could cause spurious failures else-
where in our program:

-- file: ch09/BetterPredicate.hs
getFileSize path = handle (\_ -> return Nothing) $
  bracket (openFile path ReadMode) hClose $ \h -> do
    size <- hFileSize h
    return (Just size)

Look again closely at the arguments of bracket. The first opens the file and returns the
open file handle. The second closes the handle. The third simply calls hFileSize on the
handle and wraps the result in Just.

We need to use both bracket and handle for this function to operate correctly. The
former ensures that we don’t accumulate garbage file handles, while the latter gets rid
of exceptions.

E X E R C I S E

1. Is the order in which we call bracket and handle important? Why?

A Domain-Specific Language for Predicates
Let’s take a stab at writing a predicate that will check for a C++ source file that is over
128 KB in size:

-- file: ch09/BetterPredicate.hs
myTest path _ (Just size) _ =
    takeExtension path == ".cpp" && size > 131072
myTest _ _ _ _ = False
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This isn’t especially pleasing. The predicate takes four arguments, always ignores two
of them, and requires two equations to define. Surely we can do better. Let’s create
some code that will help us write more concise predicates.

Sometimes, this kind of library is referred to as an embedded domain-specific lan-
guage: we use our programming language’s native facilities (hence embedded) to write
code that lets us solve some narrow problem (hence domain-specific) particularly
elegantly.

Our first step is to write a function that returns one of its arguments. This one extracts
the path from the arguments passed to a Predicate:

-- file: ch09/BetterPredicate.hs
pathP path _ _ _ = path

If we don’t provide a type signature, a Haskell implementation will infer a very general
type for this function. This can later lead to error messages that are difficult to interpret,
so let’s give pathP a type:

-- file: ch09/BetterPredicate.hs
type InfoP a =  FilePath        -- path to directory entry
             -> Permissions     -- permissions
             -> Maybe Integer   -- file size (Nothing if not file)
             -> ClockTime       -- last modified
             -> a

pathP :: InfoP FilePath

We’ve created a type synonym that we can use as shorthand for writing other, similarly
structured functions. Our type synonym accepts a type parameter so that we can specify
different result types:

-- file: ch09/BetterPredicate.hs
sizeP :: InfoP Integer
sizeP _ _ (Just size) _ = size
sizeP _ _ Nothing     _ = -1

(We’re being a little sneaky here and returning a size of –1 for entries that are not files
or that we couldn’t open.)

In fact, a quick glance shows that the Predicate type that we defined near the beginning
of this chapter is the same type as InfoP Bool. (We could thus legitimately get rid of
the Predicate type.)

What use are pathP and sizeP? With a little more glue, we can use them in a predicate
(the P suffix on each name is intended to suggest “predicate”). This is where things start
to get interesting:

-- file: ch09/BetterPredicate.hs
equalP :: (Eq a) => InfoP a -> a -> InfoP Bool
equalP f k = \w x y z -> f w x y z == k

The type signature of equalP deserves a little attention. It takes an InfoP a type, which
is compatible with both pathP and sizeP. It next takes an a and returns an
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InfoP Bool type, which we already observed is a synonym for Predicate. In other
words, equalP constructs a predicate.

The equalP function works by returning an anonymous function. That one takes the
arguments accepted by a predicate, passes them to f, and compares the result to k.

This equation for equalP emphasizes the fact that we think of it as taking two arguments.
Since Haskell curries all functions, writing equalP in this way is not actually necessary.
We can omit the anonymous function and rely on currying to work on our behalf,
letting us write a function that behaves identically:

-- file: ch09/BetterPredicate.hs
equalP' :: (Eq a) => InfoP a -> a -> InfoP Bool
equalP' f k w x y z = f w x y z == k

Before we continue with our explorations, let’s load our module into ghci:

ghci> :load BetterPredicate
[1 of 2] Compiling RecursiveContents ( RecursiveContents.hs, interpreted )
[2 of 2] Compiling Main             ( BetterPredicate.hs, interpreted )
Ok, modules loaded: RecursiveContents, Main.

Let’s see if a simple predicate constructed from these functions will work:

ghci> :type betterFind (sizeP `equalP` 1024)
betterFind (sizeP `equalP` 1024) :: FilePath -> IO [FilePath]

Notice that we’re not actually calling betterFind, we’re merely making sure that our
expression typechecks. We now have a more expressive way to list all files that are
exactly some size. Our success gives us enough confidence to continue.

Avoiding Boilerplate with Lifting
Besides equalP, we’d like to be able to write other binary functions. We’d prefer not to
write a complete definition of each one, because that seems unnecessarily verbose.

To address this, let’s put Haskell’s powers of abstraction to use. We’ll take the defini-
tion of equalP, and instead of calling (==) directly, we’ll pass in as another argument
the binary function that we want to call:

-- file: ch09/BetterPredicate.hs
liftP :: (a -> b -> c) -> InfoP a -> b -> InfoP c
liftP q f k w x y z = f w x y z `q` k

greaterP, lesserP :: (Ord a) => InfoP a -> a -> InfoP Bool
greaterP = liftP (>)
lesserP = liftP (<)

This act of taking a function, such as (>), and transforming it into another function
that operates in a different context (here greaterP) is referred to as lifting it into that
context. (This explains the presence of lift in the function’s name.) Lifting lets us reuse
code and reduce boilerplate. We’ll be using it a lot, in different guises, throughout the
rest of this book.
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When we lift a function, we’ll often refer to its original and new versions as unlifted and
lifted, respectively.

By the way, our placement of q (the function to lift) as the first argument to liftP was
quite deliberate. This made it possible for us to write such concise definitions of
greaterP and lesserP. Partial application makes finding the “best” order for arguments
a more important part of API design in Haskell than in other languages. In languages
without partial application, argument ordering is a matter of taste and convention. Put
an argument in the wrong place in Haskell, however, and we lose the concision that
partial application gives.

We can recover some of that conciseness via combinators. For instance, forM was not
added to the Control.Monad module until 2007. Prior to that, people wrote flip mapM
instead:

ghci> :m +Control.Monad
ghci> :t mapM
mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :t forM
forM :: (Monad m) => [a] -> (a -> m b) -> m [b]
ghci> :t flip mapM
flip mapM :: (Monad m) => [a] -> (a -> m b) -> m [b]

Gluing Predicates Together
If we want to combine predicates, we can, of course, follow the obvious path of doing
so by hand:

-- file: ch09/BetterPredicate.hs
simpleAndP :: InfoP Bool -> InfoP Bool -> InfoP Bool
simpleAndP f g w x y z = f w x y z && g w x y z

Now that we know about lifting, it becomes more natural to reduce the amount of code
we must write by lifting our existing Boolean operators:

-- file: ch09/BetterPredicate.hs
liftP2 :: (a -> b -> c) -> InfoP a -> InfoP b -> InfoP c
liftP2 q f g w x y z = f w x y z `q` g w x y z

andP = liftP2 (&&)
orP = liftP2 (||)

Notice that liftP2 is very similar to our earlier liftP. In fact, it’s more general, because
we can write liftP in terms of liftP2:

-- file: ch09/BetterPredicate.hs
constP :: a -> InfoP a
constP k _ _ _ _ = k

liftP' q f k w x y z = f w x y z `q` constP k w x y z
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Combinators
In Haskell, we refer to functions that take other functions as arguments
and return new functions as combinators.

Now that we have some helper functions in place, we can return to the myTest function
we defined earlier:

-- file: ch09/BetterPredicate.hs
myTest path _ (Just size) _ =
    takeExtension path == ".cpp" && size > 131072
myTest _ _ _ _ = False

How will this function look if we write it using our new combinators?

-- file: ch09/BetterPredicate.hs
liftPath :: (FilePath -> a) -> InfoP a
liftPath f w _ _ _ = f w

myTest2 = (liftPath takeExtension `equalP` ".cpp") `andP`
          (sizeP `greaterP` 131072)

We’ve added one final combinator, liftPath, since manipulating filenames is such a
common activity.

Defining and Using New Operators
We can take our domain-specific language further by defining new infix operators:

-- file: ch09/BetterPredicate.hs
(==?) = equalP
(&&?) = andP
(>?) = greaterP

myTest3 = (liftPath takeExtension ==? ".cpp") &&? (sizeP >? 131072)

We chose names such as (==?) for the lifted functions specifically for their visual sim-
ilarity to their unlifted counterparts.

The parentheses in our definition are necessary, because we haven’t told Haskell about
the precedence or associativity of our new operators. The language specifies that op-
erators without fixity declarations should be treated as infixl 9, i.e., evaluated from
left to right at the highest precedence level. If we were to omit the parentheses, the
expression would thus be parsed as (((liftPath takeExtension) ==? ".cpp") &&?
sizeP) >? 131072, which is horribly wrong.

We can respond by writing fixity declarations for our new operators. Our first step is
to find out what the fixities of the unlifted operators are, so that we can mimic them:

ghci> :info ==
class Eq a where
  (==) :: a -> a -> Bool
  ...
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      -- Defined in GHC.Base
infix 4 ==
ghci> :info &&
(&&) :: Bool -> Bool -> Bool     -- Defined in GHC.Base
infixr 3 &&
ghci> :info >
class (Eq a) => Ord a where
  ...
  (>) :: a -> a -> Bool
  ...
      -- Defined in GHC.Base
infix 4 >

With these in hand, we can now write a parenthesis-free expression that will be parsed
identically to myTest3:

-- file: ch09/BetterPredicate.hs
infix 4 ==?
infixr 3 &&?
infix 4 >?

myTest4 = liftPath takeExtension ==? ".cpp" &&? sizeP >? 131072

Controlling Traversal
When traversing the filesystem, we’d like to give ourselves more control over which
directories we enter, and when. An easy way in which we can allow this is to pass in a
function that takes a list of subdirectories of a given directory and returns another list.
This list can have elements removed, or it can be ordered differently than the original
list, or both. The simplest such control function is id, which will return its input list
unmodified.

For variety, we’re going to change a few aspects of our representation here. Instead of
the elaborate function type InfoP a, we’ll use a normal algebraic data type to substan-
tially represent the same information:

-- file: ch09/ControlledVisit.hs
data Info = Info {
      infoPath :: FilePath
    , infoPerms :: Maybe Permissions
    , infoSize :: Maybe Integer
    , infoModTime :: Maybe ClockTime
    } deriving (Eq, Ord, Show)

getInfo :: FilePath -> IO Info

We’re using record syntax to give ourselves “free” accessor functions, such as
infoPath. The type of our traverse function is simple, as we just proposed. To obtain
Info about a file or directory, we call the getInfo action:

-- file: ch09/ControlledVisit.hs
traverse :: ([Info] -> [Info]) -> FilePath -> IO [Info]
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The definition of traverse is short, but dense:

-- file: ch09/ControlledVisit.hs
traverse order path = do
    names <- getUsefulContents path
    contents <- mapM getInfo (path : map (path </>) names)
    liftM concat $ forM (order contents) $ \info -> do
      if isDirectory info && infoPath info /= path
        then traverse order (infoPath info)
        else return [info]

getUsefulContents :: FilePath -> IO [String]
getUsefulContents path = do
    names <- getDirectoryContents path
    return (filter (`notElem` [".", ".."]) names)

isDirectory :: Info -> Bool
isDirectory = maybe False searchable . infoPerms

While we’re not introducing any new techniques here, this is one of the densest function
definitions we’ve yet encountered. Let’s walk through it almost line by line, explaining
what is going on.

The first couple of lines hold no mystery, as they’re almost verbatim copies of code
we’ve already seen. Things begin to get interesting when we assign to the variable
contents. Let’s read this line from right to left. We already know that names is a list of
directory entries. We make sure that the current directory is prepended to every element
of the list and included in the list itself. We use mapM to apply getInfo to the resulting
paths.

The line that follows is even more dense. Again reading from right to left, we see that
the last element of the line begins the definition of an anonymous function that con-
tinues to the end of the paragraph. Given one Info value, this function either visits a
directory recursively (there’s an extra check to make sure we don’t visit path again), or
returns that value as a single-element list (to match the result type of traverse).

We use forM to apply this function to each element of the list of Info values returned
by order, the user-supplied traversal control function.

At the beginning of the line, we use the technique of lifting in a new context. The
liftM function takes a regular function, concat, and lifts it into the IO monad. In other
words, it takes the result of forM (of type IO [[Info]]) out of the IO monad, applies
concat to it (yielding a result of type [Info], which is what we need), and puts the result
back into the IO monad.

Finally, we mustn’t forget to define our getInfo function:

-- file: ch09/ControlledVisit.hs
maybeIO :: IO a -> IO (Maybe a)
maybeIO act = handle (\_ -> return Nothing) (Just `liftM` act)

getInfo path = do
  perms <- maybeIO (getPermissions path)
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  size <- maybeIO (bracket (openFile path ReadMode) hClose hFileSize)
  modified <- maybeIO (getModificationTime path)
  return (Info path perms size modified)

The only noteworthy thing here is a useful combinator, maybeIO, which turns an IO
action that might throw an exception into one that wraps its result in Maybe.

E X E R C I S E S

1. What should you pass to traverse to traverse a directory tree in reverse alphabetic
order?

2. Using id as a control function, traverse id performs a preorder traversal of a tree:
it returns a parent directory before its children. Write a control function that makes
traverse perform a postorder traversal, in which it returns children before their
parent.

3. Take the predicates and combinators from “Gluing Predicates Together” on page
224 and make them work with our new Info type.

4. Write a wrapper for traverse that lets you control traversal using one predicate
and filter results using another.

Density, Readability, and the Learning Process
Code as dense as traverse is not unusual in Haskell. The gain in expressiveness is
significant, and it requires a relatively small amount of practice to be able to fluently
read and write code in this style.

For comparison, here’s a less dense presentation of the same code (this might be more
typical of a less experienced Haskell programmer):

-- file: ch09/ControlledVisit.hs
traverseVerbose order path = do
    names <- getDirectoryContents path
    let usefulNames = filter (`notElem` [".", ".."]) names
    contents <- mapM getEntryName ("" : usefulNames)
    recursiveContents <- mapM recurse (order contents)
    return (concat recursiveContents)
  where getEntryName name = getInfo (path </> name)
        isDirectory info = case infoPerms info of
                             Nothing -> False
                             Just perms -> searchable perms
        recurse info = do
            if isDirectory info && infoPath info /= path
                then traverseVerbose order (infoPath info)
                else return [info]

All we’ve done here is make a few substitutions. Instead of liberally using partial
application and function composition, we’ve defined some local functions in a where
block. In place of the maybe combinator, we’re using a case expression. And instead of
using liftM, we’re manually lifting concat ourselves.
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This is not to say that density is a uniformly good property. Each line of the original
traverse function is short. We introduce a local variable (usefulNames) and a local
function (isDirectory) specifically to keep the lines short and the code clearer. Our
names are descriptive. While we use function composition and pipelining, the longest
pipeline contains only three elements.

The key to writing maintainable Haskell code is to find a balance between density and
readability. Where your code falls on this continuum is likely to be influenced by your
level of experience, as detailed here:

• As a beginning Haskell programmer, Andrew doesn’t know his way around the
standard libraries very well. As a result, he unwittingly duplicates a lot of existing
code.

• Zack has been programming for a few months and has mastered the use of (.) to
compose long pipelines of code. Every time the needs of his program change
slightly, he has to construct a new pipeline from scratch; he can’t understand the
existing pipeline any longer, and it is in any case too fragile to change.

• Monica has been coding for a while. She’s familiar enough with Haskell libraries
and idioms to write tight code, but she avoids a hyperdense style. Her code is
maintainable, and she finds it easy to refactor when faced with changing
requirements.

Another Way of Looking at Traversal
While the traverse function gives us more control than our original betterFind func-
tion, it still has a significant failing: we can avoid recursing into directories, but we can’t
filter other names until after we’ve generated the entire list of names in a tree. If we are
traversing a directory containing 100,000 files of which we care about only 3, we’ll
allocate a 100,000-element list before we have a chance to trim it down to the 3 we
really want.

One approach would be to provide a filter function as a new argument to traverse,
which we would apply to the list of names as we generate it. This would allow us to
allocate a list of only as many elements as we need.

However, this approach also has a weakness. Say we know that we want at most 3
entries from our list, and that those 3 entries happen to be the first 3 of the 100,000
that we traverse. In this case, we’ll needlessly visit 99,997 other entries. This is not by
any means a contrived example: for instance, the Maildir mailbox format stores a folder
of email messages as a directory of individual files. It’s common for a single directory
representing a mailbox to contain tens of thousands of files.

We can address the weaknesses of our two prior traversal functions by taking a different
perspective: what if we think of filesystem traversal as a fold over the directory
hierarchy?
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The familiar folds, foldr and foldl', neatly generalize the idea of traversing a list while
accumulating a result. It’s hardly a stretch to extend the idea of folding from lists to
directory trees, but we’d like to add an element of control to our fold. We’ll represent
this control as an algebraic data type:

-- file: ch09/FoldDir.hs
data Iterate seed = Done     { unwrap :: seed }
                  | Skip     { unwrap :: seed }
                  | Continue { unwrap :: seed }
                    deriving (Show)

type Iterator seed = seed -> Info -> Iterate seed

The Iterator type gives us a convenient alias for the function that we fold with. It takes
a seed and an Info value representing a directory entry, and returns both a new seed
and an instruction for our fold function, where the instructions are represented as the
constructors of the Iterate type:

• If the instruction is Done, traversal should cease immediately. The value wrapped
by Done should be returned as the result.

• If the instruction is Skip and the current Info type represents a directory, traversal
will not recurse into that directory.

• Otherwise, the traversal should continue, using the wrapped value as the input to
the next call to the fold function.

Our fold is logically a kind of left fold, because we start folding from the first entry we
encounter. The seed for each step is the result of the prior step:

-- file: ch09/FoldDir.hs
foldTree :: Iterator a -> a -> FilePath -> IO a

foldTree iter initSeed path = do
    endSeed <- fold initSeed path
    return (unwrap endSeed)
  where
    fold seed subpath = getUsefulContents subpath >>= walk seed

    walk seed (name:names) = do
      let path' = path </> name
      info <- getInfo path'
      case iter seed info of
        done@(Done _) -> return done
        Skip seed'    -> walk seed' names
        Continue seed'
          | isDirectory info -> do
              next <- fold seed' path'
              case next of
                done@(Done _) -> return done
                seed''        -> walk (unwrap seed'') names
          | otherwise -> walk seed' names
    walk seed _ = return (Continue seed)
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There are a few interesting things about the way this code is written. The first is the use
of scoping to avoid having to pass extra parameters around. The top-level foldTree
function is just a wrapper for fold that peels off the constructor of the fold’s final result.

Because fold is a local function, we don’t have to pass foldTree’s iter variable into it;
it can already access it in the outer scope. Similarly, walk can see path in its outer scope.

Another point to note is that walk is a tail recursive loop, instead of an anonymous
function called by forM as in our earlier functions. By taking the reins ourselves, we can
stop early if we need to, which lets us drop out when our iterator returns Done.

Although fold calls walk, walk calls fold recursively to traverse subdirectories. Each
function returns a seed wrapped in an Iterate: when fold is called by walk and returns,
walk examines its result to see whether it should continue or drop out because it re-
turned Done. In this way, a return of Done from the caller-supplied iterator immediately
terminates all mutually recursive calls between the two functions.

What does an iterator look like in practice? Here’s a somewhat complicated example
that looks for at most three bitmap images and won’t recurse into Subversion metadata
directories:

-- file: ch09/FoldDir.hs
atMostThreePictures :: Iterator [FilePath]

atMostThreePictures paths info
    | length paths == 3
      = Done paths
    | isDirectory info && takeFileName path == ".svn"
      = Skip paths
    | extension `elem` [".jpg", ".png"]
      = Continue (path : paths)
    | otherwise
      = Continue paths
  where extension = map toLower (takeExtension path)
        path = infoPath info

To use this, we’d call foldTree atMostThreePictures [], giving us a return value of type
IO [FilePath].

Of course, iterators don’t have to be this complicated. Here’s one that counts the num-
ber of directories it encounters:

-- file: ch09/FoldDir.hs
countDirectories count info =
    Continue (if isDirectory info
              then count + 1
              else count)

Here, the initial seed that we pass to foldTree should be the number zero.
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E X E R C I S E S

1. Modify foldTree to allow the caller to change the order of traversal of entries in a
directory.

2. The foldTree function performs preorder traversal. Modify it to allow the caller to
determine the order of traversal.

3. Write a combinator library that makes it possible to express the kinds of iterators
that foldTree accepts. Does it make the iterators you write any more succinct?

Useful Coding Guidelines
While many good Haskell programming habits come with experience, we have a few
general guidelines to offer so that you can write readable code more quickly.

As we already mentioned in “A Note About Tabs Versus Spaces” on page 66, never use
tab characters in Haskell source files. Use spaces.

If you find yourself proudly thinking that a particular piece of code is fiendishly clever,
stop and consider whether you’ll be able to understand it again after you’ve stepped
away from it for a month.

The conventional way of naming types and variables with compound names is to use
camel case, i.e., myVariableName. This style is almost universal in Haskell code. Regard-
less of your opinion of other naming practices, if you follow a nonstandard convention,
your Haskell code will be somewhat jarring to the eyes of other readers.

Until you’ve been working with Haskell for a substantial amount of time, spend a few
minutes searching for library functions before you write small functions. This applies
particularly to ubiquitous types such as lists, Maybe, and Either. If the standard libraries
don’t already provide exactly what you need, you might be able to combine a few
functions to obtain the result you desire.

Long pipelines of composed functions are hard to read, where long means a series of
more than three or four elements. If you have such a pipeline, use a let or where block
to break it into smaller parts. Give each one of these pipeline elements a meaningful
name, and then glue them back together. If you can’t think of a meaningful name for
an element, ask yourself if you can even describe what it does. If the answer is “no,”
simplify your code.

Even though it’s easy to resize a text editor window far beyond 80 columns, this width
is still very common. Wider lines are wrapped or truncated in 80-column text editor
windows, which severely hurts readability. Treating lines as no more than 80 characters
long limits the amount of code you can cram onto a single line. This helps to keep
individual lines less complicated, and therefore easier to understand.

232 | Chapter 9: I/O Case Study: A Library for Searching the Filesystem



Common Layout Styles
A Haskell implementation won’t make a fuss about indentation as long as your code
follows the layout rules and can hence be parsed unambiguously. That said, some lay-
out patterns are widely used.

The in keyword is usually aligned directly under the let keyword, with the expression
immediately following it:

-- file: ch09/Style.hs
tidyLet = let foo = undefined
              bar = foo * 2
          in undefined

While it’s legal to indent the in differently, or to let it “dangle” at the end of a series of
equations, the following would generally be considered odd:

-- file: ch09/Style.hs
weirdLet = let foo = undefined
               bar = foo * 2
    in undefined

strangeLet = let foo = undefined
                 bar = foo * 2 in
    undefined

In contrast, it’s usual to let a do dangle at the end of a line, rather than sit at the beginning
of one:

-- file: ch09/Style.hs
commonDo = do
  something <- undefined
  return ()

-- not seen very often
rareDo =
  do something <- undefined
     return ()

Curly braces and semicolons, though legal, are almost never used. There’s nothing
wrong with them; they just make code look strange due to their rarity. They’re really
intended to let programs generate Haskell code without having to implement the layout
rules and are not meant for human use.
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-- file: ch09/Style.hs
unusualPunctuation =
    [ (x,y) | x <- [1..a], y <- [1..b] ] where {
                                           b = 7;
 a = 6 }

preferredLayout = [ (x,y) | x <- [1..a], y <- [1..b] ]
    where b = 7
          a = 6

If the righthand side of an equation starts on a new line, it’s usually indented a small
number of spaces relative to the name of the variable or function that it’s defining:

-- file: ch09/Style.hs
normalIndent =
    undefined

strangeIndent =
                           undefined

The actual number of spaces used to indent varies, sometimes within a single file.
Depths of two, three, and four spaces are about equally common. A single space is legal
but not very visually distinctive, so it’s easy to misread.

When indenting a where clause, it’s best to make it eye-catching:

-- file: ch09/Style.hs
goodWhere = take 5 lambdas
    where lambdas = []

alsoGood =
    take 5 lambdas
  where
    lambdas = []

badWhere =           -- legal, but ugly and hard to read
    take 5 lambdas
    where
    lambdas = []

E X E R C I S E S

1. Although the file-finding code we described in this chapter is a good vehicle for
learning, it’s not ideal for real systems programming tasks, because Haskell’s port-
able I/O libraries don’t expose enough information to let us write interesting and
complicated queries.

Port the code from this chapter to your platform’s native API, either
System.Posix or System.Win32.

2. Add the ability to find out who owns a directory entry to your code. Make this
information available to predicates.
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CHAPTER 10

Code Case Study: Parsing a Binary Data
Format

In this chapter, we’ll discuss a common task: parsing a binary file. We will use it for
two purposes. Our first is indeed to talk a little about parsing, but our main goal is to
talk about program organization, refactoring, and “boilerplate removal.” We will dem-
onstrate how you can tidy up repetitious code, and set the stage for our discussion of
monads in Chapter 14.

The file formats that we will work with come from the netpbm suite, an ancient and
venerable collection of programs and file formats for working with bitmap images.
These file formats have the dual advantages of being widely used and being fairly easy,
though not completely trivial, to parse. Most importantly for our convenience, netpbm
files are not compressed.

Grayscale Files
The name of netpbm’s grayscale file format is PGM (portable gray map). It is actually
not one format, but two; the plain (or P2) format is encoded as ASCII, while the more
common raw (P5) format is mostly binary.

A file of either format starts with a header, which in turn begins with a “magic” string
describing the format. For a plain file, the string is P2, and for raw, it’s P5. The magic
string is followed by whitespace, and then by three numbers: the width, height, and
maximum gray value of the image. These numbers are represented as ASCII decimal
numbers, separated by whitespace.

After the maximum gray value comes the image data. In a raw file, this is a string of
binary values. In a plain file, the values are represented as ASCII decimal numbers
separated by single-space characters.

A raw file can contain a sequence of images, one after the other, each with its own
header. A plain file contains only one image.
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Parsing a Raw PGM File
For our first try at a parsing function, we’ll only worry about raw PGM files. We’ll write
our PGM parser as a pure function. It’s won’t be responsible for obtaining the data to
parse, just for the actual parsing. This is a common approach in Haskell programs. By
separating the reading of the data from what we subsequently do with it, we gain flex-
ibility in where we take the data from.

We’ll use the ByteString type to store our graymap data, because it’s compact. Since
the header of a PGM file is ASCII text but its body is binary, we import both the text-
and binary-oriented ByteString modules:

-- file: ch10/PNM.hs
import qualified Data.ByteString.Lazy.Char8 as L8
import qualified Data.ByteString.Lazy as L
import Data.Char (isSpace)

For our purposes, it doesn’t matter whether we use a lazy or strict ByteString, so we’ve
somewhat arbitrarily chosen the lazy kind.

We’ll use a straightforward data type to represent PGM images:

-- file: ch10/PNM.hs
data Greymap = Greymap {
      greyWidth :: Int
    , greyHeight :: Int
    , greyMax :: Int
    , greyData :: L.ByteString
    } deriving (Eq)

Normally, a Haskell Show instance should produce a string representation that we can
read back by calling read. However, for a bitmap graphics file, this would potentially
produce huge text strings, for example, if we were to show a photo. For this reason,
we’re not going to let the compiler automatically derive a Show instance for us; we’ll
write our own and intentionally simplify it:

-- file: ch10/PNM.hs
instance Show Greymap where
    show (Greymap w h m _) = "Greymap " ++ show w ++ "x" ++ show h ++
                             " " ++ show m

Because our Show instance intentionally avoids printing the bitmap data, there’s no
point in writing a Read instance, as we can’t reconstruct a valid Greymap from the result
of show.

Here’s an obvious type for our parsing function:

-- file: ch10/PNM.hs
parseP5 :: L.ByteString -> Maybe (Greymap, L.ByteString)

This will take a ByteString, and if the parse succeeds, it will return a single parsed
Greymap, along with the string that remains after parsing. That residual string will be
available for future parses.
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Our parsing function has to consume a little bit of its input at a time. First, we need to
assure ourselves that we’re really looking at a raw PGM file; then we need to parse the
numbers from the remainder of the header; and then we consume the bitmap data.
Here’s an obvious way to express this, which we will use as a base for later
improvements:

-- file: ch10/PNM.hs
matchHeader :: L.ByteString -> L.ByteString -> Maybe L.ByteString

-- "nat" here is short for "natural number"
getNat :: L.ByteString -> Maybe (Int, L.ByteString)

getBytes :: Int -> L.ByteString
         -> Maybe (L.ByteString, L.ByteString)

parseP5 s =
  case matchHeader (L8.pack "P5") s of
    Nothing -> Nothing
    Just s1 ->
      case getNat s1 of
        Nothing -> Nothing
        Just (width, s2) ->
          case getNat (L8.dropWhile isSpace s2) of
            Nothing -> Nothing
            Just (height, s3) ->
              case getNat (L8.dropWhile isSpace s3) of
                Nothing -> Nothing
                Just (maxGrey, s4)
                  | maxGrey > 255 -> Nothing
                  | otherwise ->
                      case getBytes 1 s4 of
                        Nothing -> Nothing
                        Just (_, s5) ->
                          case getBytes (width * height) s5 of
                            Nothing -> Nothing
                            Just (bitmap, s6) ->
                              Just (Greymap width height maxGrey bitmap, s6)

This is a very literal piece of code, performing all of the parsing in one long staircase of
case expressions. Each function returns the residual ByteString left over after it has
consumed all it needs from its input string. We pass each residual string along to the
next step. We deconstruct each result in turn, either returning Nothing if the parsing
step fails, or building up a piece of the final result as we proceed. Here are the bodies
of the functions that we apply during parsing (their types are commented out because
we already presented them):

-- file: ch10/PNM.hs
-- L.ByteString -> L.ByteString -> Maybe L.ByteString
matchHeader prefix str
    | prefix `L8.isPrefixOf` str
        = Just (L8.dropWhile isSpace (L.drop (L.length prefix) str))
    | otherwise
        = Nothing
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-- L.ByteString -> Maybe (Int, L.ByteString)
getNat s = case L8.readInt s of
             Nothing -> Nothing
             Just (num,rest)
                 | num <= 0    -> Nothing
                 | otherwise -> Just (fromIntegral num, rest)

-- Int -> L.ByteString -> Maybe (L.ByteString, L.ByteString)
getBytes n str = let count           = fromIntegral n
                     both@(prefix,_) = L.splitAt count str
                 in if L.length prefix < count
                    then Nothing
                    else Just both

Getting Rid of Boilerplate Code
While our parseP5 function works, the style in which we wrote it is somehow not
pleasing. Our code marches steadily to the right of the screen, and it’s clear that a
slightly more complicated function would soon run out of visual real estate. We repeat
a pattern of constructing and then deconstructing Maybe values, only continuing if a
particular value matches Just. All of the similar case expressions act as boilerplate
code, busywork that obscures what we’re really trying to do. In short, this function is
begging for some abstraction and refactoring.

If we step back a little, we can see two patterns. First is that many of the functions that
we apply have similar types. Each takes a ByteString as its last argument and returns
Maybe something else. Second, every step in the “ladder” of our parseP5 function de-
constructs a Maybe value, and either fails or passes the unwrapped result to a function.

We can quite easily write a function that captures this second pattern:

-- file: ch10/PNM.hs
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>? _ = Nothing
Just v  >>? f = f v

The (>>?) function acts very simply: it takes a value as its left argument, and a function
as its right. If the value is not Nothing, it applies the function to whatever is wrapped
in the Just constructor. We have defined our function as an operator so that we can
use it to chain functions together. Finally, we haven’t provided a fixity declaration for
(>>?), so it defaults to infixl 9 (left-associative, strongest operator precedence). In
other words, a >>? b >>? c will be evaluated from left to right, as (a >>? b) >>? c).

With this chaining function in hand, we can take a second try at our parsing function:

-- file: ch10/PNM.hs
parseP5_take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)
parseP5_take2 s =
    matchHeader (L8.pack "P5") s      >>?
    \s -> skipSpace ((), s)           >>?
    (getNat . snd)                    >>?
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    skipSpace                         >>?
    \(width, s) ->   getNat s         >>?
    skipSpace                         >>?
    \(height, s) ->  getNat s         >>?
    \(maxGrey, s) -> getBytes 1 s     >>?
    (getBytes (width * height) . snd) >>?
    \(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)

skipSpace :: (a, L.ByteString) -> Maybe (a, L.ByteString)
skipSpace (a, s) = Just (a, L8.dropWhile isSpace s)

The key to understanding this function is to think about the chaining. On the left side
of each (>>?) is a Maybe value; on the right is a function that returns a Maybe value. Each
left-and-right-side expression is thus of type Maybe, suitable for passing to the following
(>>?) expression.

The other change that we’ve made to improve readability is add a skipSpace function.
With these changes, we’ve halved the number of lines of code compared to our original
parsing function. By removing the boilerplate case expressions, we’ve made the code
easier to follow.

While we warned against overuse of anonymous functions in “Anonymous (lambda)
Functions” on page 99, we use several in our chain of functions here. Because these
functions are so small, we wouldn’t improve readability by giving them names.

Implicit State
We’re not yet out of the woods. Our code explicitly passes pairs around, using one
element for an intermediate part of the parsed result and the other for the current
residual ByteString. If we want to extend the code, for example, to track the number
of bytes we’ve consumed so that we can report the location of a parse failure, we already
have eight different spots that we will need to modify, just to pass a three-tuple around.

This approach makes even a small body of code difficult to change. The problem lies
with our use of pattern matching to pull values out of each pair: we have embedded
the knowledge that we are always working with pairs straight into our code. As pleasant
and helpful as pattern matching is, it can lead us in some undesirable directions if we
do not use it carefully.

Let’s do something to address the inflexibility of our new code. First, we will change
the type of state that our parser uses:

-- file: ch10/Parse.hs
data ParseState = ParseState {
      string :: L.ByteString
    , offset :: Int64           -- imported from Data.Int
    } deriving (Show)

In our switch to an algebraic data type, we added the ability to track both the current
residual string and the offset into the original string since we started parsing. The more
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important change was our use of record syntax: we can now avoid pattern matching
on the pieces of state that we pass around and use the accessor functions string and
offset instead.

We have given our parsing state a name. When we name something, it can become
easier to reason about. For example, we can now look at parsing as a kind of function:
it consumes a parsing state and produces both a new parsing state and some other piece
of information. We can directly represent this as a Haskell type:

-- file: ch10/Parse.hs
simpleParse :: ParseState -> (a, ParseState)
simpleParse = undefined

To provide more help to our users, we would like to report an error message if parsing
fails. This requires only a minor tweak to the type of our parser:

-- file: ch10/Parse.hs
betterParse :: ParseState -> Either String (a, ParseState)
betterParse = undefined

In order to future-proof our code, it is best if we do not expose the implementation of
our parser to our users. When we explicitly used pairs for state earlier, we found our-
selves in trouble almost immediately, once we considered extending the capabilities of
our parser. To stave off a repeat of that difficulty, we will hide the details of our parser
type using a newtype declaration:

-- file: ch10/Parse.hs
newtype Parse a = Parse {
      runParse :: ParseState -> Either String (a, ParseState)
    }

Remember that the newtype definition is just a compile-time wrapper around a function,
so it has no runtime overhead. When we want to use the function, we will apply the
runParser accessor.

If we do not export the Parse value constructor from our module, we can ensure that
nobody else will be able to accidentally create a parser, nor will they be able to inspect
its internals via pattern matching.

The Identity Parser
Let’s try to define a simple parser, the identity parser. All it does is turn whatever it is
passed into the result of the parse. In this way, it somewhat resembles the id function:

-- file: ch10/Parse.hs
identity :: a -> Parse a
identity a = Parse (\s -> Right (a, s))

This function leaves the parse state untouched and uses its argument as the result of
the parse. We wrap the body of the function in our Parse type to satisfy the type checker.
How can we use this wrapped function to parse something?

240 | Chapter 10: Code Case Study: Parsing a Binary Data Format



The first thing we must do is peel off the Parse wrapper so that we can get at the function
inside. We do so using the runParse function. We also need to construct a
ParseState, and then run our parsing function on it. Finally, we’d like to separate the
result of the parse from the final ParseState:

-- file: ch10/Parse.hs
parse :: Parse a -> L.ByteString -> Either String a
parse parser initState
    = case runParse parser (ParseState initState 0) of
        Left err          -> Left err
        Right (result, _) -> Right result

Because neither the identity parser nor the parse function examines the parse state,
we don’t even need to create an input string in order to try our code:

ghci> :load Parse
[1 of 2] Compiling PNM              ( PNM.hs, interpreted )
[2 of 2] Compiling Parse            ( Parse.hs, interpreted )
Ok, modules loaded: Parse, PNM.
ghci> :type parse (identity 1) undefined
parse (identity 1) undefined :: (Num t) => Either String t
ghci> parse (identity 1) undefined
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Right 1
ghci> parse (identity "foo") undefined
Right "foo"

A parser that doesn’t even inspect its input might not seem interesting, but we will see
shortly that in fact it is useful. Meanwhile, we have gained confidence that our types
are correct and that we understand the basic workings of our code.

Record Syntax, Updates, and Pattern Matching
Record syntax is useful for more than just accessor functions—we can use it to copy
and partly change an existing value. In use, the notation looks like this:

-- file: ch10/Parse.hs
modifyOffset :: ParseState -> Int64 -> ParseState
modifyOffset initState newOffset =
    initState { offset = newOffset }

This creates a new ParseState value identical to initState, but with its offset field set
to whatever value we specify for newOffset:

ghci> let before = ParseState (L8.pack "foo") 0
ghci> let after = modifyOffset before 3
ghci> before
ParseState {string = Chunk "foo" Empty, offset = 0}
ghci> after
ParseState {string = Chunk "foo" Empty, offset = 3}

We can set as many fields as we want inside the curly braces, separating them using
commas.
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A More Interesting Parser
Let’s focus now on writing a parser that does something meaningful. We’re not going
to get too ambitious yet—all we want to do is parse a single byte:

-- file: ch10/Parse.hs
-- import the Word8 type from Data.Word
parseByte :: Parse Word8
parseByte =
    getState ==> \initState ->
    case L.uncons (string initState) of
      Nothing ->
          bail "no more input"
      Just (byte,remainder) ->
          putState newState ==> \_ ->
          identity byte
        where newState = initState { string = remainder,
                                     offset = newOffset }
              newOffset = offset initState + 1

There are a number of new functions in our definition.

The L8.uncons function takes the first element from a ByteString:

ghci> L8.uncons (L8.pack "foo")
Just ('f',Chunk "oo" Empty)
ghci> L8.uncons L8.empty
Nothing

Our getState function retrieves the current parsing state, while putState replaces it.
The bail function terminates parsing and reports an error. The (==>) function chains
parsers together. We will cover each of these functions shortly.

Hanging lambdas
The definition of parseByte has a visual style that we haven’t discussed
before. It contains anonymous functions in which the parameters and
-> sit at the end of a line, with the function’s body following on the next
line.

This style of laying out an anonymous function doesn’t have an official
name, so let’s call it a “hanging lambda.” Its main use is to make room
for more text in the body of the function. It also makes it more visually
clear that there’s a relationship between a function and the one that
follows it. Often, for instance, the result of the first function is being
passed as a parameter to the second.

Obtaining and Modifying the Parse State
Our parseByte function doesn’t take the parse state as an argument. Instead, it has to
call getState to get a copy of the state and putState to replace the current state with a
new one:
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-- file: ch10/Parse.hs
getState :: Parse ParseState
getState = Parse (\s -> Right (s, s))

putState :: ParseState -> Parse ()
putState s = Parse (\_ -> Right ((), s))

When reading these functions, recall that the left element of the tuple is the result of a
Parse, while the right is the current ParseState. This makes it easier to follow what
these functions are doing.

The getState function extracts the current parsing state so that the caller can access
the string. The putState function replaces the current parsing state with a new one.
This becomes the state that will be seen by the next function in the (==>) chain.

These functions let us move explicit state handling into the bodies of only those func-
tions that need it. Many functions don’t need to know what the current state is, and so
they’ll never call getState or putState. This lets us write more compact code than our
earlier parser, which had to pass tuples around by hand. We will see the effect in some
of the code that follows.

We’ve packaged up the details of the parsing state into the ParseState type, and we
work with it using accessors instead of pattern matching. Now that the parsing state is
passed around implicitly, we gain a further benefit. If we want to add more information
to the parsing state, all we need to do is modify the definition of ParseState and the
bodies of whatever functions need the new information. Compared to our earlier pars-
ing code, where all of our state was exposed through pattern matching, this is much
more modular: the only code we affect is code that needs the new information.

Reporting Parse Errors
We carefully defined our Parse type to accommodate the possibility of failure. The
(==>) combinator checks for a parse failure and stops parsing if it runs into a failure.
But we haven’t yet introduced the bail function, which we use to report a parse error:

-- file: ch10/Parse.hs
bail :: String -> Parse a
bail err = Parse $ \s -> Left $
           "byte offset " ++ show (offset s) ++ ": " ++ err

After we call bail, (==>) will successfully pattern match on the Left constructor that it
wraps the error message with, and it will not invoke the next parser in the chain. This
will cause the error message to percolate back through the chain of prior callers.

Chaining Parsers Together
The (==>) function serves a similar purpose to our earlier (>>?) function—it is “glue”
that lets us chain functions together:
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-- file: ch10/Parse.hs
(==>) :: Parse a -> (a -> Parse b) -> Parse b

firstParser ==> secondParser  =  Parse chainedParser
  where chainedParser initState   =
          case runParse firstParser initState of
            Left errMessage ->
                Left errMessage
            Right (firstResult, newState) ->
                runParse (secondParser firstResult) newState

The body of (==>) is interesting and ever so slightly tricky. Recall that the Parse type
represents really a function inside a wrapper. Since (==>) lets us chain two Parse values
to produce a third, it must return a function, in a wrapper.

The function doesn’t really “do” much, it just creates a closure to remember the values
of firstParser and secondParser.

A closure is simply the pairing of a function with its environment, the
bound variables that it can see. Closures are commonplace in Haskell.
For instance, the section (+5) is a closure. An implementation must
record the value 5 as the second argument to the (+) operator so that
the resulting function can add 5 to whatever value it is passed.

This closure will not be unwrapped and applied until we apply parse. At that point, it
will be applied with a ParseState. It will apply firstParser and inspect its result. If that
parse fails, the closure will fail too. Otherwise, it will pass the result of the parse and
the new ParseState to secondParser.

This is really quite fancy and subtle stuff. We’re effectively passing the ParseState down
the chain of Parse values in a hidden argument. (We’ll be revisiting this kind of code
in a few chapters, so don’t fret if this description seems dense.)

Introducing Functors
We’re by now thoroughly familiar with the map function, which applies a function to
every element of a list, returning a list of possibly a different type:

ghci> map (+1) [1,2,3]
[2,3,4]
ghci> map show [1,2,3]
["1","2","3"]
ghci> :type map show
map show :: (Show a) => [a] -> [String]

This map-like activity can be useful in other instances. For example, consider a binary
tree:

-- file: ch10/TreeMap.hs
data Tree a = Node (Tree a) (Tree a)
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            | Leaf a
              deriving (Show)

If we want to take a tree of strings and turn it into a tree containing the lengths of those
strings, we could write a function to do this:

-- file: ch10/TreeMap.hs
treeLengths (Leaf s) = Leaf (length s)
treeLengths (Node l r) = Node (treeLengths l) (treeLengths r)

Now that our eyes are attuned to looking for patterns that we can turn into generally
useful functions, we can see a possible case of this here:

-- file: ch10/TreeMap.hs
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf a)   = Leaf (f a)
treeMap f (Node l r) = Node (treeMap f l) (treeMap f r)

As we might hope, treeLengths and treeMap length give the same results:

ghci> let tree = Node (Leaf "foo") (Node (Leaf "x") (Leaf "quux"))
ghci> treeLengths tree
Node (Leaf 3) (Node (Leaf 1) (Leaf 4))
ghci> treeMap length tree
Node (Leaf 3) (Node (Leaf 1) (Leaf 4))
ghci> treeMap (odd . length) tree
Node (Leaf True) (Node (Leaf True) (Leaf False))

Haskell provides a well-known typeclass to further generalize treeMap. This typeclass
is named Functor, and it defines one function, fmap:

-- file: ch10/TreeMap.hs
class Functor f where
    fmap :: (a -> b) -> f a -> f b

We can think of fmap as a kind of lifting function, as we introduced in “Avoiding Boil-
erplate with Lifting” on page 223. It takes a function over ordinary values a -> b, and
lifts it to become a function over containers f a -> f b, where f is the container type.

If we substitute Tree for the type variable f, for example, then the type of fmap is identical
to the type of treeMap, and in fact we can use treeMap as the implementation of fmap
over Trees:

-- file: ch10/TreeMap.hs
instance Functor Tree where
    fmap = treeMap

We can also use map as the implementation of fmap for lists:

-- file: ch10/TreeMap.hs
instance Functor [] where
    fmap = map

We can now use fmap over different container types:

ghci> fmap length ["foo","quux"]
[3,4]
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ghci> fmap length (Node (Leaf "Livingstone") (Leaf "I presume"))
Node (Leaf 11) (Leaf 9)

The Prelude defines instances of Functor for several common types, notably lists and
Maybe:

-- file: ch10/TreeMap.hs
instance Functor Maybe where
    fmap _ Nothing  = Nothing
    fmap f (Just x) = Just (f x)

The instance for Maybe makes it particularly clear what an fmap implementation needs
to do. The implementation must have a sensible behavior for each of a type’s con-
structors. If a value is wrapped in Just, for example, the fmap implementation calls the
function on the unwrapped value, then rewraps it in Just.

The definition of Functor imposes a few obvious restrictions on what we can do with
fmap. For example, we can only make instances of Functor from types that have exactly
one type parameter.

We can’t write an fmap implementation for Either a b or (a, b), for example, because
these have two type parameters. We also can’t write one for Bool or Int, as they have
no type parameters.

In addition, we can’t place any constraints on our type definition. What does this mean?
To illustrate, let’s first look at a normal data definition and its Functor instance:

-- file: ch10/ValidFunctor.hs
data Foo a = Foo a
           
instance Functor Foo where
    fmap f (Foo a) = Foo (f a)

When we define a new type, we can add a type constraint just after the data keyword
as follows:

-- file: ch10/ValidFunctor.hs
data Eq a => Bar a = Bar a

instance Functor Bar where
    fmap f (Bar a) = Bar (f a)

This says that we can only put a type a into a Foo if a is a member of the Eq typeclass.
However, the constraint renders it impossible to write a Functor instance for Bar:

ghci> :load ValidFunctor
[1 of 1] Compiling Main             ( ValidFunctor.hs, interpreted )

ValidFunctor.hs:12:12:
    Could not deduce (Eq a) from the context (Functor Bar)
      arising from a use of `Bar' at ValidFunctor.hs:12:12-16
    Possible fix:
      add (Eq a) to the context of the type signature for `fmap'
    In the pattern: Bar a
    In the definition of `fmap': fmap f (Bar a) = Bar (f a)
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    In the definition for method `fmap'

ValidFunctor.hs:12:21:
    Could not deduce (Eq b) from the context (Functor Bar)
      arising from a use of `Bar' at ValidFunctor.hs:12:21-29
    Possible fix:
      add (Eq b) to the context of the type signature for `fmap'
    In the expression: Bar (f a)
    In the definition of `fmap': fmap f (Bar a) = Bar (f a)
    In the definition for method `fmap'
Failed, modules loaded: none.

Constraints on Type Definitions Are Bad
Adding a constraint to a type definition is essentially never a good idea. It has the effect
of forcing you to add type constraints to every function that will operate on values of
that type. Let’s say that we need a stack data structure that we want to be able to query
to see whether its elements obey some ordering. Here’s a naive definition of the data
type:

-- file: ch10/TypeConstraint.hs
data (Ord a) => OrdStack a = Bottom
                           | Item a (OrdStack a)
                             deriving (Show)

If we want to write a function that checks the stack to see whether it is increasing (i.e.,
every element is bigger than the element below it), we’ll obviously need an Ord con-
straint to perform the pairwise comparisons:

-- file: ch10/TypeConstraint.hs
isIncreasing :: (Ord a) => OrdStack a -> Bool
isIncreasing (Item a rest@(Item b _))
    | a < b     = isIncreasing rest
    | otherwise = False
isIncreasing _  = True

However, because we wrote the type constraint on the type definition, that constraint
ends up infecting places where it isn’t needed. We need to add the Ord constraint to
push, which does not care about the ordering of elements on the stack:

-- file: ch10/TypeConstraint.hs
push :: (Ord a) => a -> OrdStack a -> OrdStack a
push a s = Item a s

Try removing that Ord constraint, and the definition of push will fail to typecheck.

This is why our attempt to write a Functor instance for Bar failed earlier: it would have
required an Eq constraint to somehow get retroactively added to the signature of fmap.

Now that we’ve tentatively established that putting a type constraint on a type defini-
tion is a misfeature of Haskell, what’s a more sensible alternative? The answer is simply
to omit type constraints from type definitions, and instead place them on the functions
that need them.
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In this example, we can drop the Ord constraints from OrdStack and push. It needs to
stay on isIncreasing, which otherwise couldn’t call (<). We now have the constraints
where they actually matter. This has the further benefit of making the type signatures
better document the true requirements of each function.

Most Haskell container types follow this pattern. The Map type in the Data.Map module
requires that its keys be ordered, but the type itself does not have such a constraint.
The constraint is expressed on functions such as insert, where it’s actually needed,
and not on size, where ordering isn’t used.

Infix Use of fmap
Quite often, you’ll see fmap called as an operator:

ghci> (1+) `fmap` [1,2,3] ++ [4,5,6]
[2,3,4,4,5,6]

Perhaps strangely, plain old map is almost never used in this way.

One possible reason for the stickiness of the fmap-as-operator meme is that this use lets
us omit parentheses from its second argument. Fewer parentheses leads to reduced
mental juggling while reading a function:

ghci> fmap (1+) ([1,2,3] ++ [4,5,6])
[2,3,4,5,6,7]

If you really want to use fmap as an operator, the Control.Applicative module contains
an operator (<$>) that is an alias for fmap. The $ in its name appeals to the similarity
between applying a function to its arguments (using the ($) operator) and lifting a
function into a functor. We will see that this works well for parsing when we return to
the code that we have been writing.

Flexible Instances
You might hope that we could write a Functor instance for the type Either Int b, which
has one type parameter:

-- file: ch10/EitherInt.hs
instance Functor (Either Int) where
    fmap _ (Left n) = Left n
    fmap f (Right r) = Right (f r)

However, the type system of Haskell 98 cannot guarantee that checking the constraints
on such an instance will terminate. A nonterminating constraint check may send a
compiler into an infinite loop, so instances of this form are forbidden:

ghci> :load EitherInt
[1 of 1] Compiling Main             ( EitherInt.hs, interpreted )

EitherInt.hs:2:0:
    Illegal instance declaration for `Functor (Either Int)'
        (All instance types must be of the form (T a1 ... an)
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         where a1 ... an are type *variables*,
         and each type variable appears at most once in the instance head.
         Use -XFlexibleInstances if you want to disable this.)
    In the instance declaration for `Functor (Either Int)'
Failed, modules loaded: none.

GHC has a more powerful type system than the base Haskell 98 standard. It operates
in Haskell 98 compatibility mode by default, for maximal portability. We can instruct
it to allow more flexible instances using a special compiler directive:

-- file: ch10/EitherIntFlexible.hs
{-# LANGUAGE FlexibleInstances #-}

instance Functor (Either Int) where
    fmap _ (Left n)  = Left n
    fmap f (Right r) = Right (f r)

The directive is embedded in the specially formatted LANGUAGE pragma.

With our Functor instance in hand, let’s try out fmap on Either Int:

ghci> :load EitherIntFlexible
[1 of 1] Compiling Main             ( EitherIntFlexible.hs, interpreted )
Ok, modules loaded: Main.
ghci> fmap (== "cheeseburger") (Left 1 :: Either Int String)
Left 1
ghci> fmap (== "cheeseburger") (Right "fries" :: Either Int String)
Right False

Thinking More About Functors
We’ve made a few implicit assumptions about how functors ought to work. It’s helpful
to make these explicit and to think of them as rules to follow, because this lets us treat
functors as uniform, well-behaved objects. We have only two rules to remember, and
they’re simple:

• Our first rule is functors must preserve identity. That is, applying fmap id to a value
should give us back an identical value:

ghci> fmap id (Node (Leaf "a") (Leaf "b"))
Node (Leaf "a") (Leaf "b")

• Our second rule is functors must be composable. That is, composing two uses of
fmap should give the same result as one fmap with the same functions composed:

ghci> (fmap even . fmap length) (Just "twelve")
Just True
ghci> fmap (even . length) (Just "twelve")
Just True

Another way of looking at these two rules is that functors must preserve shape. The
structure of a collection should not be affected by a functor; only the values that it
contains should change:
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ghci> fmap odd (Just 1)
Just True
ghci> fmap odd Nothing
Nothing

If you’re writing a Functor instance, it’s useful to keep these rules in mind, and indeed
to test them, because the compiler can’t check the rules we’ve just listed. On the other
hand, if you’re simply using functors, the rules are “natural” enough that there’s no
need to memorize them. They just formalize a few intuitive notions of “do what I mean.”
Here is a pseudocode representation of the expected behavior:

-- file: ch10/FunctorLaws.hs
fmap id       ==  id
fmap (f . g)  ==  fmap f . fmap g

Writing a Functor Instance for Parse
For the types we have surveyed so far, the behavior we ought to expect of fmap has been
obvious. This is a little less clear for Parse, due to its complexity. A reasonable guess is
that the function we’re fmapping should be applied to the current result of a parse, and
leave the parse state untouched:

-- file: ch10/Parse.hs
instance Functor Parse where
    fmap f parser = parser ==> \result ->
                    identity (f result)

This definition is easy to read, so let’s perform a few quick experiments to see if we’re
following our rules for functors.

First, we’ll check that identity is preserved. Let’s try this first on a parse that ought to
fail—parsing a byte from an empty string (remember that (<$>) is fmap):

ghci> parse parseByte L.empty
Left "byte offset 0: no more input"
ghci> parse (id <$> parseByte) L.empty
Left "byte offset 0: no more input"

Good. Now for a parse that should succeed:

ghci> let input = L8.pack "foo"
ghci> L.head input
102
ghci> parse parseByte input
Right 102
ghci> parse (id <$> parseByte) input
Right 102

Inspecting these results, we can also see that our Functor instance is obeying our second
rule of preserving shape. Failure is preserved as failure, and success as success.
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Finally, we’ll ensure that composability is preserved:

ghci> parse ((chr . fromIntegral) <$> parseByte) input
Right 'f'
ghci> parse (chr <$> fromIntegral <$> parseByte) input
Right 'f'

On the basis of this brief inspection, our Functor instance appears to be well behaved.

Using Functors for Parsing
All this talk of functors has a purpose: they often let us write tidy, expressive code.
Recall the parseByte function that we introduced earlier. In recasting our PGM parser
to use our new parser infrastructure, we’ll often want to work with ASCII characters
instead of Word8 values.

While we could write a parseChar function that has a similar structure to parseByte,
we can now avoid this code duplication by taking advantage of the functor nature of
Parse. Our functor takes the result of a parse and applies a function to it, so what we
need is a function that turns a Word8 into a Char:

-- file: ch10/Parse.hs
w2c :: Word8 -> Char
w2c = chr . fromIntegral

-- import Control.Applicative
parseChar :: Parse Char
parseChar = w2c <$> parseByte

We can also use functors to write a compact “peek” function. This returns Nothing if
we’re at the end of the input string. Otherwise, it returns the next character without
consuming it (i.e., it inspects, but doesn’t disturb, the current parsing state):

-- file: ch10/Parse.hs
peekByte :: Parse (Maybe Word8)
peekByte = (fmap fst . L.uncons . string) <$> getState

The same lifting trick that let us define parseChar lets us write a compact definition for
peekChar:

-- file: ch10/Parse.hs
peekChar :: Parse (Maybe Char)
peekChar = fmap w2c <$> peekByte

Notice that peekByte and peekChar each make two calls to fmap, one of which is disguised
as (<$>). This is necessary because the type Parse (Maybe a) is a functor within a func-
tor. We thus have to lift a function twice to “get it into” the inner functor.
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Finally, we’ll write another generic combinator, which is the Parse analogue of the
familiar takeWhile. It consumes its input while its predicate returns True:

-- file: ch10/Parse.hs
parseWhile :: (Word8 -> Bool) -> Parse [Word8]
parseWhile p = (fmap p <$> peekByte) ==> \mp ->
               if mp == Just True
               then parseByte ==> \b ->
                    (b:) <$> parseWhile p
               else identity []

Once again, we’re using functors in several places (doubled up, when necessary) to
reduce the verbosity of our code. Here’s a rewrite of the same function in a more direct
style that does not use functors:

-- file: ch10/Parse.hs
parseWhileVerbose p =
    peekByte ==> \mc ->
    case mc of
      Nothing -> identity []
      Just c | p c ->
                 parseByte ==> \b ->
                 parseWhileVerbose p ==> \bs ->
                 identity (b:bs)
             | otherwise ->
                 identity []

The more verbose definition is likely easier to read when you are less familiar with
functors. However, use of functors is sufficiently common in Haskell code that the more
compact representation should become second nature (both to read and to write) fairly
quickly.

Rewriting Our PGM Parser
With our new parsing code, what does the raw PGM parsing function look like now?

-- file: ch10/Parse.hs
parseRawPGM =
    parseWhileWith w2c notWhite ==> \header -> skipSpaces ==>&
    assert (header == "P5") "invalid raw header" ==>&
    parseNat ==> \width -> skipSpaces ==>&
    parseNat ==> \height -> skipSpaces ==>&
    parseNat ==> \maxGrey ->
    parseByte ==>&
    parseBytes (width * height) ==> \bitmap ->
    identity (Greymap width height maxGrey bitmap)
  where notWhite = (`notElem` " \r\n\t")

This definition makes use of a few more helper functions that we present here, following
a pattern that should be familiar by now:
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-- file: ch10/Parse.hs
parseWhileWith :: (Word8 -> a) -> (a -> Bool) -> Parse [a]
parseWhileWith f p = fmap f <$> parseWhile (p . f)

parseNat :: Parse Int
parseNat = parseWhileWith w2c isDigit ==> \digits ->
           if null digits
           then bail "no more input"
           else let n = read digits
                in if n < 0
                   then bail "integer overflow"
                   else identity n

(==>&) :: Parse a -> Parse b -> Parse b
p ==>& f = p ==> \_ -> f

skipSpaces :: Parse ()
skipSpaces = parseWhileWith w2c isSpace ==>& identity ()

assert :: Bool -> String -> Parse ()
assert True  _   = identity ()
assert False err = bail err

The (==>&) combinator chains parsers such as (==>), but the righthand side ignores the
result from the left. The assert function lets us check a property and abort parsing with
a useful error message if the property is False.

Notice how few of the functions that we have written make any reference to the current
parsing state. Most notably, where our old parseP5 function explicitly passed two-
tuples down the chain of dataflow, all of the state management in parseRawPGM is hidden
from us.

Of course, we can’t completely avoid inspecting and modifying the parsing state. Here’s
a case in point, the last of the helper functions needed by parseRawPGM:

-- file: ch10/Parse.hs
parseBytes :: Int -> Parse L.ByteString
parseBytes n =
    getState ==> \st ->
    let n' = fromIntegral n
        (h, t) = L.splitAt n' (string st)
        st' = st { offset = offset st + L.length h, string = t }
    in putState st' ==>&
       assert (L.length h == n') "end of input" ==>&
       identity h
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Future Directions
Our main theme in this chapter has been abstraction. We found passing explicit state
down a chain of functions to be unsatisfactory, so we abstracted this detail away. We
noticed some recurring needs as we worked out our parsing code, and abstracted those
into common functions. Along the way, we introduced the notion of a functor, which
offers a generalized way to map over a parameterized type.

We will revisit parsing in Chapter 16, when we discuss Parsec, a widely used and flexible
parsing library. And in Chapter 14, we will return to our theme of abstraction, where
we will find that much of the code that we have developed in this chapter can be further
simplified by the use of monads.

For efficiently parsing binary data represented as a ByteString, a number of packages
are available via the Hackage package database. At the time of this writing, the most
popular is binary, which is easy to use and offers high performance.

E X E R C I S E S

1. Write a parser for “plain” PGM files.

2. In our description of “raw” PGM files, we omitted a small detail. If the “maximum
gray” value in the header is less than 256, each pixel is represented by a single byte.
However, it can range up to 65,535, in which case, each pixel will be represented
by 2 bytes, in big-endian order (most significant byte first).

Rewrite the raw PGM parser to accommodate both the single- and double-byte
pixel formats.

3. Extend your parser so that it can identify a raw or plain PGM file, and then parse
the appropriate file type.
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CHAPTER 11

Testing and Quality Assurance

Building real systems means caring about quality control, robustness, and correctness.
With the right quality assurance mechanisms in place, well-written code can feel like
a precision machine, with all functions performing their tasks exactly as specified.
There is no sloppiness around the edges, and the final result can be code that is self-
explanatory—and obviously correct—the kind of code that inspires confidence.

In Haskell, we have several tools at our disposal for building such precise systems. The
most obvious tool, and one built into the language itself, is the expressive type system,
which allows for complicated invariants to be enforced statically—making it impossible
to write code violating chosen constraints. In addition, purity and polymorphism en-
courage a style of code that is modular, refactorable, and testable. This is the kind of
code that just doesn’t go wrong.

Testing plays a key role in keeping code on the straight-and-narrow path. The main
testing mechanisms in Haskell are traditional unit testing (via the HUnit library) and
its more powerful descendant, type-based “property” testing, with QuickCheck, an
open source testing framework for Haskell. Property-based testing that encourages a
high-level approach to testing in the form of abstract invariants functions should satisfy
universally, with the actual test data generated for the programmer by the testing li-
brary. In this way, code can be hammered with thousands of tests that would be in-
feasible to write by hand, often uncovering subtle corner cases that wouldn’t be found
otherwise.

In this chapter, we’ll look at how to use QuickCheck to establish invariants in code,
and then re-examine the pretty printer developed in previous chapters, testing it with
the framework. We’ll also see how to guide the testing process with GHC’s code cov-
erage tool: HPC.
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QuickCheck: Type-Based Testing
To get an overview of how property-based testing works, we’ll begin with a simple
scenario: you’ve written a specialized sorting function and want to test its behavior.

First, we import the QuickCheck library,* and any other modules we need:

-- file: ch11/QC-basics.hs
import Test.QuickCheck
import Data.List

And the function we want to test—a custom sort routine:

-- file: ch11/QC-basics.hs
qsort :: Ord a => [a] -> [a]
qsort []     = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs
    where lhs = filter  (< x) xs
          rhs = filter (>= x) xs

This is the classic Haskell sort implementation: a study in functional programming
elegance, if not efficiency (this isn’t an inplace sort). Now, we’d like to check that this
function obeys the basic rules a good sort should follow. One useful invariant to start
with, and one that comes up in a lot of purely functional code, is idempotency—applying
a function twice has the same result as applying it only once. For our sort routine—a
stable sort algorithm—this should certainly be true, or things have gone horribly
wrong! This invariant can be encoded as a property simply, as follows:

-- file: ch11/QC-basics.hs
prop_idempotent xs = qsort (qsort xs) == qsort xs

We’ll use the QuickCheck convention of prefixing test properties with prop_ in order
to distinguish them from normal code. This idempotency property is written simply as
a Haskell function stating an equality that must hold for any input data that is sorted.
We can check this makes sense for a few simple cases by hand:

ghci> prop_idempotent []       
True
ghci> prop_idempotent [1,1,1,1]  
True
ghci> prop_idempotent [1..100]
True
ghci> prop_idempotent [1,5,2,1,2,0,9]
True

Looks good. However, writing out the input data by hand is tedious and violates the
moral code of the efficient functional programmer: let the machine do the work! To
automate this, the QuickCheck library comes with a set of data generators for all the
basic Haskell data types. QuickCheck uses the Arbitrary typeclass to present a uniform

* Throughout this chapter, we’ll use QuickCheck 1.0 (classic QuickCheck). It should be kept in mind that
some functions may differ in later releases of the library.

256 | Chapter 11: Testing and Quality Assurance



interface to (pseudo)random data generation with the type system used to resolve the
question of which generator to use. QuickCheck normally hides the data generation
plumbing; however, we can also run the generators by hand to get a sense for the
distribution of data that QuickCheck produces. For example, to generate a random list
of Boolean values:

ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Bool]
[False,False,False,False,False,True]

QuickCheck generates test data such as this and passes it to the property of our choos-
ing, via the quickCheck function. The type of the property itself determines which data
generator is used. quickCheck then checks that for all the test data produced, the prop-
erty is satisfied. Now, since our idempotency test is polymorphic in the list element
type, we need to pick a particular type for which to generate test data, which we write
as a type constraint on the property. To run the test, we just call quickCheck with our
property function, which is set to the required data type (otherwise, the list element
type will default to the uninteresting () type):

ghci> :type quickCheck
quickCheck :: (Testable a) => a -> IO ()
ghci> quickCheck (prop_idempotent :: [Integer] -> Bool)
 passed 100 tests.

For the 100 different lists generated, our property held—great! When developing tests,
it is often useful to see the actual data generated for each test. To do this, we would
replace quickCheck with its sibling, verboseCheck, to see (verbose) output for each test.
Now, let’s look at more sophisticated properties that our function might satisfy.

Testing for Properties
Good libraries consist of a set of orthogonal primitives having sensible relationships to
each other. We can use QuickCheck to specify the relationships between functions in
our code, helping us find a good library interface by developing functions that are
interrelated via useful properties. QuickCheck in this way acts as an API “lint” tool—
it provides machine support for ensuring that our library API makes sense.

The list sorting function should certainly have a number of interesting properties that
tie it to other list operations. For example, the first element in a sorted list should always
be the smallest element of the input list. We might be tempted to specify this intuition
in Haskell, using the List library’s minimum function:

-- file: ch11/QC-basics.hs
prop_minimum xs         = head (qsort xs) == minimum xs

Testing this, though, reveals an error:

ghci> quickCheck (prop_minimum :: [Integer] -> Bool)
** Exception: Prelude.head: empty list

The property failed when sorting an empty list, for which head and minimum aren’t de-
fined, as we can see from their definition:
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-- file: ch11/minimum.hs
head       :: [a] -> a
head (x:_) = x
head []    = error "Prelude.head: empty list"

minimum    :: (Ord a) => [a] -> a
minimum [] =  error "Prelude.minimum: empty list"
minimum xs =  foldl1 min xs

So this property will only hold for nonempty lists. QuickCheck, thankfully, comes with
a full property writing embedded language, so we can specify more precisely our in-
variants, filtering out values we don’t want to consider. For the empty list case, we
really want to say if the list is nonempty, then the first element of the sorted result is
the minimum. This is done using the (==>) implication function, which filters out in-
valid data before running the property:

-- file: ch11/QC-basics.hs
prop_minimum' xs         = not (null xs) ==> head (qsort xs) == minimum xs

The result is quite clean. By separating out the empty list case, we can now confirm
that the property does in fact hold:

ghci> quickCheck (prop_minimum' :: [Integer] -> Property)
 passed 100 tests.

Note that we had to change the type of the property from being a simple Bool result to
the more general Property type (the property itself is now a function that filters non-
empty lists, before testing them, rather than a simple Boolean constant).

We can now complete the basic property set for the sort function with some other
invariants that it should satisfy: the output should be ordered (each element should be
smaller than, or equal to, its successor); the output should be a permutation of the
input (which we achieve via the list difference function, (\\)); the last sorted element
should be the largest element; and if we find the smallest element of two different lists,
that should be the first element if we append and sort those lists. These properties can
be stated as:

-- file: ch11/QC-basics.hs
prop_ordered xs = ordered (qsort xs)
    where ordered []       = True
          ordered [x]      = True
          ordered (x:y:xs) = x <= y && ordered (y:xs)

prop_permutation xs = permutation xs (qsort xs)
    where permutation xs ys = null (xs \\ ys) && null (ys \\ xs)

prop_maximum xs         =
    not (null xs) ==>
        last (qsort xs) == maximum xs

prop_append xs ys       =
    not (null xs) ==>
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    not (null ys) ==>
        head (qsort (xs ++ ys)) == min (minimum xs) (minimum ys)

Testing Against a Model
Another technique for gaining confidence in some code is to test it against a model
implementation. We can tie our implementation of list sort to the reference sort func-
tion in the standard list library, and, if they behave the same, we gain confidence that
our sort does the right thing:

-- file: ch11/QC-basics.hs
prop_sort_model xs      = sort xs == qsort xs

This kind of model-based testing is extremely powerful. Often, developers will have a
reference implementation or prototype that, while inefficient, is correct. This can then
be kept around and used to ensure that optimized production code conforms to the
reference. By building a large suite of these model-based tests and running them regu-
larly (on every commit, for example), we can cheaply ensure the precision of our code.
Large Haskell projects often come bundled with property suites comparable in size to
the project itself, with thousands of invariants tested on every change, keeping the code
tied to the specification, and ensuring that it behaves as required.

Testing Case Study: Specifying a Pretty Printer
Testing individual functions for their natural properties is one of the basic building
blocks that guides development of large systems in Haskell. We’ll look now at a more
complicated scenario: taking the pretty-printing library developed in earlier chapters
and building a test suite for it.

Generating Test Data
Recall that the pretty printer is built around the Doc, an algebraic data type that repre-
sents well-formed documents:

-- file: ch11/Prettify2.hs

data Doc = Empty
         | Char Char
         | Text String
         | Line
         | Concat Doc Doc
         | Union Doc Doc
         deriving (Show,Eq)

The library itself is implemented as a set of functions that build and transform values
of this document type, before finally rendering the finished document to a string.

QuickCheck encourages an approach to testing where the developer specifies invariants
that should hold for any data we can throw at the code. To test the pretty-printing
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library, then, we’ll need a source of input data. To do this, we take advantage of the
small combinator suite for building random data that QuickCheck provides via the
Arbitrary class. The class provides a function, arbitrary, to generate data of each type.
With it, we can define our data generator for our custom data types:†

-- file: ch11/Arbitrary.hs
class Arbitrary a where
  arbitrary   :: Gen a

One thing to notice is that the generators run in a Gen environment, indicated by the
type. This is a simple state-passing monad that is used to hide the random number
generator state that is threaded through the code. We’ll look thoroughly at monads in
later chapters, but for now it suffices to know that, as Gen is defined as a monad, we
can use do syntax to write new generators that access the implicit random number
source. To actually write generators for our custom type, we use any of a set of functions
defined in the library for introducing new random values and gluing them together to
build up data structures of the type we’re interested in. The types of the key functions
are:

-- file: ch11/Arbitrary.hs
  elements :: [a] -> Gen a
  choose   :: Random a => (a, a) -> Gen a
  oneof    :: [Gen a] -> Gen a

The function elements, for example, takes a list of values and returns a generator of
random values from that list. (We’ll use choose and oneof later.) With it, we can start
writing generators for simple data types. For example, if we define a new data type for
ternary logic:

-- file: ch11/Arbitrary.hs
data Ternary
    = Yes
    | No
    | Unknown
    deriving (Eq,Show)

we can write an Arbitrary instance for the Ternary type by defining a function that
picks elements from a list of the possible values of the Ternary type:

-- file: ch11/Arbitrary.hs
instance Arbitrary Ternary where
  arbitrary     = elements [Yes, No, Unknown]

Another approach to data generation is to generate values for one of the basic Haskell
types and then translate those values into the type we’re actually interested in. We could
have written the Ternary instance by generating integer values from 0 to 2 instead, using
choose, and then mapping them onto the ternary values:

† The class also defines a method, coarbitrary, which, given a value of some type, yields a function for new
generators. We can disregard for now, as it is only needed for generating random values of function type.
One result of disregarding coarbitrary is that GHC will warn about it not being defined. However, it is safe
to ignore these warnings.
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-- file: ch11/Arbitrary2.hs
instance Arbitrary Ternary where
  arbitrary     = do
      n <- choose (0, 2) :: Gen Int
      return $ case n of
                    0 -> Yes
                    1 -> No
                    _ -> Unknown

For simple sum types, this approach works well, as the integers map nicely onto the
constructors of the data type. For product types (such as structures and tuples), we need
to instead generate each component of the product separately (and recursively for
nested types), and then combine the components. For example, to generate random
pairs of random values:

-- file: ch11/Arbitrary.hs
instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) where
  arbitrary = do
      x <- arbitrary
      y <- arbitrary
      return (x, y)

So let’s now write a generator for all the different variants of the Doc type. We’ll start
by breaking the problem down, first generating random constructors for each type, and
then, depending on the result, the components of each field. The most complicated
case are the union and concatenation variants.

First, though, we need to write an instance for generating random characters—
QuickCheck doesn’t have a default instance for characters, due to the abundance of
different text encodings we might want to use for character tests. We’ll write our own,
and, as we don’t care about the actual text content of the document, a simple generator
of alphabetic characters and punctuation will suffice (richer generators are simple ex-
tensions of this basic approach):

-- file: ch11/QC.hs
instance Arbitrary Char where
    arbitrary = elements (['A'..'Z'] ++ ['a' .. 'z'] ++ " ~!@#$%^&*()")

With this in place, we can now write an instance for documents by enumerating the
constructors and filling in the fields. We choose a random integer to represent which
document variant to generate, and then dispatch based on the result. To generate concat
or union document nodes, we just recurse on arbitrary, letting type inference deter-
mine which instance of Arbitrary we mean:

-- file: ch11/QC.hs
instance Arbitrary Doc where
    arbitrary = do
        n <- choose (1,6) :: Gen Int
        case n of
             1 -> return Empty

             2 -> do x <- arbitrary
                     return (Char x)
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             3 -> do x <- arbitrary
                     return (Text x)

             4 -> return Line

             5 -> do x <- arbitrary
                     y <- arbitrary
                     return (Concat x y)

             6 -> do x <- arbitrary
                     y <- arbitrary
                     return (Union x y)

That was fairly straightforward, and we can clean it up some more by using the oneof
function, whose type we saw earlier, to pick between different generators in a list (we
can also use the monadic combinator, liftM, in order to avoid naming intermediate
results from each generator):

-- file: ch11/QC.hs
instance Arbitrary Doc where
    arbitrary =
        oneof [ return Empty
              , liftM  Char   arbitrary
              , liftM  Text   arbitrary
              , return Line
              , liftM2 Concat arbitrary arbitrary
              , liftM2 Union  arbitrary arbitrary ]

The latter is more concise—just picking between a list of generators—but they describe
the same data either way. We can check that the output makes sense, by generating a
list of random documents (seeding the pseudorandom generator with an initial seed of
2):

ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Doc]
[Line,Empty,Union Empty Line,Union (Char 'R') (Concat (Union Line (Concat 
(Text "i@BmSu") (Char ')'))) (Union (Concat (Concat (Concat (Text "kqV!iN") 
Line) Line) Line) Line)),Char 'M',Text "YdwVLrQOQh"]

Looking at the output, we see a good mix of simple base cases and some more com-
plicated nested documents. We’ll be generating hundreds of these each test run so that
should do a pretty good job. We can now write some generic properties for our docu-
ment functions.

Testing Document Construction
Two of the basic functions on documents are the null document constant (a nullary
function), empty, and the append function. Their types are:

-- file: ch11/Prettify2.hs
empty :: Doc
(<>)  :: Doc -> Doc -> Doc
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Together, these should have a nice property: appending or prepending the empty list
onto a second list should leave the second list unchanged. We can state this invariant
as a property:

-- file: ch11/QC.hs
prop_empty_id x =
    empty <> x == x
  &&
    x <> empty == x

Confirming that this is indeed true, we’re now underway with our testing:

ghci> quickCheck prop_empty_id
 passed 100 tests.

Use this in order to look at what actual test documents were generated (by replacing
quickCheck with verboseCheck). If we look at a good mixture of both simple and com-
plicated cases, we see a good mixture being generated. We can refine the data genera-
tion further, with constraints on the proportion of generated data, if desirable.

Other functions in the API are also simple enough to have their behavior fully described
via properties. By doing so we can maintain an external, checkable description of the
function’s behavior, so later changes won’t break these basic invariants.

-- file: ch11/QC.hs

prop_char c   = char c   == Char c

prop_text s   = text s   == if null s then Empty else Text s

prop_line     = line     == Line

prop_double d = double d == text (show d)

These properties are enough to fully test the structure returned by the basic document
operators. Testing the rest of the library will require more work.

Using Lists as a Model
Higher order functions are the basic glue of reusable programming, and our pretty-
printer library is no exception—a custom fold function is used internally to implement
both document concatenation and interleaving separators between document chunks.
The fold defined for documents takes a list of document pieces and glues them all
together with a supplied combining function:

-- file: ch11/Prettify2.hs
fold :: (Doc -> Doc -> Doc) -> [Doc] -> Doc
fold f = foldr f empty

We can write tests in isolation for specific instances of fold easily. Horizontal concat-
enation of documents, for example, is easy to specify by writing a reference implemen-
tation on lists:
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-- file: ch11/QC.hs

prop_hcat xs = hcat xs == glue xs
    where
        glue []     = empty
        glue (d:ds) = d <> glue ds

It is a similar story for punctuate, where we can model inserting punctuation with list
interspersion (from Data.List, intersperse is a function that takes an element and
interleaves it between other elements of a list):

-- file: ch11/QC.hs

prop_punctuate s xs = punctuate s xs == intersperse s xs

While this looks fine, running it reveals a flaw in our reasoning:

ghci>  quickCheck prop_punctuate
Falsifiable, after 6 tests:
Empty
[Line,Text "",Line]

The pretty-printing library optimizes away redundant empty documents, something
the model implementation doesn’t do, so we’ll need to augment our model to match
reality. First, we can intersperse the punctuation text throughout the document list,
and then a little loop to clean up the Empty documents scattered through, like so:

-- file: ch11/QC.hs
prop_punctuate' s xs = punctuate s xs == combine (intersperse s xs)
    where
        combine []           = []
        combine [x]          = [x]

        combine (x:Empty:ys) = x : combine ys
        combine (Empty:y:ys) = y : combine ys
        combine (x:y:ys)     = x `Concat` y : combine ys

Running this in GHCi, we can confirm the result. It is reassuring to have the test frame-
work spot the flaws in our reasoning about the code—exactly what we’re looking for:

ghci> quickCheck prop_punctuate'
passed 100 tests.

Putting It All Together
We can put all these tests together in a single file and run them simply using one of
QuickCheck’s driver functions. Several exist, including elaborate parallel ones. The
basic batch driver is often good enough, however. All we need do is set up some default
test parameters, and then list the functions we want to test:

-- file: ch11/Run.hs
import Prettify2
import Test.QuickCheck.Batch

options = TestOptions

264 | Chapter 11: Testing and Quality Assurance



      { no_of_tests         = 200
      , length_of_tests     = 1
      , debug_tests         = False }

main = do
    runTests "simple" options
        [ run prop_empty_id
        , run prop_char
        , run prop_text
        , run prop_line
        , run prop_double
        ]

    runTests "complex" options
        [ run prop_hcat
        , run prop_puncutate'
        ]

We’ve structured the code here as a separate, standalone test script, with instances and
properties in their own file, separate from the library source. This is typical for library
projects, where the tests are kept apart from the library itself, and where they import
the library via the module system. The test script can then be compiled and executed:

$ ghc --make Run.hs
$ ./Run 
                 simple : .....                            (1000)
                complex : ..                               (400)

A total of 1,400 individual tests were created, which is comforting. We can increase
the depth easily enough, but to find out exactly how well the code is being tested, we
should turn to the built-in code coverage tool, HPC, which can state precisely what is
going on.

Measuring Test Coverage with HPC
HPC (Haskell Program Coverage) is an extension to the compiler to observe what parts
of the code were actually executed during a given program run. This is useful in the
context of testing, as it lets us observe exactly which functions, branches, and expres-
sions were evaluated. The result is precise knowledge about the percent of code tested
that’s easy to obtain. HPC comes with a simple utility to generate useful graphs of
program coverage, making it easy to zoom in on weak spots in the test suite.

To obtain test coverage data, all we need to do is add the -fhpc flag to the command
line when compiling the tests:

$ ghc -fhpc Run.hs --make

Then run the tests as normal:

$ ./Run
                 simple : .....                            (1000)
                complex : ..                               (400)
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During the test run, the trace of the program is written to .tix and .mix files in the current
directory. Afterwards, these files are used by the command-line tool, hpc, to display
various statistics about what happened. The basic interface is textual. To begin, we can
get a summary of the code tested during the run using the report flag to hpc. We’ll
exclude the test programs themselves (using the --exclude flag), so as to concentrate
only on code in the pretty-printer library. Entering the following into the console:

$ hpc report Run --exclude=Main --exclude=QC
  18% expressions used (30/158)
   0% boolean coverage (0/3)
        0% guards (0/3), 3 unevaluated
        100% 'if' conditions (0/0)
        100% qualifiers (0/0)
   23% alternatives used (8/34)
    0% local declarations used (0/4)
   42% top-level declarations used (9/21)

we see that, on the last line, 42% of top-level definitions were evaluated during the test
run. Not too bad for a first attempt. As we test more and more functions from the
library, this figure will rise. The textual version is useful for a quick summary, but to
really see what’s going on, it is best to look at the marked up output. To generate this,
use the markup flag instead:

$ hpc markup Run --exclude=Main --exclude=QC

This will generate one HTML file for each Haskell source file, and some index files.
Loading the file hpc_index.html into a browser, we can see some pretty graphs of the
code coverage. See Figure 11-1.

Not too bad. Clicking through to the pretty module itself, we see the actual source of
the program (see Figure 11-2). It marked up in bold yellow for code that wasn’t tested,
and marked simply bold code that was tested.

We forgot to test the Monoid instance, for example, and some of the more complicated
functions. HPC helps keep our test suite honest. Let’s add a test for the typeclass in-
stance of Monoid, which is the class of types that support appending and empty elements:

-- file: ch11/QC.hs
prop_mempty_id x =
    mempty `mappend` x == x
  &&
    x `mappend` mempty == (x :: Doc)

Figure 11-1. Revised coverage for module Prettify2: 52% of top-level definitions (up from 42%), 23%
of alternatives, 18% of expressions
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Run this property in ghci, to check it is correct:

ghci> quickCheck prop_mempty_id
 passed 100 tests.

We can now recompile and run the test driver. It is important to remove the old .tix
file first though, or an error will occur as HPC tries to combine the statistics from
separate runs:

  $ ghc -fhpc Run.hs --make -no-recomp
  $ ./Run 
  Hpc failure: inconsistent number of tick boxes
  (perhaps remove Run.tix file?)
  $ rm *.tix
  $ ./Run   
                     simple : .....                            (1000)
                    complex : ...                              (600)

Another 200 tests were added to the suite, and our coverage statistics improves to 52%
of the code base (see Figure 11-3).

Figure 11-2. Screenshot of annotated coverage output, displaying the Monoid instance for Doc in bold
yellow (not tested), and other code nearby in bold (was executed)
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HPC ensures that we’re honest in our testing, as anything less than 100% coverage will
be pointed out in glaring color. In particular, it ensures the programmer has to think
about error cases, complicated branches with obscure conditions, and all forms of code
smell. When combined with a saturating test generation system such as QuickCheck’s,
testing becomes a rewarding activity and a core part of Haskell development.

Figure 11-3. Coverage for module Prettify2: 42% of top-level definitions, 23% of alternatives, 18%
of expressions
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CHAPTER 12

Barcode Recognition

In this chapter, we’ll make use of the image-parsing library we developed in Chap-
ter 10 to build a barcode recognition application. Given a picture of the back of a book
taken with a camera phone, we could use this to extract its ISBN number.

A Little Bit About Barcodes
The vast majority of packaged and mass-produced consumer goods sold have a barcode
somewhere on them. Although there are dozens of barcode systems used across a va-
riety of specialized domains, consumer products typically use either UPC-A or EAN-13.
UPC-A was developed in the United States, while EAN-13 is European in origin.

EAN-13 was developed after UPC-A and is a superset of UPC-A. (In fact, UPC-A has
been officially declared obsolete since 2005, though it’s still widely used within the
United States.) Any software or hardware that can understand EAN-13 barcodes will
automatically handle UPC-A barcodes. This neatly reduces our descriptive problem to
one standard.

As the name suggests, EAN-13 describes a 13-digit sequence, which is broken into four
groups:

Number system
The first two digits. This can either indicate the nationality of the manufacturer or
describe one of a few other categories, such as ISBN (book identifier) numbers.

Manufacturer ID
The next five digits. These are assigned by a country’s numbering authority.

Product ID
The next five digits. These are assigned by the manufacturer. (Smaller manufac-
turers may have a longer manufacturer ID and shorter product ID, but they still
add up to 10 digits.)

Check digit
The last digit. This allows a scanner to validate the digit string it scans.
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The only way in which an EAN-13 barcode differs from a UPC-A barcode is that the
latter uses a single digit to represent its number system. EAN-13 barcodes retain
UPC-A compatibility by setting the first number system digit to zero.

EAN-13 Encoding
Before we worry about decoding an EAN-13 barcode, we need to understand how they
are encoded. The system EAN-13 uses is a little involved. We start by computing the
check digit, which is the last digit of a string:

-- file: ch12/Barcode.hs
checkDigit :: (Integral a) => [a] -> a
checkDigit ds = 10 - (sum products `mod` 10)
    where products = mapEveryOther (*3) (reverse ds)

mapEveryOther :: (a -> a) -> [a] -> [a]
mapEveryOther f = zipWith ($) (cycle [f,id])

This is one of those algorithms that is more easily understood via the code than a verbal
description. The computation proceeds from the right of the string. Each successive
digit is either multiplied by three or left alone (the cycle function repeats its input list
infinitely). The check digit is the difference between their sum, modulo 10, and the
number 10.

A barcode is a series of fixed-width bars, where black represents a binary “one” bit, and
white a “zero.” A run of the same digits thus looks like a thicker bar.

The sequence of bits in a barcode is as follows:

• The leading guard sequence, encoded as 101.

• A group of six digits, each seven bits wide.

• Another guard sequence, encoded as 01010.

• A group of six more digits.

• The trailing guard sequence, encoded as 101.

The digits in the left and right groups have separate encodings. On the left, digits are
encoded with parity bits. The parity bits encode the 13th digit of the barcode.

Introducing Arrays
Before we continue, here are all of the imports that we will be using in the remainder
of this chapter:

-- file: ch12/Barcode.hs
import Data.Array (Array(..), (!), bounds, elems, indices,
                   ixmap, listArray)

import Control.Applicative ((<$>))
import Control.Monad (forM_)
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import Data.Char (digitToInt)
import Data.Ix (Ix(..))
import Data.List (foldl', group, sort, sortBy, tails)
import Data.Maybe (catMaybes, listToMaybe)
import Data.Ratio (Ratio)
import Data.Word (Word8)
import System.Environment (getArgs)
import qualified Data.ByteString.Lazy.Char8 as L
import qualified Data.Map as M

import Parse                    -- from chapter 11

The barcode encoding process can largely be table-driven, in which we use small tables
of bit patterns to decide how to encode each digit. Haskell’s bread-and-butter—data
types, lists, and tuples—are not well-suited to use for tables whose elements may be
accessed randomly. A list has to be traversed linearly to reach the kth element. A tuple
doesn’t have this problem, but Haskell’s type system makes it difficult to write a func-
tion that takes a tuple and an element offset and returns the element at that offset within
the tuple. (We’ll explore why in the exercises that follow.)

The usual data type for constant-time random access is of course the array. Haskell
provides several array data types. We’ll thus represent our encoding tables as arrays of
strings.

The simplest array type is in the Data.Array module, which we’re using here. This
presents arrays that can contain values of any Haskell type. Like other common Haskell
types, these arrays are immutable. An immutable array is populated with values just
once, when it is created. Its contents cannot subsequently be modified. (The standard
libraries also provide other array types, some of which are mutable, but we won’t cover
those for a while.)

-- file: ch12/Barcode.hs
leftOddList = ["0001101", "0011001", "0010011", "0111101", "0100011",
               "0110001", "0101111", "0111011", "0110111", "0001011"]

rightList = map complement <$> leftOddList
    where complement '0' = '1'
          complement '1' = '0'

leftEvenList = map reverse rightList

parityList = ["111111", "110100", "110010", "110001", "101100",
              "100110", "100011", "101010", "101001", "100101"]

listToArray :: [a] -> Array Int a
listToArray xs = listArray (0,l-1) xs
    where l = length xs

leftOddCodes, leftEvenCodes, rightCodes, parityCodes :: Array Int String

leftOddCodes = listToArray leftOddList
leftEvenCodes = listToArray leftEvenList
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rightCodes = listToArray rightList
parityCodes = listToArray parityList

The Data.Array module’s listArray function populates an array from a list. It takes as
its first parameter the bounds of the array to create; the second is the values with which
to populate it.

An unusual feature of the Array type is that its type is parameterized over both the data
it contains and the index type. For example, the type of a one-dimensional array of
String is Array Int String, but a two-dimensional array would have the type
Array (Int,Int) String:

ghci> :m +Data.Array
ghci> :type listArray
listArray :: (Ix i) => (i, i) -> [e] -> Array i e

We can construct an array easily:

ghci> listArray (0,2) "foo"
array (0,2) [(0,'f'),(1,'o'),(2,'o')]

Notice that we have to specify the lower and upper bounds of the array. These bounds
are inclusive, so an array from 0 to 2 has elements 0, 1, and 2:

ghci> listArray (0,3) [True,False,False,True,False]
array (0,3) [(0,True),(1,False),(2,False),(3,True)]
ghci> listArray (0,10) "too short"
array (0,10) [(0,'t'),(1,'o'),(2,'o'),(3,' '),(4,'s'),(5,'h'),(6,'o'),
(7,'r'),(8,'t'),(9,*** Exception: (Array.!): undefined array element

Once an array is constructed, we can use the (!) operator to access its elements by
index:

ghci> let a = listArray (0,14) ['a'..]
ghci> a ! 2
'c'
ghci> a ! 100
*** Exception: Error in array index

Since the array construction function lets us specify the bounds of an array, we don’t
have to use the zero-based array indexing that is familiar to C programmers. We can
choose whatever bounds are convenient for our purposes:

ghci> let a = listArray (-9,5) ['a'..]
ghci> a ! (-2)
'h'

The index type can be any member of the Ix type. This lets us use, for example, Char
as the index type:

ghci> let a = listArray ('a', 'h') [97..]
ghci> a ! 'e'
101
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To create a higher-dimensioned array, we use a tuple of Ix instances as the index type.
The Prelude makes tuples of up to five elements members of the Ix class. To illustrate,
here’s a small three-dimensional array:

ghci> let a = listArray ((0,0,0), (9,9,9)) [0..]
ghci> a ! (4,3,7)
437

Arrays and Laziness
The list that we use to populate the array must contain at least as many elements as are
in the array. If we do not provide enough elements, we’ll get an error at runtime. When
the error occurs depends on the nature of the array.

Here, we are using an array type that is nonstrict in its elements. If we provide a list of
three values to an array that we specify as containing more than three elements, the
remaining elements will undefined. We will not get an error unless we access an element
beyond the third:

ghci> let a = listArray (0,5) "bar"
ghci> a ! 2
'r'
ghci> a ! 4
*** Exception: (Array.!): undefined array element

Haskell also provides strict arrays, which behave differently. We will discuss the trade-
offs between the two kinds of arrays in “Unboxing, Lifting, and Bottom” on page
583.

Folding over Arrays
The bounds function returns a tuple describing the bounds that we used to create the
array. The indices function returns a list of every index. We can use these to define
some useful folds, since the Data.Array module doesn’t define any fold functions itself:

-- file: ch12/Barcode.hs
-- | Strict left fold, similar to foldl' on lists.
foldA :: Ix k => (a -> b -> a) -> a -> Array k b -> a
foldA f s a = go s (indices a)
    where go s (j:js) = let s' = f s (a ! j)
                        in s' `seq` go s' js
          go s _ = s

-- | Strict left fold using the first element of the array as its
-- starting value, similar to foldl1 on lists.
foldA1 :: Ix k => (a -> a -> a) -> Array k a -> a
foldA1 f a = foldA f (a ! fst (bounds a)) a

You might wonder why the array modules don’t already provide such useful things as
folding functions. There are some obvious correspondences between a one-
dimensional array and a list. For instance, there are only two natural ways in which we
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can fold sequentially: left-to-right and right-to-left. Additionally, we can only fold over
one element at a time.

This does not translate even to two-dimensional arrays. First of all, there are several
kinds of fold that make sense. We might still want to fold over single elements, but we
now have the possibility of folding over rows or columns, too. On top of this, for
element-at-a-time folding, there are no longer just two sequences for traversal.

In other words, for two-dimensional arrays, there are enough permutations of possibly
useful behavior that there aren’t many compelling reasons to choose a handful for a
standard library. This problem is only compounded for higher dimensions, so it’s best
to let developers write folds that suit the needs of their applications. As we can see from
our examples, this is not hard to do.

Modifying Array Elements
While “modification” functions exist for immutable arrays, they are not very practical.
For example, the accum function takes an array and a list of (index, value) pairs and
returns a new array with the values at the given indices replaced.

Since arrays are immutable, modifying even one element requires copying the entire
array. This quickly becomes prohibitively expensive on arrays of even modest size.

Another array type, DiffArray in the Data.Array.Diff module, attempts to offset the
cost of small modifications by storing deltas between successive versions of an array.
Unfortunately, it is not implemented efficiently at the time of this writing, and it is
currently too slow to be of practical use.

Don’t lose hope
It is in fact possible to modify an array efficiently in Haskell, using the
ST monad. We’ll return to this subject in Chapter 26.

E X E R C I S E S

Let’s briefly explore the suitability of tuples as stand-ins for arrays:

1. Write a function that takes two arguments: a four-element tuple and an integer.
With an integer argument of zero, it should return the leftmost element of the
tuple. With an argument of one, it should return the next element. And so on.
What restrictions do you have to put on the types of the arguments in order to
write a function that typechecks correctly?

2. Write a similar function that takes a six-tuple as its first argument.

3. Try refactoring the two functions to share any common code you can identify.
How much shared code are you able to find?
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Encoding an EAN-13 Barcode
Even though our goal is to decode a barcode, it’s useful to have an encoder for reference.
This will allow us to, for example, ensure that our code is correct by checking that the
output of decode . encode is the same as its input:

-- file: ch12/Barcode.hs
encodeEAN13 :: String -> String
encodeEAN13 = concat . encodeDigits . map digitToInt

-- | This function computes the check digit; don't pass one in.
encodeDigits :: [Int] -> [String]
encodeDigits s@(first:rest) =
    outerGuard : lefties ++ centerGuard : righties ++ [outerGuard]
  where (left, right) = splitAt 5 rest
        lefties = zipWith leftEncode (parityCodes ! first) left
        righties = map rightEncode (right ++ [checkDigit s])

leftEncode :: Char -> Int -> String
leftEncode '1' = (leftOddCodes !)
leftEncode '0' = (leftEvenCodes !)

rightEncode :: Int -> String
rightEncode = (rightCodes !)

outerGuard = "101"
centerGuard = "01010"

The string to encode is 12 digits long, with encodeDigits adding a 13th check digit.

The barcode is encoded as two groups of six digits, with a guard sequence in the middle
and “outside” sequences on either side. But if we have two groups of six digits, what
happened to the missing digit?

Each digit in the left group is encoded using either odd or even parity, with the parity
chosen based on the bits of the first digit in the string. If a bit of the first digit is zero,
the corresponding digit in the left group is encoded with even parity. A one bit causes
the digit to be encoded with odd parity. This encoding is an elegant hack, chosen to
make EAN-13 barcodes backwards-compatible with the older UPC-A standard.

Constraints on Our Decoder
Before we talk about decoding, let’s set a few practical limitations on what kinds of
barcode images we can work with.

Phone cameras and webcams generally output JPEG images, but writing a JPEG de-
coder would take us several chapters. We’ll simplify our parsing problem by
handling the netpbm file format. We will use the parsing combinators we developed
earlier in Chapter 10.
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We’d like to deal with real images from the kinds of cheap, fixed-focus cameras that
come with low-end cell phones. These images tend to be out of focus, noisy, low in
contrast, and of poor resolution. Fortunately, it’s not hard to write code that can handle
noisy, defocused VGA-resolution (640 × 480) images with terrible contrast ratios.
We’ve verified that the code in this chapter captures barcodes from real books, using
pictures taken by authentically mediocre cameras.

We will avoid any image-processing heroics, because that’s another chapter-consuming
subject. We won’t correct perspective (such as in Figure 12-1). Neither will we sharpen
images taken from too near to the subject (Figure 12-2), which causes narrow bars to
fade out; or from too far (Figure 12-3), which causes adjacent bars to blur together.

Divide and Conquer
Our task is to take a camera image and extract a valid barcode from it. Given such a
nonspecific description, it can be hard to see how to make progress. However, we can
break the big problem into a series of subproblems, each of which is self-contained and
more tractable:

• Convert color data into a form we can easily work with.

• Sample a single scan line from the image and extract a set of guesses as to what the
encoded digits in this line could be.

• From the guesses, create a list of valid decodings.

Many of these subproblems can be further divided, as we’ll see.

You might wonder how closely this approach of subdivision mirrors the actual work
we did when writing the code that we present in this chapter. The answer is that we’re
far from image-processing gurus, and when we started writing this chapter, we didn’t
know exactly what our solution was going to look like.

Figure 12-1. Barcode image distorted by perspective, due to photo being taken from an angle
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We made some early educated guesses as to what a reasonable solution might appear
as and came up with the subtasks just listed. We were then able to start tackling those
parts that we knew how to solve, using our spare time to think about the bits that we
had no prior experience with. We certainly didn’t have a preexisting algorithm or mas-
ter plan in mind.

Dividing the problem up like this helped us in two ways. By making progress on familiar
ground, we had the psychological advantage of starting to solve the problem, even when
we didn’t really know where we were going. And as we started to work on a particular
subproblem, we found ourselves able to further subdivide it into tasks of varying fa-
miliarity. We continued to focus on easier components, deferring ones we hadn’t
thought about in enough detail yet, and jumping from one element of the master list
to another. Eventually, we ran out of problems that were both unfamiliar and unsolved,
and we had a complete idea of our eventual solution.

Figure 12-2. Barcode image blurred by being taken from inside the focal length of the camera lens,
causing bars to run together

Figure 12-3. Barcode image contains insufficient detail, due to poor resolution of camera lens and CCD
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Turning a Color Image into Something Tractable
Since we want to work with barcodes (which are sequences of black and white stripes)
and we want to write a simple decoder, an easy representation to work with will be a
monochrome image, in which each pixel is either black or white.

Parsing a Color Image
As we mentioned earlier, we’ll work with netpbm images. The netpbm color image
format is only slightly more complicated than the grayscale image format that we parsed
in Chapter 10. The identifying string in a header is “P6,” with the rest of the header
layout identical to the grayscale format. In the body of an image, each pixel is repre-
sented as three bytes, one each for red, green, and blue.

We’ll represent the image data as a two-dimensional array of pixels. We’re using arrays
here purely to gain experience with them. For this application, we could just as well
use a list of lists. The only advantage of an array is slight—we can efficiently extract a
row:

-- file: ch12/Barcode.hs
type Pixel = Word8
type RGB = (Pixel, Pixel, Pixel)

type Pixmap = Array (Int,Int) RGB

We provide a few type synonyms to make our type signatures more readable.

Since Haskell gives us considerable freedom in how we lay out an array, we must choose
a representation. We’ll play it safe and follow a popular convention: indices begin at
zero. We don’t need to store the dimensions of the image explicitly, since we can extract
them using the bounds function.

The actual parser is mercifully short, thanks to the combinators we developed in
Chapter 10:

-- file: ch12/Barcode.hs
parseRawPPM :: Parse Pixmap
parseRawPPM =
    parseWhileWith w2c (/= '\n') ==> \header -> skipSpaces ==>&
    assert (header == "P6") "invalid raw header" ==>&
    parseNat ==> \width -> skipSpaces ==>&
    parseNat ==> \height -> skipSpaces ==>&
    parseNat ==> \maxValue ->
    assert (maxValue == 255) "max value out of spec" ==>&
    parseByte ==>&
    parseTimes (width * height) parseRGB ==> \pxs ->
    identity (listArray ((0,0),(width-1,height-1)) pxs)

parseRGB :: Parse RGB
parseRGB = parseByte ==> \r ->
           parseByte ==> \g ->
           parseByte ==> \b ->
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           identity (r,g,b)

parseTimes :: Int -> Parse a -> Parse [a]
parseTimes 0 _ = identity []
parseTimes n p = p ==> \x -> (x:) <$> parseTimes (n-1) p

The only function of note here is parseTimes, which calls another parser a given number
of times, building up a list of results.

Grayscale Conversion
Now that we have a color image in hand, we need to convert the color data into
monochrome. An intermediate step is to convert the data to grayscale. There’s a simple,
widely used formula* for converting an RGB image into a grayscale image, based on the
perceived brightness of each color channel:

-- file: ch12/Barcode.hs
luminance :: (Pixel, Pixel, Pixel) -> Pixel
luminance (r,g,b) = round (r' * 0.30 + g' * 0.59 + b' * 0.11)
    where r' = fromIntegral r
          g' = fromIntegral g
          b' = fromIntegral b

Haskell arrays are members of the Functor typeclass, so we can simply use fmap to turn
an entire image, or a single scanline, from color into grayscale:

-- file: ch12/Barcode.hs
type Greymap = Array (Int,Int) Pixel

pixmapToGreymap :: Pixmap -> Greymap
pixmapToGreymap = fmap luminance

This pixmapToGreymap function is just for illustration. Since we’ll only be checking a few
rows of an image for possible barcodes, there’s no reason to do the extra work of con-
verting data we’ll never subsequently use.

Grayscale to Binary and Type Safety
Our next subproblem is to convert the grayscale image into a two-valued image, where
each pixel is either on or off.

In an image-processing application, where we’re juggling lots of numbers, it would be
easy to reuse the same numeric type for several different purposes. For example, we
could use the Pixel type to represent on/off states, using the convention that the digit
one represents a bit that’s “on,” and zero represents “off.”

However, reusing types for multiple purposes in this way quickly leads to potential
confusion. To see whether a particular “Pixel” is a number or an on/off value, we can
no longer simply glance at a type signature. We could easily use a value containing

* The formula originates in ITU-R Recommendation 601.
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“the wrong kind of number” in some context, and the compiler wouldn’t catch it be-
cause the types work out.

We could try to work around this by introducing a type alias. In the same way that we
declared Pixel to be a synonym of Word8, we could declare a Bit type as a synonym of
Pixel. While this might help readability, type synonyms still don’t make the compiler
do any useful work on our behalf.

The compiler would treat Pixel and Bit as exactly the same type, so it could not catch
a mistake such as using a Pixel value of 253 in a function that expects Bit values of
zero or one.

If we define the monochrome type ourselves, the compiler will prevent us from acci-
dentally mixing our types up like this:

-- file: ch12/Barcode.hs
data Bit = Zero | One
           deriving (Eq, Show)

threshold :: (Ix k, Integral a) => Double -> Array k a -> Array k Bit
threshold n a = binary <$> a
    where binary i | i < pivot  = Zero
                   | otherwise  = One
          pivot    = round $ least + (greatest - least) * n
          least    = fromIntegral $ choose (<) a
          greatest = fromIntegral $ choose (>) a
          choose f = foldA1 $ \x y -> if f x y then x else y

Our threshold function computes the minimum and maximum values in its input array.
It takes these and a threshold valued between zero and one, and computes a “pivot”
value. Then for each value in the array, if that value is less than the pivot, the result is
Zero; otherwise, One. Notice that we use one of the folding functions that we wrote in
“Folding over Arrays” on page 273.

What Have We Done to Our Image?
Let’s step back for a moment and consider what we did to our image when we converted
it from color to monochrome. Figure 12-4 shows an image captured from a VGA-
resolution camera. All we’ve done is crop it down to the barcode.

The encoded digit string, 9780132114677, is printed below the barcode. The left group
encodes the digits 780132, with 9 encoded in their parity. The right group encodes the
digits 114677, where the final 7 is the check digit. Figure 12-5 shows a clean encoding
of this barcode, from one of the many websites that offers barcode image generation
for free.

In Figure 12-6, we’ve chosen a row from the captured image and stretched it out ver-
tically to make it easier to see. We’ve superimposed this on top of the perfect image
and stretched it out so that the two are aligned.
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The luminance-converted row from the photo is in the dark gray band. It is low in
contrast and poor in quality, with plenty of blurring and noise. The paler band is the
same row with the contrast adjusted.

Somewhat below these two bands is another: this shows the effect of thresholding the
luminance-converted row. Notice that some bars have gotten thicker, others thinner,
and many bars have moved a little to the left or right.

Figure 12-4. Barcode photo, somewhat blurry and dim

Figure 12-5. Automatically generated image of the same barcode

Figure 12-6. Photographic and generated images of barcode juxtaposed to illustrate the variation in
bar brightness and resolution
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Clearly, any attempt to find exact matches in an image with problems such as these is
not going to succeed very often. We must write code that’s robust in the face of bars
that are too thick, too thin, or not exactly where they’re supposed to be. The widths of
our bars will depend on how far our book was from the camera, so we can’t make any
assumptions about widths, either.

Finding Matching Digits
Our first problem is to find the digits that might be encoded at a given position. For the
next while, we’ll make a couple simplifying assumptions. The first is that we’re working
with a single row. The second is that we know exactly where in a row the left edge of
a barcode begins.

Run Length Encoding
How can we overcome the problem of not even knowing how thick our bars are? The
answer is to run length encode (instead of repeating a value some number of times, run
length encoding presents it once, with a count of the number of consecutive repeats):

-- file: ch12/Barcode.hs
type Run = Int
type RunLength a = [(Run, a)]

runLength :: Eq a => [a] -> RunLength a
runLength = map rle . group
    where rle xs = (length xs, head xs)

The group function takes sequences of identical elements in a list and groups them into
sublists:

ghci> group [1,1,2,3,3,3,3]
[[1,1],[2],[3,3,3,3]]

Our runLength function represents each group as a pair of its length and first element:

ghci> let bits = [0,0,1,1,0,0,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0]
ghci> runLength bits
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
[(2,0),(2,1),(2,0),(2,1),(6,0),(4,1),(4,0)]

Since the data we’re run length encoding are just ones and zeros, the encoded numbers
will simply alternate between one and zero. We can throw the encoded values away
without losing any useful information, keeping only the length of each run:

-- file: ch12/Barcode.hs
runLengths :: Eq a => [a] -> [Run]
runLengths = map fst . runLength

ghci> runLengths bits
[2,2,2,2,6,4,4]
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The bit patterns aren’t random; they’re the left outer guard and first encoded digit of
a row from our captured image. If we drop the guard bars, we’re left with the run lengths
[2,6,4,4]. How do we find matches for these in the encoding tables we wrote in
“Introducing Arrays” on page 270?

Scaling Run Lengths, and Finding Approximate Matches
One possible approach is to scale the run lengths so that they sum to one. We’ll use
the Ratio Int type instead of the usual Double to manage these scaled values, as
Ratios print out more readably in ghci. This makes interactive debugging and devel-
opment much easier:

-- file: ch12/Barcode.hs
type Score = Ratio Int

scaleToOne :: [Run] -> [Score]
scaleToOne xs = map divide xs
    where divide d = fromIntegral d / divisor
          divisor = fromIntegral (sum xs)
-- A more compact alternative that "knows" we're using Ratio Int:
-- scaleToOne xs = map (% sum xs) xs

type ScoreTable = [[Score]]

-- "SRL" means "scaled run length".
asSRL :: [String] -> ScoreTable
asSRL = map (scaleToOne . runLengths)

leftOddSRL = asSRL leftOddList
leftEvenSRL = asSRL leftEvenList
rightSRL = asSRL rightList
paritySRL = asSRL parityList

We use the Score type synonym so that most of our code won’t have to care what the
underlying type is. Once we’re done developing our code and poking around with
ghci, we could, if we wish, go back and turn the Score type synonym into Doubles
without changing any code.

We can use scaleToOne to scale a sequence of digits that we’re searching for. We’ve
now corrected for variations in bar widths due to distance, as there should be a pretty
close match between an entry in a scaled run length encoding table and a run length
sequence pulled from an image.

The next question is how we turn the intuitive idea of “pretty close” into a measure of
“close enough.” Given two scaled run length sequences, we can calculate an approxi-
mate “distance” between them as follows:

-- file: ch12/Barcode.hs
distance :: [Score] -> [Score] -> Score
distance a b = sum . map abs $ zipWith (-) a b
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An exact match will give a distance of zero, with weaker matches resulting in larger
distances:

ghci> let group = scaleToOne [2,6,4,4]
ghci> distance group (head leftEvenSRL)
13%28
ghci> distance group (head leftOddSRL)
17%28

Given a scaled run length table, we choose the best few matches in that table for a given
input sequence:

-- file: ch12/Barcode.hs
bestScores :: ScoreTable -> [Run] -> [(Score, Digit)]
bestScores srl ps = take 3 . sort $ scores
    where scores = zip [distance d (scaleToOne ps) | d <- srl] digits
          digits = [0..9]

List Comprehensions
The new notation that we introduced in the previous example is an illustration of a list
comprehension, which creates a list from one or more other lists:

ghci> [ (a,b) | a <- [1,2], b <- "abc" ]
[(1,'a'),(1,'b'),(1,'c'),(2,'a'),(2,'b'),(2,'c')]

The expression on the left of the vertical bar is evaluated for each combination of
generator expressions on the right. A generator expression binds a variable on the left
of a <- to an element of the list on the right. As the preceding example shows, the
combinations of generators are evaluated in depth first order: for the first element of
the first list, we evaluate every element of the second, and so on.

In addition to generators, we can also specify guards on the right of a list comprehen-
sion. A guard is a Bool expression. If it evaluates to False, that element is skipped over:

ghci> [ (a,b) | a <- [1..6], b <- [5..7], even (a + b ^ 2) ]
[(1,5),(1,7),(2,6),(3,5),(3,7),(4,6),(5,5),(5,7),(6,6)]

We can also bind local variables using a let expression:

ghci> let vowel = (`elem` "aeiou")
ghci> [ x | a <- "etaoin", b <- "shrdlu", let x = [a,b], all vowel x ]
["eu","au","ou","iu"]

If a pattern match fails in a generator expression, no error occurs. Instead, that list
element is skipped:

ghci> [ a | (3,a) <- [(1,'y'),(3,'e'),(5,'p')] ]
"e"

List comprehensions are powerful and concise. As a result, they can be difficult to read,
but when used with care, they can make code easier to follow:

-- file: ch12/Barcode.hs
-- our original
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zip [distance d (scaleToOne ps) | d <- srl] digits

-- the same expression, expressed without a list comprehension
zip (map (flip distance (scaleToOne ps)) srl) digits

-- the same expression, written entirely as a list comprehension
[(distance d (scaleToOne ps), n) | d <- srl, n <- digits]

Remembering a Match’s Parity
For each match in the left group, we have to remember whether we found it in the even
parity table or the odd table:

-- file: ch12/Barcode.hs
data Parity a = Even a | Odd a | None a
                deriving (Show)

fromParity :: Parity a -> a
fromParity (Even a) = a
fromParity (Odd a) = a
fromParity (None a) = a

parityMap :: (a -> b) -> Parity a -> Parity b
parityMap f (Even a) = Even (f a)
parityMap f (Odd a) = Odd (f a)
parityMap f (None a) = None (f a)

instance Functor Parity where
    fmap = parityMap

We wrap a value in the parity with which it was encoded, and then make it a Functor
instance so that we can easily manipulate parity-encoded values.

We would like to be able to sort parity-encoded values based on the values they contain. 
The Data.Function module provides a lovely combinator that we can use for this, named
on:

-- file: ch12/Barcode.hs
on :: (a -> a -> b) -> (c -> a) -> c -> c -> b
on f g x y = g x `f` g y

compareWithoutParity = compare `on` fromParity

In case it’s unclear, try thinking of on as a function of two arguments, f and g, which
return a function of two arguments, x and y. It applies g to x and to y, then f on the two
results (hence the name on).
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Wrapping a match in a parity value is straightforward:

-- file: ch12/Barcode.hs
type Digit = Word8

bestLeft :: [Run] -> [Parity (Score, Digit)]
bestLeft ps = sortBy compareWithoutParity
              ((map Odd (bestScores leftOddSRL ps)) ++
               (map Even (bestScores leftEvenSRL ps)))

bestRight :: [Run] -> [Parity (Score, Digit)]
bestRight = map None . bestScores rightSRL

Once we have the best lefthand matches from the even and odd tables, we sort them
based only on the quality of each match.

Another kind of laziness, of the keyboarding variety

In our definition of the Parity type, we could have used Haskell’s record syntax to avoid
the need to write a fromParity function. In other words, we could have written it as
follows:

-- file: ch12/Barcode.hs
data AltParity a = AltEven {fromAltParity :: a}
                 | AltOdd  {fromAltParity :: a}
                 | AltNone {fromAltParity :: a}
                   deriving (Show)

Why did we not do this? The answer is slightly shameful and has to do with interactive
debugging in ghci. When we tell GHC to automatically derive a Show instance for a
type, it produces different code depending on whether or not we declare the type with
record syntax:

ghci> show $ Even 1
"Even 1"
ghci> show $ AltEven 1
"AltEven {fromAltParity = 1}"
ghci> length . show $ Even 1
6
ghci> length . show $ AltEven 1
27

The Show instance for the variant that uses record syntax is considerably more verbose.
This creates much more noise that we must scan through when we’re trying to read,
say, a list of parity-encoded values output by ghci.

Of course, we could write our own, less noisy, Show instance. It’s simply less effort to
avoid record syntax and write our own fromParity function instead, letting GHC derive
a more terse Show instance for us. This isn’t an especially satisfying rationale, but pro-
grammer laziness can lead in odd directions at times.
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Chunking a List
A common aspect of working with lists is needing to “chunk” them. For example, each
digit in a barcode is encoded using a run of four digits. We can turn the flat list that
represents a row into a list of four-element lists as follows:

-- file: ch12/Barcode.hs
chunkWith :: ([a] -> ([a], [a])) -> [a] -> [[a]]
chunkWith _ [] = []
chunkWith f xs = let (h, t) = f xs
                 in h : chunkWith f t

chunksOf :: Int -> [a] -> [[a]]
chunksOf n = chunkWith (splitAt n)

It’s somewhat rare that we need to write generic list manipulation functions such as
this. Often, a glance through the Data.List module will find us a function that does
exactly or close enough to what we need.

Generating a List of Candidate Digits
With our small army of helper functions deployed, the function that generates lists of
candidate matches for each digit group is easy to write. First of all, we take care of a
few early checks to determine whether matching even makes sense. A list of runs must
start on a black (Zero) bar, and contain enough bars. Here are the first few equations
of our function:

-- file: ch12/Barcode.hs
candidateDigits :: RunLength Bit -> [[Parity Digit]]
candidateDigits ((_, One):_) = []
candidateDigits rle | length rle < 59 = []

If any application of bestLeft or bestRight results in an empty list, we can’t possibly
have a match. Otherwise, we throw away the scores, and return a list of lists of parity-
encoded candidate digits. The outer list is 12 elements long, 1 per digit in the barcode.
The digits in each sublist are ordered by match quality.

Here is the remainder of the definition of our function:

-- file: ch12/Barcode.hs
candidateDigits rle
    | any null match = []
    | otherwise      = map (map (fmap snd)) match
  where match = map bestLeft left ++ map bestRight right
        left = chunksOf 4 . take 24 . drop 3 $ runLengths
        right = chunksOf 4 . take 24 . drop 32 $ runLengths
        runLengths = map fst rle

Let’s take a glance at the candidate digits chosen for each group of bars, from a row
taken from Figure 12-5:

ghci> :type input
input :: [(Run, Bit)]
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ghci> take 7 input
[(2,Zero),(2,One),(2,Zero),(2,One),(6,Zero),(4,One),(4,Zero)]
ghci> mapM_ print $ candidateDigits input
[Even 1,Even 5,Odd 7,Odd 1,Even 2,Odd 5]
[Even 8,Even 7,Odd 1,Odd 2,Odd 0,Even 6]
[Even 0,Even 1,Odd 8,Odd 2,Odd 4,Even 9]
[Odd 1,Odd 0,Even 8,Odd 2,Even 2,Even 4]
[Even 3,Odd 4,Odd 5,Even 7,Even 0,Odd 2]
[Odd 2,Odd 4,Even 7,Even 0,Odd 1,Even 1]
[None 1,None 5,None 0]
[None 1,None 5,None 2]
[None 4,None 5,None 2]
[None 6,None 8,None 2]
[None 7,None 8,None 3]
[None 7,None 3,None 8]

Life Without Arrays or Hash Tables
In an imperative language, the array is as much a “bread and butter” type as a list or
tuple in Haskell. We take it for granted that an array in an imperative language is usually
mutable; we can change an element of an array whenever it suits us.

As we mentioned in “Modifying Array Elements” on page 274, Haskell arrays are not
mutable. This means that to “modify” a single array element, a copy of the entire array
is made, with that single element set to its new value. Clearly, this approach is not a
winner for performance.

The mutable array is a building block for another ubiquitous imperative data structure,
the hash table. In the typical implementation, an array acts as the “spine” of the table,
with each element containing a list of elements. To add an element to a hash table, we
hash the element to find the array offset and modify the list at that offset to add the
element to it.

If arrays aren’t mutable for updating a hash table, we must create a new one. We copy
the array, putting a new list at the offset indicated by the element’s hash. We don’t
need to copy the lists at other offsets, but we’ve already dealt performance a fatal blow
simply by having to copy the spine.

At a single stroke, then, immutable arrays have eliminated two canonical imperative
data structures from our toolbox. Arrays are somewhat less useful in pure Haskell code
than in many other languages. Still, many array codes update an array only during a
build phase, and subsequently use it in a read-only manner.

A Forest of Solutions
This is not the calamitous situation that it might seem, though. Arrays and hash tables
are often used as collections indexed by a key, and in Haskell we use trees for this
purpose.
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Implementing a naive tree type is particularly easy in Haskell. Beyond that, more useful
tree types are also unusually easy to implement. Self-balancing structures, such as red-
black trees, have struck fear into generations of undergraduate computer science stu-
dents, because the balancing algorithms are notoriously hard to get right.

Haskell’s combination of algebraic data types, pattern matching, and guards reduce
even the hairiest of balancing operations to a few lines of code. We’ll bite back our
enthusiasm for building trees, however, and focus on why they’re particularly useful
in a pure functional language.

The attraction of a tree to a functional programmer is cheap modification. We don’t
break the immutability rule: trees are immutable just like everything else. However,
when we modify a tree, thus creating a new tree, we can share most of the structure
between the old and new versions. For example, in a tree containing 10,000 nodes, we
might expect that the old and new versions will share about 9,985 elements when we
add or remove one. In other words, the number of elements modified per update de-
pends on the height of the tree or the logarithm of the size of the tree.

Haskell’s standard libraries provide two collection types that are implemented using
balanced trees behind the scenes: Data.Map for key/value pairs and Data.Set for sets of
values. As we’ll be using Data.Map in the sections that follow, we’ll give a quick intro-
duction to it next. Data.Set is sufficiently similar that you should be able to pick it up
quickly.

A word about performance
Compared to a hash table, a well-implemented purely functional tree
data structure will perform competitively. You should not approach
trees with the assumption that your code will pay a performance penalty.

A Brief Introduction to Maps
The Data.Map module provides a parameterized type, Map k a, that maps from a key
type k to a value type a. Although it is internally a size-balanced binary tree, the
implementation is not visible to us.

Map is strict in its keys, but nonstrict in its values. In other words, the spine, or structure,
of the map is always kept up-to-date, but values in the map aren’t evaluated unless we
force them to be.

It is very important to remember this, as Map’s laziness over values is a frequent source
of space leaks among coders who are not expecting it.

Because the Data.Map module contains a number of names that clash with Prelude
names, it’s usually imported in qualified form. Earlier in this chapter, we imported it
using the prefix M.
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Type constraints

The Map type doesn’t place any explicit constraints on its key type, but most of the
module’s useful functions require that keys be instances of Ord. This is noteworthy, as
it’s an example of a common design pattern in Haskell code: type constraints are pushed
out to where they’re actually needed, not necessarily applied at the point where they’d
result in the least typing for a library’s author.

Neither the Map type nor any functions in the module constrain the types that can be
used as values.

Partial application awkwardness

For some reason, the type signatures of the functions in Data.Map are not generally
friendly to partial application. The map parameter always comes last, whereas it would
be easier to partially apply if it were first. As a result, code that uses partially applied
map functions almost always contains adapter functions to fiddle with argument
ordering.

Getting started with the API

The Data.Map module has a large “surface area”: it exports dozens of functions. Just a
handful of these comprise the most frequently used core of the module.

To create an empty map, we use empty. For a map containing one key/value pair, we
use singleton:

ghci> M.empty
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
fromList []
ghci> M.singleton "foo" True
fromList [("foo",True)]

Since the implementation is abstract, we can’t pattern match on Map values. Instead, it
provides a number of lookup functions, of which two are particularly widely used. The
lookup function has a slightly tricky type signature,† but don’t worry—all will become
clear in Chapter 14:

ghci> :type M.lookup
M.lookup :: (Ord k, Monad m) => k -> M.Map k a -> m a

Most often, the type parameter m in the result is Maybe. In other words, if the map
contains a value for the given key, lookup will return the value wrapped in Just.
Otherwise, it will return Nothing:

ghci> let m = M.singleton "foo" 1 :: M.Map String Int
ghci> case M.lookup "bar" m of { Just v -> "yay"; Nothing -> "boo" }
"boo"

† Starting with GHC 6.10.1, the type of this function has been simplified to k -> M.Map k a -> Maybe a.
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The findWithDefault function takes a value to return if the key isn’t in the map.

Beware the partial functions!
There exists a (!) operator that performs a lookup and returns the un-
adorned value associated with a key (i.e., not wrapped in Maybe or what-
ever). Unfortunately, it is not a total function: it calls error if the key is
not present in the map.

To add a key/value pair to the map, the most useful functions are insert and
insertWith'. The insert function simply inserts a value into the map, overwriting any
matching value that may already have been present.

ghci> :type M.insert
M.insert :: (Ord k) => k -> a -> M.Map k a -> M.Map k a
ghci> M.insert "quux" 10 m
fromList [("foo",1),("quux",10)]
ghci> M.insert "foo" 9999 m
fromList [("foo",9999)]

The insertWith' function takes a further combining function as its argument. If no
matching key was present in the map, the new value is inserted verbatim. Otherwise,
the combining function is called on the new and old values, and its result is inserted
into the map:

ghci> :type M.insertWith'
M.insertWith' :: (Ord k) => (a -> a -> a) -> k -> a -> M.Map k a -> M.Map k a
ghci> M.insertWith' (+) "zippity" 10 m
fromList [("foo",1),("zippity",10)]
ghci> M.insertWith' (+) "foo" 9999 m
fromList [("foo",10000)]

As the tick at the end of its name suggests, insertWith' evaluates the combining func-
tion strictly, allowing us to avoid space leaks. While there exists a lazy variant
(insertWith without the trailing tick in the name), it’s rarely what we’ll actually want.

The delete function deletes the given key from the map. It returns the map unmodified
if the key is not present:

ghci> :type M.delete
M.delete :: (Ord k) => k -> M.Map k a -> M.Map k a
ghci> M.delete "foo" m
fromList []

Finally, there are several efficient functions for performing set-like operations on maps.
Of these, we’ll be using union. This function is left-biased—if two maps contain the
same key, the result will contain the value from the left map:

ghci> m `M.union` M.singleton "quux" 1
fromList [("foo",1),("quux",1)]
ghci> m `M.union` M.singleton "foo" 0
fromList [("foo",1)]
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We have barely covered ten percent of the Data.Map API. We will cover maps and similar
data structures in greater detail in Chapter 13. For further inspiration, we encourage
you to browse the module documentation. The module is impressively thorough.

Further Reading
Purely Functional Data Structures by Chris Okasaki (Cambridge University Press) gives
a wonderful and thorough implementor’s tour of many pure functional data structures,
including several kinds of balanced trees. It also provides valuable insight into reasoning
about the performance of purely functional data structures and lazy evaluation.

We recommend Okasaki’s book as essential reading for functional programmers. If
you’re not convinced, Okasaki’s Ph.D. thesis, Purely Functional Data Structures (see
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf), is a less complete and polished ver-
sion of the book, and it is available for free online.

Turning Digit Soup into an Answer
We’ve got yet another problem to solve. We have many candidates for the last 12 digits
of the barcode. In addition, we need to use the parities of the first six digits to figure
out what the first digit is. Finally, we need to ensure that our answer’s check digit makes
sense.

This seems quite challenging! We have a lot of uncertain data; what should we do? It’s
reasonable to ask if we could perform a brute-force search. Given the candidates we
saw in th preceding ghci session, how many combinations would we have to examine?

ghci> product . map length . candidateDigits $ input
34012224

So much for that idea. Once again, we’ll initially focus on a subproblem that we know
how to solve and postpone worrying about the rest.

Solving for Check Digits in Parallel
Let’s abandon the idea of searching for now, and focus on computing a check digit.
The check digit for a barcode can assume 1 of 12 possible values. For a given parity
digit, which input sequences can cause that digit to be computed?

-- file: ch12/Barcode.hs
type Map a = M.Map Digit [a]

In this map, the key is a check digit, and the value is a sequence that evaluates to this
check digit. We have two further map types based on this definition:

-- file: ch12/Barcode.hs
type DigitMap = Map Digit
type ParityMap = Map (Parity Digit)
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We’ll generically refer to these as solution maps, because they show us the digit sequence
that “solves for” each check digit.

Given a single digit, here’s how we can update an existing solution map:

-- file: ch12/Barcode.hs
updateMap :: Parity Digit       -- ^ new digit
          -> Digit              -- ^ existing key
          -> [Parity Digit]     -- ^ existing digit sequence
          -> ParityMap          -- ^ map to update
          -> ParityMap
updateMap digit key seq = insertMap key (fromParity digit) (digit:seq)

insertMap :: Digit -> Digit -> [a] -> Map a -> Map a
insertMap key digit val m = val `seq` M.insert key' val m
    where key' = (key + digit) `mod` 10

With an existing check digit drawn from the map, the sequence that solves for it, and
a new input digit, this function updates the map with the new sequence that leads to
the new check digit.

This might seem a bit much to digest, but an example will make it clear. Let’s say the
check digit we’re looking at is 4, the sequence leading to it is [1,3], and the digit we
want to add to the map is 8. The sum of 4 and 8, modulo 10, is 2, so this is the key we’ll
be inserting into the map. The sequence that leads to the new check digit 2 is thus
[8,1,3], so this is what we’ll insert as the value.

For each digit in a sequence, we’ll generate a new solution map, using that digit and
an older solution map:

-- file: ch12/Barcode.hs
useDigit :: ParityMap -> ParityMap -> Parity Digit -> ParityMap
useDigit old new digit =
    new `M.union` M.foldWithKey (updateMap digit) M.empty old

Once again, let’s illustrate what this code is doing using some examples. This time,
we’ll use ghci:

ghci> let single n = M.singleton n [Even n] :: ParityMap
ghci> useDigit (single 1) M.empty (Even 1)
fromList [(2,[Even 1,Even 1])]
ghci> useDigit (single 1) (single 2) (Even 2)
fromList [(2,[Even 2]),(3,[Even 2,Even 1])]

The new solution map that we feed to useDigits starts out empty. We populate it
completely by folding useDigits over a sequence of input digits:

-- file: ch12/Barcode.hs
incorporateDigits :: ParityMap -> [Parity Digit] -> ParityMap
incorporateDigits old digits = foldl' (useDigit old) M.empty digits
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This generates a complete new solution map from an old one:

ghci> incorporateDigits (M.singleton 0 []) [Even 1, Even 5]
fromList [(1,[Even 1]),(5,[Even 5])]

Finally, we must build the complete solution map. We start out with an empty map,
then fold over each digit position from the barcode in turn. For each position, we create
a new map from our guesses at the digits in that position. This becomes the old map
for the next round of the fold:

-- file: ch12/Barcode.hs
finalDigits :: [[Parity Digit]] -> ParityMap
finalDigits = foldl' incorporateDigits (M.singleton 0 [])
            . mapEveryOther (map (fmap (*3)))

(From the checkDigit function that we defined in “EAN-13 Encoding” on page 270,
we remember that the check digit computation requires that we multiply every other
digit by 3.)

How long is the list with which we call finalDigits? We don’t yet know what the first
digit of our sequence is, so obviously we can’t provide that. And we don’t want to
include our guess at the check digit, so the list must be 11 elements long.

Once we’ve returned from finalDigits, our solution map is necessarily incomplete,
because we haven’t yet figured out what the first digit is.

Completing the Solution Map with the First Digit
We haven’t yet discussed how we should extract the value of the first digit from the
parities of the left group of digits. This is a straightforward matter of reusing code that
we’ve already written:

-- file: ch12/Barcode.hs
firstDigit :: [Parity a] -> Digit
firstDigit = snd
           . head
           . bestScores paritySRL
           . runLengths
           . map parityBit
           . take 6
  where parityBit (Even _) = Zero
        parityBit (Odd _) = One

Each element of our partial solution map now contains a reversed list of digits and
parity data. Our next task is to create a completed solution map, by computing the first
digit in each sequence, and using it to create that last solution map:

-- file: ch12/Barcode.hs
addFirstDigit :: ParityMap -> DigitMap
addFirstDigit = M.foldWithKey updateFirst M.empty

updateFirst :: Digit -> [Parity Digit] -> DigitMap -> DigitMap
updateFirst key seq = insertMap key digit (digit:renormalize qes)
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  where renormalize = mapEveryOther (`div` 3) . map fromParity
        digit = firstDigit qes
        qes = reverse seq

Along the way, we get rid of the Parity type and reverse our earlier multiplications by
three. Our last step is to complete the check digit computation:

-- file: ch12/Barcode.hs
buildMap :: [[Parity Digit]] -> DigitMap
buildMap = M.mapKeys (10 -)
         . addFirstDigit
         . finalDigits

Finding the Correct Sequence
We now have a map of all possible checksums and the sequences that lead to each. All
that remains is to take our guesses at the check digit, and then see if we have a corre-
sponding solution map entry:

-- file: ch12/Barcode.hs
solve :: [[Parity Digit]] -> [[Digit]]
solve [] = []
solve xs = catMaybes $ map (addCheckDigit m) checkDigits
    where checkDigits = map fromParity (last xs)
          m = buildMap (init xs)
          addCheckDigit m k = (++[k]) <$> M.lookup k m

Let’s try this out on the row we picked from our photo and see if we get a sensible
answer:

ghci> listToMaybe . solve . candidateDigits $ input
Just [9,7,8,0,1,3,2,1,1,4,6,7,7]

Excellent! This is exactly the string encoded in the barcode that we photographed.

Working with Row Data
We’ve mentioned repeatedly that we are taking a single row from our image. Here’s
how:

-- file: ch12/Barcode.hs
withRow :: Int -> Pixmap -> (RunLength Bit -> a) -> a
withRow n greymap f = f . runLength . elems $ posterized
    where posterized = threshold 0.4 . fmap luminance . row n $ greymap

The withRow function takes a row, converts it to monochrome, and then calls another
function on the run length encoded row data. To get the row data, it calls row:

-- file: ch12/Barcode.hs
row :: (Ix a, Ix b) => b -> Array (a,b) c -> Array a c
row j a = ixmap (l,u) project a
    where project i = (i,j)
          ((l,_), (u,_)) = bounds a
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This function takes a bit of explaining. Whereas fmap transforms the values in an array,
ixmap transforms the indices of an array. It’s a very powerful function that lets us
“slice” an array however we please.

The first argument to ixmap is the bounds of the new array. These bounds can be of a
different dimension than the source array. In row, for example, we’re extracting a one-
dimensional array from a two-dimensional array.

The second argument is a projection function. This takes an index from the new array
and returns an index into the source array. The value at that projected index then
becomes the value in the new array at the original index. For example, if we pass 2 into
the projection function and it returns (2,2), the element at index 2 of the new array
will be taken from element (2,2) of the source array.

Pulling It All Together
Our candidateDigits function gives an empty result unless we call it at the beginning
of a barcode sequence. We can easily scan across a row until we get a match as follows:

-- file: ch12/Barcode.hs
findMatch :: [(Run, Bit)] -> Maybe [[Digit]]
findMatch = listToMaybe
          . filter (not . null)
          . map (solve . candidateDigits)
          . tails

Here, we’re taking advantage of lazy evaluation. The call to map over tails will only be
evaluated until it results in a nonempty list.

Next, we choose a row from an image and try to find a barcode in it:

-- file: ch12/Barcode.hs
findEAN13 :: Pixmap -> Maybe [Digit]
findEAN13 pixmap = withRow center pixmap (fmap head . findMatch)
  where (_, (maxX, _)) = bounds pixmap
        center = (maxX + 1) `div` 2

Finally, here’s a very simple wrapper that prints barcodes from whatever netpbm image
files we pass into our program on the command line:

-- file: ch12/Barcode.hs
main :: IO ()
main = do
  args <- getArgs
  forM_ args $ \arg -> do
    e <- parse parseRawPPM <$> L.readFile arg
    case e of
      Left err ->     print $ "error: " ++ err
      Right pixmap -> print $ findEAN13 pixmap

Notice that, of the more than 30 functions we’ve defined in this chapter, main is the
only one that lives in IO.
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A Few Comments on Development Style
You may have noticed that many of the functions we presented in this chapter were
short functions at the top level of the source file. This is no accident. As we mentioned
earlier, when we started writing this chapter, we didn’t know what form our solution
was going to take.

Quite often, then, we had to explore a problem space in order to figure out where we
were going. To do this, we spent a lot of time fiddling about in ghci, performing tiny
experiments on individual functions. This kind of exploration requires that a function
be declared at the top level of a source file; otherwise, ghci won’t be able to see it.

Once we were satisfied that individual functions were behaving themselves, we started
to glue them together, again investigating the consequences in ghci. This is where our
devotion to writing type signatures paid back, as we immediately discovered when a
particular composition of functions couldn’t possibly work.

At the end of this process, we were left with a large number of very small top-level
functions, each with a type signature. This isn’t the most compact representation pos-
sible; we could have hoisted many of those functions into let or where blocks when we
were done with them. However, we find that the added vertical space, small function
bodies, and type signatures make the code far more readable, so we generally avoided
“golfing” functions after we wrote them.‡

Working in a language with strong, static typing does not at all interfere with incre-
mentally and fluidly developing a solution to a problem. We find the turnaround be-
tween writing a function and getting useful feedback from ghci to be very rapid; it
greatly assists us in writing good code quickly.

‡ Our use of the word golf comes from a game originally played by Perl hackers, in which programmers try to
create the smallest piece of code for some purpose. The code with the fewest (key)strokes wins.
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CHAPTER 13

Data Structures

Association Lists
Often, we have to deal with data that is unordered but is indexed by a key. For instance,
a Unix administrator might have a list of numeric UIDs (user IDs) and the textual
usernames that they correspond to. The value of this list lies in being able to look up a
textual username for a given UID, not in the order of the data. In other words, the UID
is a key into a database.

In Haskell, there are several ways to handle data that is structured in this way. The two
most common are association lists and the Map type provided by Data.Map module.
Association lists are handy because they are simple. They are standard Haskell lists, so
all the familiar list functions work with them. However, for large data sets, Map will have
a considerable performance advantage over association lists. We’ll use both in this
chapter.

An association list is just a normal list containing (key, value) tuples. The type of a list
of mappings from UID to username might be [(Integer, String)]. We could use just
about any type* for both the key and the value.

We can build association lists just like we do any other list. Haskell comes with one
built-in function called Data.List.lookup to look up data in an association list. Its type
is Eq a => a -> [(a, b)] -> Maybe b. Can you guess how it works from that type? Let’s
take a look in ghci:

ghci> let al = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]
ghci> lookup 1 al
Just "one"
ghci> lookup 5 al
Nothing

The lookup function is really simple. Here’s one way we could write it:

-- file: ch13/lookup.hs
myLookup :: Eq a => a -> [(a, b)] -> Maybe b

* The type we use for the key must be a member of the Eq typeclass.
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myLookup _ [] = Nothing
myLookup key ((thiskey,thisval):rest) =
    if key == thiskey
       then Just thisval
       else myLookup key rest

This function returns Nothing if passed the empty list. Otherwise, it compares the key
with the key we’re looking for. If a match is found, the corresponding value is returned;
otherwise, it searches the rest of the list.

Let’s take a look at a more complex example of association lists. On Unix/Linux ma-
chines, there is a file called /etc/passwd that stores usernames, UIDs, home directories,
and various other data. We will write a program that parses such a file, creates an
association list, and lets the user look up a username with a UID:

-- file: ch13/passwd-al.hs
import Data.List
import System.IO
import Control.Monad(when)
import System.Exit
import System.Environment(getArgs)

main = do
    -- Load the command-line arguments
    args <- getArgs

    -- If we don't have the right amount of args, give an error and abort
    when (length args /= 2) $ do
        putStrLn "Syntax: passwd-al filename uid"
        exitFailure

    -- Read the file lazily
    content <- readFile (args !! 0)

    -- Compute the username in pure code
    let username = findByUID content (read (args !! 1))

    -- Display the result
    case username of 
         Just x -> putStrLn x
         Nothing -> putStrLn "Could not find that UID"

-- Given the entire input and a UID, see if we can find a username.
findByUID :: String -> Integer -> Maybe String
findByUID content uid =
    let al = map parseline . lines $ content
        in lookup uid al

-- Convert a colon-separated line into fields
parseline :: String -> (Integer, String)
parseline input =
    let fields = split ':' input
        in (read (fields !! 2), fields !! 0)

{- | Takes a delimiter and a list.  Break up the list based on the
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-  delimiter. -}
split :: Eq a => a -> [a] -> [[a]]

-- If the input is empty, the result is a list of empty lists.
split _ [] = [[]]
split delim str =
    let -- Find the part of the list before delim and put it in "before".
        -- The rest of the list, including the leading delim, goes
        -- in "remainder".
        (before, remainder) = span (/= delim) str
        in
        before : case remainder of
                      [] -> []
                      x -> -- If there is more data to process,
                           -- call split recursively to process it
                           split delim (tail x)

Let’s look at this program. The heart of it is findByUID, which is a simple function that
parses the input one line at a time, then calls lookup over the result. The remaining
program is concerned with parsing the input. The input file looks like this:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
jgoerzen:x:1000:1000:John Goerzen,,,:/home/jgoerzen:/bin/bash

Its fields are separated by colons and include a username, numeric user ID, numeric
group ID, full name, home directory, and shell. No field may contain an internal colon.

Maps
The Data.Map module provides a Map type with behavior that is similar to association
lists but has much better performance.

Maps give us the same capabilities as hash tables do in other languages. Internally, a
map is implemented as a balanced binary tree. Compared to a hash table, this is a much
more efficient representation in a language with immutable data. This is the most visible
example of how deeply pure functional programming affects how we write code: we
choose data structures and algorithms that we can express cleanly and that perform
efficiently, but our choices for specific tasks are often different from their counterparts
in imperative languages.

Some functions in the Data.Map module have the same names as those in the Prelude.
Therefore, we will import it with import qualified Data.Map as Map and use
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Map.name to refer to names in that module. Let’s start our tour of Data.Map by taking a
look at some ways to build a map:

-- file: ch13/buildmap.hs
import qualified Data.Map as Map

-- Functions to generate a Map that represents an association list
-- as a map

al = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]

{- | Create a map representation of 'al' by converting the association
-  list using Map.fromList -}
mapFromAL =
    Map.fromList al

{- | Create a map representation of 'al' by doing a fold -}
mapFold =
    foldl (\map (k, v) -> Map.insert k v map) Map.empty al

{- | Manually create a map with the elements of 'al' in it -}
mapManual =
    Map.insert 2 "two" . 
    Map.insert 4 "four" .
    Map.insert 1 "one" .
    Map.insert 3 "three" $ Map.empty

Functions such as Map.insert work in the usual Haskell way: they return a copy of the
input data, with the requested change applied. This is quite handy with maps. It means
that you can use foldl to build up a map as in the mapFold example. Or, you can chain
together calls to Map.insert as in the mapManual example. Let’s use ghci to verify that
all of these maps are as expected:

ghci> :l buildmap.hs
[1 of 1] Compiling Main             ( buildmap.hs, interpreted )
Ok, modules loaded: Main.
ghci> al
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
[(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapFromAL
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapFold
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]
ghci> mapManual
fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]

Notice that the output from mapManual differs from the order of the list we used to
construct the map. Maps do not guarantee that they will preserve the original ordering.

Maps operate similarly in concept to association lists. The Data.Map module provides
functions for adding and removing data from maps. It also lets us filter them, modify
them, fold over them, and convert to and from association lists. The library documen-
tation for this module is good, so instead of going into detail on each function, we will

302 | Chapter 13: Data Structures



present an example that ties together many of the concepts we’ve discussed in this
chapter.

Functions Are Data, Too
Part of Haskell’s power is the ease with which it lets us create and manipulate functions.
Let’s take a look at a record that stores a function as one of its fields:

-- file: ch13/funcrecs.hs
{- | Our usual CustomColor type to play with -}
data CustomColor =
  CustomColor {red :: Int,
               green :: Int,
               blue :: Int}
  deriving (Eq, Show, Read)

{- | A new type that stores a name and a function.

The function takes an Int, applies some computation to it, and returns
an Int along with a CustomColor -}
data FuncRec =
    FuncRec {name :: String,
             colorCalc :: Int -> (CustomColor, Int)}

plus5func color x = (color, x + 5)

purple = CustomColor 255 0 255

plus5 = FuncRec {name = "plus5", colorCalc = plus5func purple}
always0 = FuncRec {name = "always0", colorCalc = \_ -> (purple, 0)}

Notice the type of the colorCalc field: it’s a function. It takes an Int and returns a tuple
of (CustomColor, Int). We create two FuncRec records: plus5 and always0. Notice that
the colorCalc for both of them will always return the color purple. FuncRec itself has
no field to store the color in, yet that value somehow becomes part of the function itself.
This is called a closure. Let’s play with this a bit:

ghci> :l funcrecs.hs
[1 of 1] Compiling Main             ( funcrecs.hs, interpreted )
Ok, modules loaded: Main.
ghci> :t plus5
plus5 :: FuncRec
ghci> name plus5
"plus5"
ghci> :t colorCalc plus5
colorCalc plus5 :: Int -> (CustomColor, Int)
ghci> (colorCalc plus5) 7
(CustomColor {red = 255, green = 0, blue = 255},12)
ghci> :t colorCalc always0
colorCalc always0 :: Int -> (CustomColor, Int)
ghci> (colorCalc always0) 7
(CustomColor {red = 255, green = 0, blue = 255},0)
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That worked well enough, but you might wonder how to do something more advanced,
such as making a piece of data available in multiple places. A type construction function
can be helpful. Here’s an example:

-- file: ch13/funcrecs2.hs
data FuncRec =
    FuncRec {name :: String,
             calc :: Int -> Int,
             namedCalc :: Int -> (String, Int)}

mkFuncRec :: String -> (Int -> Int) -> FuncRec
mkFuncRec name calcfunc =
    FuncRec {name = name,
             calc = calcfunc,
             namedCalc = \x -> (name, calcfunc x)}

plus5 = mkFuncRec "plus5" (+ 5)
always0 = mkFuncRec "always0" (\_ -> 0)

Here we have a function called mkFuncRec that takes a String and another function as
parameters, and then returns a new FuncRec record. Notice how both parameters to
mkFuncRec are used in multiple places. Let’s try it out:

ghci> :l funcrecs2.hs
[1 of 1] Compiling Main             ( funcrecs2.hs, interpreted )
Ok, modules loaded: Main.
ghci> :t plus5
plus5 :: FuncRec
ghci> name plus5
"plus5"
ghci> (calc plus5) 5
10
ghci> (namedCalc plus5) 5
("plus5",10)
ghci> let plus5a = plus5 {name = "PLUS5A"}
ghci> name plus5a
"PLUS5A"
ghci> (namedCalc plus5a) 5
("plus5",10)

Notice the creation of plus5a. We changed the name field, but not the namedCalc field.
That’s why name has the new name, but namedCalc still returns the name that was passed
to mkFuncRec; it doesn’t change unless we explicitly change it.

Extended Example: /etc/passwd
In order to illustrate the usage of a number of different data structures together, we’ve
prepared an extended example. This example parses and stores entries from files in the
format of a typical /etc/passwd file:
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-- file: ch13/passwdmap.hs
import Data.List
import qualified Data.Map as Map
import System.IO
import Text.Printf(printf)
import System.Environment(getArgs)
import System.Exit
import Control.Monad(when)

{- | The primary piece of data this program will store.
   It represents the fields in a POSIX /etc/passwd file -}
data PasswdEntry = PasswdEntry {
    userName :: String,
    password :: String,
    uid :: Integer,
    gid :: Integer,
    gecos :: String,
    homeDir :: String,
    shell :: String}
    deriving (Eq, Ord)

{- | Define how we get data to a 'PasswdEntry'. -}
instance Show PasswdEntry where
    show pe = printf "%s:%s:%d:%d:%s:%s:%s" 
                (userName pe) (password pe) (uid pe) (gid pe)
                (gecos pe) (homeDir pe) (shell pe)

{- | Converting data back out of a 'PasswdEntry'. -}
instance Read PasswdEntry where
    readsPrec _ value =
        case split ':' value of
             [f1, f2, f3, f4, f5, f6, f7] ->
                 -- Generate a 'PasswdEntry' the shorthand way:
                 -- using the positional fields.  We use 'read' to convert
                 -- the numeric fields to Integers.
                 [(PasswdEntry f1 f2 (read f3) (read f4) f5 f6 f7, [])]
             x -> error $ "Invalid number of fields in input: " ++ show x
        where 
        {- | Takes a delimiter and a list.  Break up the list based on the
        -  delimiter. -}
        split :: Eq a => a -> [a] -> [[a]]

        -- If the input is empty, the result is a list of empty lists.
        split _ [] = [[]]
        split delim str =
            let -- Find the part of the list before delim and put it in
                -- "before".  The rest of the list, including the leading 
                -- delim, goes in "remainder".
                (before, remainder) = span (/= delim) str
                in
                before : case remainder of
                              [] -> []
                              x -> -- If there is more data to process,
                                   -- call split recursively to process it
                                   split delim (tail x)
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-- Convenience aliases; we'll have two maps: one from UID to entries
-- and the other from username to entries
type UIDMap = Map.Map Integer PasswdEntry
type UserMap = Map.Map String PasswdEntry

{- | Converts input data to maps.  Returns UID and User maps. -}
inputToMaps :: String -> (UIDMap, UserMap)
inputToMaps inp =
    (uidmap, usermap)
    where
    -- fromList converts a [(key, value)] list into a Map
    uidmap = Map.fromList . map (\pe -> (uid pe, pe)) $ entries
    usermap = Map.fromList . 
              map (\pe -> (userName pe, pe)) $ entries
    -- Convert the input String to [PasswdEntry]
    entries = map read (lines inp)

main = do
    -- Load the command-line arguments
    args <- getArgs

    -- If we don't have the right number of args,
    -- give an error and abort

    when (length args /= 1) $ do
        putStrLn "Syntax: passwdmap filename"
        exitFailure

    -- Read the file lazily
    content <- readFile (head args)
    let maps = inputToMaps content
    mainMenu maps

mainMenu maps@(uidmap, usermap) = do
    putStr optionText
    hFlush stdout
    sel <- getLine
    -- See what they want to do.  For every option except 4,
    -- return them to the main menu afterwards by calling
    -- mainMenu recursively
    case sel of
         "1" -> lookupUserName >> mainMenu maps
         "2" -> lookupUID >> mainMenu maps
         "3" -> displayFile >> mainMenu maps
         "4" -> return ()
         _ -> putStrLn "Invalid selection" >> mainMenu maps

    where 
    lookupUserName = do
        putStrLn "Username: "
        username <- getLine
        case Map.lookup username usermap of
             Nothing -> putStrLn "Not found."
             Just x -> print x
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    lookupUID = do
        putStrLn "UID: "
        uidstring <- getLine
        case Map.lookup (read uidstring) uidmap of
             Nothing -> putStrLn "Not found."
             Just x -> print x
    displayFile = 
        putStr . unlines . map (show . snd) . Map.toList $ uidmap
    optionText = 
          "\npasswdmap options:\n\
           \\n\
           \1   Look up a user name\n\
           \2   Look up a UID\n\
           \3   Display entire file\n\
           \4   Quit\n\n\
           \Your selection: "

This example maintains two maps: one from username to PasswdEntry and another one
from UID to PasswdEntry. Database developers may find it convenient to think of this
as having two different indices into the data to speed searching on different fields.

Take a look at the Show and Read instances for PasswdEntry. There is already a standard
format for rendering data of this type as a string: the colon-separated version the system
already uses. So our Show function displays a PasswdEntry in the format, and Read parses
that format.

Extended Example: Numeric Types
We’ve told you how powerful and expressive Haskell’s type system is. We’ve shown
you a lot of ways to use that power. Here’s a chance to really see that in action.

Back in “Numeric Types” on page 144, we showed the numeric typeclasses that come
with Haskell. Let’s see what we can do by defining new types and utilizing the numeric
typeclasses to integrate them with basic mathematics in Haskell.

To begin let’s think through what we’d like to see out of ghci when we interact with
our new types. To start with, it might be nice to render numeric expressions as strings,
making sure to indicate proper precedence. Perhaps we could create a function called
prettyShow to do that. We’ll show you how to write it in a bit, but first we’ll look at
how we might use it:

ghci> :l num.hs
[1 of 1] Compiling Main             ( num.hs, interpreted )
Ok, modules loaded: Main.
ghci> 5 + 1 * 3
8
ghci> prettyShow $ 5 + 1 * 3
"5+(1*3)"
ghci> prettyShow $ 5 * 1 + 3
"(5*1)+3"
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That looks nice, but it wasn’t all that smart. We could easily simplify out the 1 * part
of the expression. How about a function to do some very basic simplification?

ghci> prettyShow $ simplify $ 5 + 1 * 3
"5+3"

How about converting a numeric expression to Reverse Polish Notation (RPN)? RPN
is a postfix notation that never requires parentheses and is commonly found on HP
calculators. RPN is a stack-based notation. We push numbers onto the stack, and when
we enter operations, they pop the most recent numbers off the stack and place the result
on the stack:

ghci> rpnShow $ 5 + 1 * 3
"5 1 3 * +"
ghci> rpnShow $ simplify $ 5 + 1 * 3
"5 3 +"

Maybe it would be nice to be able to represent simple expressions with symbols for the
unknowns:

ghci> prettyShow $ 5 + (Symbol "x") * 3
"5+(x*3)"

It’s often important to track units of measure when working with numbers. For in-
stance, when you see the number 5, does it mean 5 meters, 5 feet, or 5 bytes? Of course,
if you divide 5 meters by 2 seconds, the system ought to be able to figure out the
appropriate units. Moreover, it should stop you from adding 2 seconds to 5 meters:

ghci> 5 / 2
2.5
ghci> (units 5 "m") / (units 2 "s")
2.5_m/s
ghci> (units 5 "m") + (units 2 "s")
*** Exception: Mis-matched units in add or subtract
ghci> (units 5 "m") + (units 2 "m")
7_m
ghci> (units 5 "m") / 2
2.5_m
ghci> 10 * (units 5 "m") / (units 2 "s")
25.0_m/s

If we define an expression or a function that is valid for all numbers, we should be able
to calculate the result, or render the expression. For instance, if we define test to have
type Num a => a—and, say, test = 2 * 5 + 3, then we ought to be able to do this:

ghci> test
13
ghci> rpnShow test
"2 5 * 3 +"
ghci> prettyShow test
"(2*5)+3"
ghci> test + 5
18
ghci> prettyShow (test + 5)
"((2*5)+3)+5"
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ghci> rpnShow (test + 5)
"2 5 * 3 + 5 +"

Since we have units, we should be able to handle some basic trigonometry as well. Many
of these operations operate on angles. Let’s make sure that we can handle both degrees
and radians:

ghci> sin (pi / 2)
1.0
ghci> sin (units (pi / 2) "rad")
1.0_1.0
ghci> sin (units 90 "deg")
1.0_1.0
ghci> (units 50 "m") * sin (units 90 "deg")
50.0_m

Finally, we ought to be able to put all this together and combine different kinds of
expressions:

ghci> ((units 50 "m") * sin (units 90 "deg")) :: Units (SymbolicManip Double)
50.0*sin(((2.0*pi)*90.0)/360.0)_m
ghci> prettyShow $ dropUnits $ (units 50 "m") * sin (units 90 "deg")
"50.0*sin(((2.0*pi)*90.0)/360.0)"
ghci> rpnShow $ dropUnits $ (units 50 "m") * sin (units 90 "deg")
"50.0 2.0 pi * 90.0 * 360.0 / sin *"
ghci> (units (Symbol "x") "m") * sin (units 90 "deg")
x*sin(((2.0*pi)*90.0)/360.0)_m

Everything you’ve just seen is possible with Haskell types and classes. In fact, you’ve
been reading a real ghci session demonstrating num.hs, which you’ll see shortly.

First Steps
Let’s think about how we would accomplish everything just shown. To start with, we
might use ghci to check the type of (+), which is Num a => a -> a -> a. If we want to
make some custom behavior for the plus operator possible, then we will have to define
a new type and make it an instance of Num. This type will need to store an expression
symbolically. We can start by thinking of operations such as addition. To store that,
we will need to store the operation itself, its left and right sides. The left and right sides
could themselves be expressions.

We can therefore think of an expression as a sort of tree. Let’s start with some simple
types:
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-- file: ch13/numsimple.hs
-- The "operators" that we're going to support
data Op = Plus | Minus | Mul | Div | Pow
        deriving (Eq, Show)

{- The core symbolic manipulation type -}
data SymbolicManip a = 
          Number a           -- Simple number, such as 5
        | Arith Op (SymbolicManip a) (SymbolicManip a)
          deriving (Eq, Show)

{- SymbolicManip will be an instance of Num.  Define how the Num
operations are handled over a SymbolicManip.  This will implement things
like (+) for SymbolicManip. -}
instance Num a => Num (SymbolicManip a) where
    a + b = Arith Plus a b
    a - b = Arith Minus a b
    a * b = Arith Mul a b
    negate a = Arith Mul (Number (-1)) a
    abs a = error "abs is unimplemented"
    signum _ = error "signum is unimplemented"
    fromInteger i = Number (fromInteger i)

First, we define a type called Op, which simply represents some of the operations we
will support. Next, there is a definition for SymbolicManip a. Because of the Num a con-
straint, any Num can be used for the a. So a full type may be something like SymbolicManip
Int.

A SymbolicManip type can be a plain number or some arithmetic operation. The type
for the Arith constructor is recursive, which is perfectly legal in Haskell. Arith creates
a SymbolicManip out of an Op and two other SymbolicManip items. Let’s look at an
example:

ghci> :l numsimple.hs
[1 of 1] Compiling Main             ( numsimple.hs, interpreted )
Ok, modules loaded: Main.
ghci> Number 5
Number 5
ghci> :t Number 5
Number 5 :: (Num t) => SymbolicManip t
ghci> :t Number (5::Int)
Number (5::Int) :: SymbolicManip Int
ghci> Number 5 * Number 10
Arith Mul (Number 5) (Number 10)
ghci> (5 * 10)::SymbolicManip Int
Arith Mul (Number 5) (Number 10)
ghci> (5 * 10 + 2)::SymbolicManip Int
Arith Plus (Arith Mul (Number 5) (Number 10)) (Number 2)

You can see that we already have a very basic representation of expressions working.
Notice how Haskell “converted” 5 * 10 + 2 into a SymbolicManip, and even handled
order of evaluation properly. This wasn’t really a true conversion; SymbolicManip is a
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first-class number now. Integer numeric literals are internally treated as being wrapped
in fromInteger anyway, so 5 is just as valid as a SymbolicManip Int as it as an Int.

From here, then, our task is simple: extend the SymbolicManip type to be able to repre-
sent all the operations we will want to perform, implement instances of it for the other
numeric typeclasses, and implement our own instance of Show for SymbolicManip that
renders this tree in a more accessible fashion.

Completed Code
Here is the completed num.hs, which was used with the ghci examples at the beginning
of this chapter. Let’s look at this code one piece at a time:

-- file: ch13/num.hs
import Data.List

--------------------------------------------------
-- Symbolic/units manipulation
--------------------------------------------------

-- The "operators" that we're going to support
data Op = Plus | Minus | Mul | Div | Pow
        deriving (Eq, Show)

{- The core symbolic manipulation type.  It can be a simple number,
a symbol, a binary arithmetic operation (such as +), or a unary
arithmetic operation (such as cos)

Notice the types of BinaryArith and UnaryArith: it's a recursive
type.  So, we could represent a (+) over two SymbolicManips. -}
data SymbolicManip a = 
          Number a           -- Simple number, such as 5
        | Symbol String      -- A symbol, such as x
        | BinaryArith Op (SymbolicManip a) (SymbolicManip a)
        | UnaryArith String (SymbolicManip a)
          deriving (Eq)

In this section of code, we define an Op that is identical to the one we used earlier. We
also define SymbolicManip, which is similar to what we used before. In this version, we
now support unary arithmetic operations (those which take only one parameter) such
as abs or cos. Next we define our instance of Num:

-- file: ch13/num.hs
{- SymbolicManip will be an instance of Num.  Define how the Num
operations are handled over a SymbolicManip.  This will implement things
like (+) for SymbolicManip. -}
instance Num a => Num (SymbolicManip a) where
    a + b = BinaryArith Plus a b
    a - b = BinaryArith Minus a b
    a * b = BinaryArith Mul a b
    negate a = BinaryArith Mul (Number (-1)) a
    abs a = UnaryArith "abs" a
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    signum _ = error "signum is unimplemented"
    fromInteger i = Number (fromInteger i)

This is pretty straightforward and also similar to our earlier code. Note that earlier we
weren’t able to properly support abs, but now with the UnaryArith constructor, we can.
Next we define some more instances:

-- file: ch13/num.hs
{- Make SymbolicManip an instance of Fractional -}
instance (Fractional a) => Fractional (SymbolicManip a) where
    a / b = BinaryArith Div a b
    recip a = BinaryArith Div (Number 1) a
    fromRational r = Number (fromRational r)

{- Make SymbolicManip an instance of Floating -}
instance (Floating a) => Floating (SymbolicManip a) where
    pi = Symbol "pi"
    exp a = UnaryArith "exp" a
    log a = UnaryArith "log" a
    sqrt a = UnaryArith "sqrt" a
    a ** b = BinaryArith Pow a b
    sin a = UnaryArith "sin" a
    cos a = UnaryArith "cos" a
    tan a = UnaryArith "tan" a
    asin a = UnaryArith "asin" a
    acos a = UnaryArith "acos" a
    atan a = UnaryArith "atan" a
    sinh a = UnaryArith "sinh" a
    cosh a = UnaryArith "cosh" a
    tanh a = UnaryArith "tanh" a
    asinh a = UnaryArith "asinh" a
    acosh a = UnaryArith "acosh" a
    atanh a = UnaryArith "atanh" a

This section of code defines some fairly straightforward instances of Fractional and
Floating. Now let’s work on converting our expressions to strings for display:

-- file: ch13/num.hs
{- Show a SymbolicManip as a String, using conventional
algebraic notation -}
prettyShow :: (Show a, Num a) => SymbolicManip a -> String

-- Show a number or symbol as a bare number or serial
prettyShow (Number x) = show x
prettyShow (Symbol x) = x

prettyShow (BinaryArith op a b) =
    let pa = simpleParen a
        pb = simpleParen b
        pop = op2str op
        in pa ++ pop ++ pb
prettyShow (UnaryArith opstr a) = 
    opstr ++ "(" ++ show a ++ ")"

op2str :: Op -> String
op2str Plus = "+"
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op2str Minus = "-"
op2str Mul = "*"
op2str Div = "/"
op2str Pow = "**"

{- Add parentheses where needed.  This function is fairly conservative
and will add parenthesis when not needed in some cases.
    
Haskell will have already figured out precedence for us while building
up the SymbolicManip. -}
simpleParen :: (Show a, Num a) => SymbolicManip a -> String
simpleParen (Number x) = prettyShow (Number x)
simpleParen (Symbol x) = prettyShow (Symbol x)
simpleParen x@(BinaryArith _ _ _) = "(" ++ prettyShow x ++ ")"
simpleParen x@(UnaryArith _ _) = prettyShow x

{- Showing a SymbolicManip calls the prettyShow function on it -}
instance (Show a, Num a) => Show (SymbolicManip a) where
    show a = prettyShow a

We start by defining a function prettyShow. It renders an expression using conventional
style. The algorithm is fairly simple: bare numbers and symbols are rendered bare;
binary arithmetic is rendered with the two sides plus the operator in the middle, and,
of course, we handle the unary operators as well. op2str simply converts an Op to a
String. In simpleParen, we have a quite conservative algorithm that adds parentheses
to keep precedence clear in the result. Finally, we make SymbolicManip an instance of
Show, using prettyShow to accomplish that. Now let’s implement an algorithm that
converts an expression to a string in RPN format:

-- file: ch13/num.hs
{- Show a SymbolicManip using RPN.  HP calculator users may
find this familiar. -}
rpnShow :: (Show a, Num a) => SymbolicManip a -> String
rpnShow i =
    let toList (Number x) = [show x]
        toList (Symbol x) = [x]
        toList (BinaryArith op a b) = toList a ++ toList b ++
           [op2str op]
        toList (UnaryArith op a) = toList a ++ [op]
        join :: [a] -> [[a]] -> [a]
        join delim l = concat (intersperse delim l)
    in join " " (toList i)

Fans of RPN will note how much simpler this algorithm is compared to the algorithm
used to render with conventional notation. In particular, we didn’t have to worry about
where to add parentheses, because RPN can, by definition, be evaluated only one way.
Next, let’s see how we might implement a function to do some rudimentary simplifi-
cation on expressions:

-- file: ch13/num.hs
{- Perform some basic algebraic simplifications on a SymbolicManip. -}
simplify :: (Num a) => SymbolicManip a -> SymbolicManip a
simplify (BinaryArith op ia ib) = 
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    let sa = simplify ia
        sb = simplify ib
        in
        case (op, sa, sb) of 
                (Mul, Number 1, b) -> b
                (Mul, a, Number 1) -> a
                (Mul, Number 0, b) -> Number 0
                (Mul, a, Number 0) -> Number 0
                (Div, a, Number 1) -> a
                (Plus, a, Number 0) -> a
                (Plus, Number 0, b) -> b
                (Minus, a, Number 0) -> a
                _ -> BinaryArith op sa sb
simplify (UnaryArith op a) = UnaryArith op (simplify a)
simplify x = x

This function is pretty simple. For certain binary arithmetic operations—for instance,
multiplying any value by 1—we are able to easily simplify the situation. First, we obtain
simplified versions of both sides of the calculation (this is where recursion hits) and
then simplify the result. We have little to do with unary operators, so we just simplify
the expression they act upon.

From here on, we will add support for units of measure to our established library. This
will let us represent quantities such as “5 meters.” We start, as before, by defining a type:

-- file: ch13/num.hs
{- New data type: Units.  A Units type contains a number
and a SymbolicManip, which represents the units of measure.
A simple label would be something like (Symbol "m") -}
data Num a => Units a = Units a (SymbolicManip a)
           deriving (Eq)

So, Units contains a number and a label that is itself a SymbolicManip. Next, it will
probably come as no surprise to see an instance of Num for Units:

-- file: ch13/num.hs
{- Implement Units for Num.  We don't know how to convert between
arbitrary units, so we generate an error if we try to add numbers with
different units.  For multiplication, generate the appropriate
new units. -}
instance (Num a) => Num (Units a) where
    (Units xa ua) + (Units xb ub) 
        | ua == ub = Units (xa + xb) ua
        | otherwise = error "Mis-matched units in add or subtract"
    (Units xa ua) - (Units xb ub) = (Units xa ua) + (Units (xb * (-1)) ub)
    (Units xa ua) * (Units xb ub) = Units (xa * xb) (ua * ub)
    negate (Units xa ua) = Units (negate xa) ua
    abs (Units xa ua) = Units (abs xa) ua
    signum (Units xa _) = Units (signum xa) (Number 1)
    fromInteger i = Units (fromInteger i) (Number 1)

Now it may be clear why we use a SymbolicManip instead of a String to store the unit
of measure. As calculations such as multiplication occur, the unit of measure also
changes. For instance, if we multiply 5 meters by 2 meters, we obtain 10 square meters.
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We force the units for addition to match and implement subtraction in terms of
addition. Let’s look at more typeclass instances for Units:

-- file: ch13/num.hs
{- Make Units an instance of Fractional -}
instance (Fractional a) => Fractional (Units a) where
    (Units xa ua) / (Units xb ub) = Units (xa / xb) (ua / ub)
    recip a = 1 / a
    fromRational r = Units (fromRational r) (Number 1)

{- Floating implementation for Units.

Use some intelligence for angle calculations: support deg and rad
-}
instance (Floating a) => Floating (Units a) where
    pi = (Units pi (Number 1))
    exp _ = error "exp not yet implemented in Units"
    log _ = error "log not yet implemented in Units"
    (Units xa ua) ** (Units xb ub) 
        | ub == Number 1 = Units (xa ** xb) (ua ** Number xb)
        | otherwise = error "units for RHS of ** not supported"
    sqrt (Units xa ua) = Units (sqrt xa) (sqrt ua)
    sin (Units xa ua) 
        | ua == Symbol "rad" = Units (sin xa) (Number 1)
        | ua == Symbol "deg" = Units (sin (deg2rad xa)) (Number 1)
        | otherwise = error "Units for sin must be deg or rad"
    cos (Units xa ua) 
        | ua == Symbol "rad" = Units (cos xa) (Number 1)
        | ua == Symbol "deg" = Units (cos (deg2rad xa)) (Number 1)
        | otherwise = error "Units for cos must be deg or rad"
    tan (Units xa ua)
        | ua == Symbol "rad" = Units (tan xa) (Number 1)
        | ua == Symbol "deg" = Units (tan (deg2rad xa)) (Number 1)
        | otherwise = error "Units for tan must be deg or rad"
    asin (Units xa ua) 
        | ua == Number 1 = Units (rad2deg $ asin xa) (Symbol "deg")
        | otherwise = error "Units for asin must be empty"
    acos (Units xa ua)
        | ua == Number 1 = Units (rad2deg $ acos xa) (Symbol "deg")
        | otherwise = error "Units for acos must be empty"
    atan (Units xa ua)
        | ua == Number 1 = Units (rad2deg $ atan xa) (Symbol "deg")
        | otherwise = error "Units for atan must be empty"
    sinh = error "sinh not yet implemented in Units"
    cosh = error "cosh not yet implemented in Units"
    tanh = error "tanh not yet implemented in Units"
    asinh = error "asinh not yet implemented in Units"
    acosh = error "acosh not yet implemented in Units"
    atanh = error "atanh not yet implemented in Units"

We didn’t supply implementations for every function, but quite a few have been de-
fined. Now let’s define a few utility functions for working with units:

-- file: ch13/num.hs
{- A simple function that takes a number and a String and returns an
appropriate Units type to represent the number and its unit of measure -}
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units :: (Num z) => z -> String -> Units z
units a b = Units a (Symbol b)

{- Extract the number only out of a Units type -}
dropUnits :: (Num z) => Units z -> z
dropUnits (Units x _) = x
                                                    
{- Utilities for the Unit implementation -}
deg2rad x = 2 * pi * x / 360
rad2deg x = 360 * x / (2 * pi)

First, we have units, which makes it easy to craft simple expressions. It’s faster to say
units 5 "m" than Units 5 (Symbol "m"). We also have a corresponding dropUnits, which
discards the unit of measure and returns the embedded bare Num. Finally, we define
some functions for use by our earlier instances to convert between degrees and radians.
Next, we just define a Show instance for Units:

-- file: ch13/num.hs
{- Showing units: we show the numeric component, an underscore,
then the prettyShow version of the simplified units -}
instance (Show a, Num a) => Show (Units a) where
    show (Units xa ua) = show xa ++ "_" ++ prettyShow (simplify ua)

That was simple. For one last piece, we define a variable test to experiment with:

-- file: ch13/num.hs
test :: (Num a) => a
test = 2 * 5 + 3

So, looking back over all this code, we have done what we set out to accomplish:
implement more instances for SymbolicManip. We have also introduced another type
called Units, which stores a number and a unit of measure. We employed several show-
like functions, which render the SymbolicManip or Units in different ways.

There is one other point that this example drives home: every language—even those
with objects and overloading—has parts that are special in some way. In Haskell, the
“special” bits are extremely small. We just developed a new representation for some-
thing as fundamental as a number, and it was really quite easy. Our new type is first-
class, and the compiler knows what functions to use with it at compile time. Haskell
takes code reuse and interchangeability to the extreme. It is easy to make code generic
and work on things of many different types. It’s also easy to create new types and
automatically make them first-class features of the system.

Remember our ghci examples at the beginning of the chapter? All of them were made
with the code in this example. You might want to try them out for yourself and see how
they work.

E X E R C I S E

1. Extend the prettyShow function to remove unnecessary parentheses.
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Taking Advantage of Functions as Data
In an imperative language, appending two lists is cheap and easy. Here’s a simple C
structure in which we maintain a pointer to the head and tail of a list:

struct list {
    struct node *head, *tail;
};

When we have one list and want to append another list onto its end, we modify the
last node of the existing list to point to its head node, and then update its tail pointer
to point to its tail node.

Obviously, this approach is off limits to us in Haskell if we want to stay pure. Since
pure data is immutable, we can’t go around modifying lists in place. Haskell’s (++)
operator appends two lists by creating a new one:

-- file: ch13/Append.hs
(++) :: [a] -> [a] -> [a]
(x:xs) ++ ys = x : xs ++ ys
_      ++ ys = ys

From inspecting the code, we can see that the cost of creating a new list depends on
the length of the initial one.†

We often need to append lists over and over in order to construct one big list. For
instance, we might be generating the contents of a web page as a String, emitting a
chunk at a time as we traverse some data structure. Each time we have a chunk of
markup to add to the page, we will naturally want to append it onto the end of our
existing String.

If a single append has a cost proportional to the length of the initial list, and each
repeated append makes the initial list longer, we end up in an unhappy situation: the
cost of all of the repeated appends is proportional to the square of the length of the final
list.

To understand this, let’s dig in a little. The (++) operator is right-associative:

ghci> :info (++)
(++) :: [a] -> [a] -> [a]     -- Defined in GHC.Base
infixr 5 ++

This means that a Haskell implementation will evaluate the expression "a" ++ "b" ++
"c" as though we had put parentheses around it as follows: "a" ++ ("b" ++ "c"). This
makes good performance sense, because it keeps the left operand as short as possible.

When we repeatedly append onto the end of a list, we defeat this associativity. Let’s
say we start with the list "a" and append "b", and save the result as our new list. If we

† Nonstrict evaluation makes the cost calculation more subtle. We pay for an append only if we actually use
the resulting list. Even then, we pay only for as much as we actually use.
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later append "c" onto this new list, our left operand is now "ab". In this scheme, every
time we append, our left operand gets longer.

Meanwhile, the imperative programmers are cackling with glee, because the cost of
their repeated appends depends only on the number that they perform. They have linear
performance; ours is quadratic.

When something as common as repeated appending of lists imposes such a perform-
ance penalty, it’s time to look at the problem from another angle.

The expression ("a"++) is a section, a partially applied function. What is its type?

ghci> :type ("a" ++)
("a" ++) :: [Char] -> [Char]

Since this is a function, we can use the (.) operator to compose it with another section,
let’s say ("b"++):

ghci> :type ("a" ++) . ("b" ++)
("a" ++) . ("b" ++) :: [Char] -> [Char]

Our new function has the same type. What happens if we stop composing functions,
and instead provide a String to the function we’ve created?

ghci> let f = ("a" ++) . ("b" ++)
ghci> f []
"ab"

We’ve appended the strings! We’re using these partially applied functions to store data,
which we can retrieve by providing an empty list. Each partial application of (++) and
(.) represents an append, but it doesn’t actually perform the append.

There are two very interesting things about this approach. The first is that the cost of
a partial application is constant, so the cost of many partial applications is linear. The
second is that when we finally provide a [] value to unlock the final list from its chain
of partial applications, application proceeds from right to left. This keeps the left op-
erand (++) small, and so the overall cost of all of these appends is linear, not
quadratic.

By choosing an unfamiliar data representation, we’ve avoided a nasty performance
quagmire, while gaining a new perspective on the usefulness of treating functions as
data. By the way, this is an old trick, and it’s usually called a difference list.

We’re not yet finished, though. As appealing as difference lists are in theory, ours won’t
be very pleasant in practice if we leave all the plumbing of (++), (.), and partial appli-
cations exposed. We need to turn this mess into something pleasant to work with.

Turning Difference Lists into a Proper Library
Our first step is to use a newtype declaration to hide the underlying type from our users.
We’ll create a new type and call it DList, and like a regular list, it will be a parameterized
type:
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-- file: ch13/DList.hs
newtype DList a = DL {
      unDL :: [a] -> [a]
    }

The unDL function is our deconstructor, which removes the DL constructor. When we
go back and decide what we want to export from our module, we will omit our data
constructor and deconstruction function, so the DList type will be completely opaque
to our users. They’ll only be able to work with the type using the other functions we
export:

-- file: ch13/DList.hs
append :: DList a -> DList a -> DList a
append xs ys = DL (unDL xs . unDL ys)

Our append function may seem a little complicated, but it’s just performing some book-
keeping around the same use of the (.) operator that we demonstrated earlier. To
compose our functions, we must first unwrap them from their DL constructor—hence
the use of unDL. We then re-wrap the resulting function with the DL constructor so that
it will have the right type.

Here’s another way of writing the same function, in which we perform the unwrapping
of xs and ys via pattern matching:

-- file: ch13/DList.hs
append' :: DList a -> DList a -> DList a
append' (DL xs) (DL ys) = DL (xs . ys)

Our DList type won’t be much use if we can’t convert back and forth between the
DList representation and a regular list:

-- file: ch13/DList.hs
fromList :: [a] -> DList a
fromList xs = DL (xs ++)

toList :: DList a -> [a]
toList (DL xs) = xs []

Once again, compared to the original versions of these functions that we wrote, all
we’re doing is a little bookkeeping to hide the plumbing.

If we want to make DList useful as a substitute for regular lists, we need to provide
some more of the common list operations:

-- file: ch13/DList.hs
empty :: DList a
empty = DL id

-- equivalent of the list type's (:) operator
cons :: a -> DList a -> DList a
cons x (DL xs) = DL ((x:) . xs)
infixr `cons`

dfoldr :: (a -> b -> b) -> b -> DList a -> b
dfoldr f z xs = foldr f z (toList xs)
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Although the DList approach makes appends cheap, not all list-like operations are
easily available. The head function has constant cost for lists. Our DList equivalent
requires that we convert the entire DList to a regular list, so it is much more expensive
than its list counterpart—its cost is linear in the number of appends we have performed
to construct the DList:

-- file: ch13/DList.hs
safeHead :: DList a -> Maybe a
safeHead xs = case toList xs of
                (y:_) -> Just y
                _ -> Nothing

To support an equivalent of map, we can make our DList type a functor:

-- file: ch13/DList.hs
dmap :: (a -> b) -> DList a -> DList b
dmap f = dfoldr go empty
    where go x xs = cons (f x) xs

instance Functor DList where
    fmap = dmap

Once we decide that we have written enough equivalents of list functions, we go back
to the top of our source file and add a module header:

-- file: ch13/DList.hs
module DList
    (
      DList
    , fromList
    , toList
    , empty
    , append
    , cons
    , dfoldr
    ) where

Lists, Difference Lists, and Monoids
In abstract algebra, there is a simple abstract structure called a monoid. Many mathe-
matical objects are monoids, because the “bar to entry” is very low. In order to be
considered a monoid, an object must have two properties:

An associative binary operator
Let’s call it (*): the expression a * (b * c) must give the same result as
(a * b) * c.

An identity value
If we call this e, it must obey two rules: a * e == a and e * a == a.

The rules for monoids don’t say what the binary operator must do, merely that such
an operator must exist. Because of this, lots of mathematical objects are monoids. If
we take addition as the binary operator and zero as the identity value, integers form a
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monoid. With multiplication as the binary operator and one as the identity value, in-
tegers form a different monoid.

Monoids are ubiquitous in Haskell.‡ The Monoid typeclass is defined in the
Data.Monoid module:

-- file: ch13/Monoid.hs
class Monoid a where
    mempty  :: a                -- the identity
    mappend :: a -> a -> a      -- associative binary operator

If we take (++) as the binary operator and [] as the identity, lists forms a monoid:

-- file: ch13/Monoid.hs
instance Monoid [a] where
    mempty  = []
    mappend = (++)

Since lists and DLists are so closely related, it follows that our DList type must be a
monoid, too:

-- file: ch13/DList.hs
instance Monoid (DList a) where
    mempty = empty
    mappend = append

Let’s try our the methods of the Monoid typeclass in ghci:

ghci> "foo" `mappend` "bar"
"foobar"
ghci> toList (fromList [1,2] `mappend` fromList [3,4])
[1,2,3,4]
ghci> mempty `mappend` [1]
[1]

Writing Multiple Monoid Instances
Although from a mathematical perspective, integers can be monoids in two different
ways, we can’t write two differing Monoid instances for Int in Haskell—the compiler
would complain about duplicate instances.

In those rare cases where we really need several Monoid instances for the same type, we
can use some newtype trickery to create distinct types for the purpose:

-- file: ch13/Monoid.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
                   
newtype AInt = A { unA :: Int }
    deriving (Show, Eq, Num)

-- monoid under addition
instance Monoid AInt where
    mempty = 0

‡ Indeed, monoids are ubiquitous throughout programming. The difference is that in Haskell, we recognize,
and talk about them.

Taking Advantage of Functions as Data | 321



    mappend = (+)

newtype MInt = M { unM :: Int }
    deriving (Show, Eq, Num)

-- monoid under multiplication
instance Monoid MInt where
    mempty = 1
    mappend = (*)

We’ll then get different behavior depending on the type we use:

ghci> 2 `mappend` 5 :: MInt
M {unM = 10}
ghci> 2 `mappend` 5 :: AInt
A {unA = 7}

We will have more to say about difference lists and their monoidal nature in “The
Writer Monad and Lists” on page 380.

Enforcing the monoid rules
As with the rules for functors, Haskell cannot check the rules for mon-
oids on our behalf. If we’re defining a Monoid instance, we can easily
write QuickCheck properties to give us high statistical confidence that
our code is following the monoid rules.

General-Purpose Sequences
Both Haskell’s built-in list type and the DList type that we defined earlier have poor
performance characteristics under some circumstances. The Data.Sequence module
defines a Seq container type that gives good performance for a wider variety of
operations.

As with other modules, Data.Sequence is intended to be used via qualified import:

-- file: ch13/DataSequence.hs
import qualified Data.Sequence as Seq

We can construct an empty Seq using empty and a single-element container using
singleton:

ghci> Seq.empty
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
fromList []
ghci> Seq.singleton 1
fromList [1]

We can create a Seq from a list using fromList:

ghci> let a = Seq.fromList [1,2,3]
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The Data.Sequence module provides some constructor functions in the form of opera-
tors. When we perform a qualified import, we must qualify the name of an operator in
our code (which is ugly):

ghci> 1 Seq.<| Seq.singleton 2
fromList [1,2]

If we import the operators explicitly, we can avoid the need to qualify them:

-- file: ch13/DataSequence.hs
import Data.Sequence ((><), (<|), (|>))

By removing the qualification from the operator, we improve the readability of our
code:

ghci> Seq.singleton 1 |> 2
fromList [1,2]

A useful way to remember the (<|) and (|>) functions is that the “arrow” points to the
element we’re adding to the Seq. The element will be added on the side to which the
arrow points: (<|) adds on the left, (|>) on the right.

Both adding on the left and adding on the right are constant-time operations. Append-
ing two Seqs is also cheap, occurring in time proportional to the logarithm of whichever
is shorter. To append, we use the (><) operator:

ghci> let left = Seq.fromList [1,3,3]
ghci> let right = Seq.fromList [7,1]
ghci> left >< right
fromList [1,3,3,7,1]

If we want to create a list from a Seq, we must use the Data.Foldable module, which is
best imported qualified:

-- file: ch13/DataSequence.hs
import qualified Data.Foldable as Foldable

This module defines a typeclass, Foldable, which Seq implements:

ghci> Foldable.toList (Seq.fromList [1,2,3])
[1,2,3]

If we want to fold over a Seq, we use the fold functions from the Data.Foldable module:

ghci> Foldable.foldl' (+) 0 (Seq.fromList [1,2,3])
6

The Data.Sequence module provides a number of other useful list-like functions. Its
documentation is very thorough, giving time bounds for each operation.

If Seq has so many desirable characteristics, why is it not the default sequence type?
Lists are simpler and have less overhead, and so quite often they are good enough for
the task at hand. They are also well suited to a lazy setting, whereas Seq does not fare
well.
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CHAPTER 14

Monads

In Chapter 7, we talked about the IO monad, but we intentionally kept the discussion
narrowly focused on how to communicate with the outside world. We didn’t discuss
what a monad is.

We’ve already seen in Chapter 7 that the IO monad is easy to work with. Notational
differences aside, writing code in the IO monad isn’t much different from coding in any
other imperative language.

When we had practical problems to solve in earlier chapters, we introduced structures
that, as we will soon see, are actually monads. We aim to show you that a monad is
often an obvious and useful tool to help solve a problem. We’ll define a few monads in
this chapter, to show how easy it is.

Revisiting Earlier Code Examples

Maybe Chaining
Let’s take another look at the parseP5 function that we wrote in Chapter 10:

-- file: ch10/PNM.hs
matchHeader :: L.ByteString -> L.ByteString -> Maybe L.ByteString

-- "nat" here is short for "natural number"
getNat :: L.ByteString -> Maybe (Int, L.ByteString)

getBytes :: Int -> L.ByteString
         -> Maybe (L.ByteString, L.ByteString)

parseP5 s =
  case matchHeader (L8.pack "P5") s of
    Nothing -> Nothing
    Just s1 ->
      case getNat s1 of
        Nothing -> Nothing
        Just (width, s2) ->
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          case getNat (L8.dropWhile isSpace s2) of
            Nothing -> Nothing
            Just (height, s3) ->
              case getNat (L8.dropWhile isSpace s3) of
                Nothing -> Nothing
                Just (maxGrey, s4)
                  | maxGrey > 255 -> Nothing
                  | otherwise ->
                      case getBytes 1 s4 of
                        Nothing -> Nothing
                        Just (_, s5) ->
                          case getBytes (width * height) s5 of
                            Nothing -> Nothing
                            Just (bitmap, s6) ->
                              Just (Greymap width height maxGrey bitmap, s6)

When we introduced this function, it threatened to march off the right side of the page
if it got much more complicated. We brought the staircasing under control using the
(>>?) function:

-- file: ch10/PNM.hs
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>? _ = Nothing
Just v  >>? f = f v

We carefully chose the type of (>>?) to let us chain together functions that return a
Maybe value. So long as the result type of one function matches the parameter of the
next, we can chain functions returning Maybe together indefinitely. The body of (>>?)
hides the details of whether the chain of functions we build is short-circuited some-
where, due to one returning Nothing, or whenever it is completely evaluated.

Implicit State
Useful as (>>?) was for cleaning up the structure of parseP5, we had to incrementally
consume pieces of a string as we parsed it. This forced us to pass the current value of
the string down our chain of Maybes, wrapped up in a tuple. Each function in the chain
put a result into one element of the tuple and the unconsumed remainder of the string
into the other:

-- file: ch10/PNM.hs
parseP5_take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)
parseP5_take2 s =
    matchHeader (L8.pack "P5") s      >>?
    \s -> skipSpace ((), s)           >>?
    (getNat . snd)                    >>?
    skipSpace                         >>?
    \(width, s) ->   getNat s         >>?
    skipSpace                         >>?
    \(height, s) ->  getNat s         >>?
    \(maxGrey, s) -> getBytes 1 s     >>?
    (getBytes (width * height) . snd) >>?
    \(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)
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skipSpace :: (a, L.ByteString) -> Maybe (a, L.ByteString)
skipSpace (a, s) = Just (a, L8.dropWhile isSpace s)

Once again, we were faced with a pattern of repeated behavior: consume some string,
return a result, and return the remaining string for the next function to consume. How-
ever, this pattern was more insidious. If we wanted to pass another piece of information
down the chain, we’d have to modify nearly every element of the chain, turning each
two-tuple into a three-tuple!

We addressed this by moving the responsibility for managing the current piece of string
out of the individual functions in the chain, and into the function that we used to chain
them together:

-- file: ch10/Parse.hs
(==>) :: Parse a -> (a -> Parse b) -> Parse b

firstParser ==> secondParser  =  Parse chainedParser
  where chainedParser initState   =
          case runParse firstParser initState of
            Left errMessage ->
                Left errMessage
            Right (firstResult, newState) ->
                runParse (secondParser firstResult) newState

We also hid the details of the parsing state in the ParseState type. Even the getState
and putState functions don’t inspect the parsing state, so any modification to
ParseState will have no effect on any existing code.

Looking for Shared Patterns
When we look at the preceding examples in detail, they don’t seem to have much in
common. Obviously, they’re both concerned with chaining functions together and
hiding details to let us write tidier code. However, let’s take a step back and consider
them in less detail.

First, let’s look at the type definitions:

-- file: ch14/Maybe.hs
data Maybe a = Nothing
             | Just a

-- file: ch10/Parse.hs
newtype Parse a = Parse {
      runParse :: ParseState -> Either String (a, ParseState)
    }

The common feature of these two types is that each has a single type parameter on the
left of the definition, which appears somewhere on the right. These are thus generic
types, which know nothing about their payloads.
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Next, we’ll examine the chaining functions that we wrote for the two types:

ghci> :type (>>?)
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b

ghci> :type (==>)
(==>) :: Parse a -> (a -> Parse b) -> Parse b

These functions have strikingly similar types. If we were to turn those type constructors
into a type variable, we’d end up with a single more abstract type:

-- file: ch14/Maybe.hs
chain :: m a -> (a -> m b) -> m b

Finally, in each case, we have a function that takes a “plain” value and “injects” it into
the target type. For Maybe, this function is simply the value constructor Just, but the
injector for Parse is more complicated:

-- file: ch10/Parse.hs
identity :: a -> Parse a
identity a = Parse (\s -> Right (a, s))

Again, it’s not the details or complexity that we’re interested in, it’s the fact that each
of these types has an “injector” function, which looks like this:

-- file: ch14/Maybe.hs
inject :: a -> m a

It is exactly these three properties, and a few rules about how we can use them together,
that define a monad in Haskell. Let’s revisit the preceding list in condensed form:

• A type constructor m.

• A function of type m a -> (a -> m b) -> m b for chaining the output of one function
into the input of another.

• A function of type a -> m a for injecting a normal value into the chain, that is, it
wraps a type a with the type constructor m.

The properties that make the Maybe type a monad are its type constructor Maybe a, our
chaining function (>>?), and the injector function Just.

For Parse, the corresponding properties are the type constructor Parse a, the chaining
function (==>), and the injector function identity.

We intentionally have said nothing about how the chaining and injection functions of
a monad should behave, because this almost doesn’t matter. In fact, monads are
ubiquitous in Haskell code precisely because they are so simple. Many common pro-
gramming patterns have a monadic structure: passing around implicit data or short-
circuiting a chain of evaluations if one fails, to choose but two.
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The Monad Typeclass
We can capture the notions of chaining and injection, and the types that we want them
to have, in a Haskell typeclass. The standard Prelude already defines just such a type-
class, named Monad:

-- file: ch14/Maybe.hs
class Monad m where
    -- chain
    (>>=)  :: m a -> (a -> m b) -> m b
    -- inject
    return :: a -> m a

Here, (>>=) is our chaining function. We’ve already been introduced to it in “Sequenc-
ing” on page 186. It’s often referred to as bind, as it binds the result of the computation
on the left to the parameter of the one on the right.

Our injection function is return. As we noted in “The True Nature of Return” on page
187, the choice of the name return is a little unfortunate. That name is widely used in
imperative languages, where it has a fairly well-understood meaning. In Haskell, its
behavior is much less constrained. In particular, calling return in the middle of a chain
of functions won’t cause the chain to exit early. A useful way to link its behavior to its
name is that it returns a pure value (of type a) into a monad (of type m a). But really,
“inject” would be a better name.

While (>>=) and return are the core functions of the Monad typeclass, it also defines two
other functions. The first is (>>). Like (>>=), it performs chaining, but it ignores the
value on the left:

-- file: ch14/Maybe.hs
    (>>) :: m a -> m b -> m b
    a >> f = a >>= \_ -> f

We use this function when we want to perform actions in a certain order, but don’t
care what the result of one is. This might seem pointless: why would we not care what
a function’s return value is? Recall, though, that we defined a (==>&) combinator earlier
to express exactly this. Alternatively, consider a function such as print, which provides
a placeholder result that we do not need to inspect:

ghci> :type print "foo"
print "foo" :: IO ()

If we use plain (>>=), we have to provide, as its righthand side, a function that ignores
its argument:

ghci> print "foo" >>= \_ -> print "bar"
"foo"
"bar"
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But if we use (>>), we can omit the needless function:

ghci> print "baz" >> print "quux"
"baz"
"quux"

As we just showed, the default implementation of (>>) is defined in terms of (>>=).

The second noncore Monad function is fail, which takes an error message and does
something to make the chain of functions fail:

-- file: ch14/Maybe.hs
    fail :: String -> m a
    fail = error

Beware of fail
Many Monad instances don’t override the default implementation of
fail that we show here, so in those monads, fail uses error. Calling
error is usually highly undesirable, since it throws an exception that
callers either cannot catch or will not expect.

Even if you know that right now you’re executing in a monad that has
fail do something more sensible, we still recommend avoiding it. It’s
far too easy to cause yourself a problem later when you refactor your
code and forget that a previously safe use of fail might be dangerous in
its new context.

To revisit the parser that we developed in Chapter 10, here is its Monad instance:

-- file: ch10/Parse.hs
instance Monad Parse where
    return = identity
    (>>=) = (==>)
    fail = bail

And Now, a Jargon Moment
There are a few terms of art around monads that you may not be familiar with. These
aren’t formal, but they’re commonly used, so it’s helpful to know about them:

• Monadic simply means “pertaining to monads.” A monadic type is an instance of
the Monad typeclass; a monadic value has a monadic type.

• When we say that a type “is a monad,” this is really a shorthand way of saying that
it’s an instance of the Monad typeclass. Being an instance of Monad gives us the nec-
essary monadic triple of type constructor, injection function, and chaining
function.

• In the same way, a reference to “the Foo monad” implies that we’re talking about
the type named Foo and that it’s an instance of Monad.
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• An action is another name for a monadic value. This use of the word probably
originated with the introduction of monads for I/O, where a monadic value such
as print "foo" can have an observable side effect. A function with a monadic return
type might also be referred to as an action, though this is a little less common.

Using a New Monad: Show Your Work!
In our introduction to monads, we showed how some preexisting code was already
monadic in form. Now that we are beginning to grasp what a monad is and have seen
the Monad typeclass, let’s build a monad with foreknowledge of what we’re doing. We’ll
start out by defining its interface, and then we’ll put it to use. Once we have those out
of the way, we’ll finally build it.

Pure Haskell code is wonderfully clean to write, but, of course, it can’t perform I/O.
Sometimes, we’d like to have a record of decisions we made, without writing log
information to a file. Let’s develop a small library to help with this.

Recall the globToRegex function that we developed in “Translating a glob Pattern into
a Regular Expression” on page 202. We will modify it so that it keeps a record of each
of the special pattern sequences that it translates. We are revisiting familiar territory
for a reason: it lets us compare nonmonadic and monadic versions of the same code.

To start off, we’ll wrap our result type with a Logger type constructor:

-- file: ch14/Logger.hs
globToRegex :: String -> Logger String

Information Hiding
We’ll intentionally keep the internals of the Logger module abstract:

-- file: ch14/Logger.hs
module Logger
    (
      Logger
    , Log
    , runLogger
    , record
    ) where

Hiding the details like this has two benefits: it grants us considerable flexibility in how
we implement our monad, and more importantly, it gives users a simple interface.

Our Logger type is purely a type constructor. We don’t export the value constructor
that a user would need to create a value of this type. All they can use Logger for is writing
type signatures.

The Log type is just a synonym for a list of strings, to make a few signatures more
readable. We use a list of strings to keep the implementation simple:
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-- file: ch14/Logger.hs
type Log = [String]

Instead of giving our users a value constructor, we provide them with a function,
runLogger, that evaluates a logged action. This returns both the result of an action and
whatever was logged while the result was being computed:

-- file: ch14/Logger.hs
runLogger :: Logger a -> (a, Log)

Controlled Escape
The Monad typeclass doesn’t provide any means for values to escape their monadic
shackles. We can inject a value into a monad using return. We can extract a value from
a monad using (>>=) but the function on the right, which can see an unwrapped value,
has to wrap its own result back up again.

Most monads have one or more runLogger-like functions. The notable exception is of
course IO, which we usually escape from simply by exiting a program.

A monad execution function runs the code inside the monad and unwraps its result.
Such functions are usually the only means provided for a value to escape from its mo-
nadic wrapper. The author of a monad thus has complete control over how whatever
happens inside the monad gets out.

Some monads have several execution functions. In our case, we can imagine a few
alternatives to runLogger: one might return only the log messages, whereas another
might return just the result and drop the log messages.

Leaving a Trace
When executing inside a Logger action, the user code calls record to record something:

-- file: ch14/Logger.hs
record :: String -> Logger ()

Since recording occurs in the plumbing of our monad, our action’s result supplies no
information.

Usually, a monad will provide one or more helper functions such as our record. These
are our means for accessing the special behaviors of that monad.

Our module also defines the Monad instance for the Logger type. These definitions are
all that a client module needs in order to be able to use this monad.

Here is a preview, in ghci, of how our monad will behave:

ghci> let simple = return True :: Logger Bool
ghci> runLogger simple
(True,[])
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When we run the logged action using runLogger, we get back a pair. The first element
is the result of our code; the second is the list of items logged while the action executed.
We haven’t logged anything, so the list is empty. Let’s fix that:

ghci> runLogger (record "hi mom!" >> return 3.1337)
(3.1337,["hi mom!"])

Using the Logger Monad
Here’s how we kick off our glob-to-regexp conversion inside the Logger monad:

-- file: ch14/Logger.hs
globToRegex cs =
    globToRegex' cs >>= \ds ->
    return ('^':ds)

There are a few coding style issues worth mentioning here. The body of the function
starts on the line after its name. This gives us some horizontal whitespace. We’ve also
“hung” the parameter of the anonymous function at the end of the line. This is common
practice in monadic code.

Remember the type of (>>=): it extracts the value on the left from its Logger wrapper,
and passes the unwrapped value to the function on the right. The function on the right
must, in turn, wrap its result with the Logger wrapper. This is exactly what return does.
It takes a pure value, and wraps it in the monad’s type constructor:

ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type (globToRegex "" >>=)
(globToRegex "" >>=) :: (String -> Logger b) -> Logger b

Even when we write a function that does almost nothing, we must call return to wrap
the result with the correct type:

-- file: ch14/Logger.hs
globToRegex' :: String -> Logger String
globToRegex' "" = return "$"

When we call record to save a log entry, we use (>>) instead of (>>=) to chain it with
the following action:

-- file: ch14/Logger.hs
globToRegex' ('?':cs) =
    record "any" >>
    globToRegex' cs >>= \ds ->
    return ('.':ds)

Recall that this is a variant of (>>=) that ignores the result on the left. We know that
the result of record will always be (), so there’s no point in capturing it.

We can use do notation, which we first encountered in “Sequencing” on page 186, to
tidy up our code somewhat:
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-- file: ch14/Logger.hs
globToRegex' ('*':cs) = do
    record "kleene star"
    ds <- globToRegex' cs
    return (".*" ++ ds)

The choice of do notation versus explicit (>>=) with anonymous functions is mostly a
matter of taste, although almost everyone’s taste is to use do notation for anything
longer than about two lines. There is one significant difference between the two styles,
though, which we’ll return to in “Desugaring of do Blocks” on page 344.

Parsing a character class mostly follows the same pattern that we’ve already seen:

-- file: ch14/Logger.hs
globToRegex' ('[':'!':c:cs) =
    record "character class, negative" >>
    charClass cs >>= \ds ->
    return ("[^" ++ c : ds)
globToRegex' ('[':c:cs) =
    record "character class" >>
    charClass cs >>= \ds ->
    return ("[" ++ c : ds)
globToRegex' ('[':_) =
    fail "unterminated character class"

Mixing Pure and Monadic Code
Based on the code we’ve seen so far, monads seem to have a substantial shortcoming:
the type constructor that wraps a monadic value makes it tricky to use a normal, pure
function on a value trapped inside a monadic wrapper. Here’s a simple illustration of
the apparent problem. Let’s say we have a trivial piece of code that runs in the Logger
monad and returns a string:

ghci> let m = return "foo" :: Logger String

If we want to find out the length of that string, we can’t simply call length. The string
is wrapped, so the types don’t match up:

ghci> length m

<interactive>:1:7:
    Couldn't match expected type `[a]'
           against inferred type `Logger String'
    In the first argument of `length', namely `m'
    In the expression: length m
    In the definition of `it': it = length m

So far, to work around this, we’ve something like the following:

ghci> :type   m >>= \s -> return (length s)
m >>= \s -> return (length s) :: Logger Int

We use (>>=) to unwrap the string, and then write a small anonymous function that
calls length and rewraps the result using return.
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This need crops up often in Haskell code. You won’t be surprised to learn that a short-
hand already exists: we use the lifting technique that we introduced for functors in
“Introducing Functors” on page 244. Lifting a pure function into a functor usually
involves unwrapping the value inside the functor, calling the function on it, and re-
wrapping the result with the same constructor.

We do exactly the same thing with a monad. Because the Monad typeclass already pro-
vides the (>>=) and return functions that know how to unwrap and wrap a value, the
liftM function doesn’t need to know any details of a monad’s implementation:

-- file: ch14/Logger.hs
liftM :: (Monad m) => (a -> b) -> m a -> m b
liftM f m = m >>= \i ->
            return (f i)

When we declare a type to be an instance of the Functor typeclass, we have to write our
own version of fmap specially tailored to that type. By contrast, liftM doesn’t need to
know anything of a monad’s internals, because they’re abstracted by (>>=) and
return. We need to write it only once, with the appropriate type constraint.

The liftM function is predefined for us in the standard Control.Monad module.

To see how liftM can help readability, we’ll compare two otherwise identical pieces of
code. First, we’ll look at the familiar kind that does not use liftM:

-- file: ch14/Logger.hs
charClass_wordy (']':cs) =
    globToRegex' cs >>= \ds ->
    return (']':ds)
charClass_wordy (c:cs) =
    charClass_wordy cs >>= \ds ->
    return (c:ds)

Now we can eliminate the (>>=) and anonymous function cruft with liftM:

-- file: ch14/Logger.hs
charClass (']':cs) = (']':) `liftM` globToRegex' cs
charClass (c:cs) = (c:) `liftM` charClass cs

As with fmap, we often use liftM in infix form. An easy way to read such an expression
is “apply the pure function on the left to the result of the monadic action on the right.”

The liftM function is so useful that Control.Monad defines several variants, which com-
bine longer chains of actions. We can see one in the last clause of our globToRegex'
function:

-- file: ch14/Logger.hs
globToRegex' (c:cs) = liftM2 (++) (escape c) (globToRegex' cs)

escape :: Char -> Logger String
escape c
    | c `elem` regexChars = record "escape" >> return ['\\',c]
    | otherwise           = return [c]
  where regexChars = "\\+()^$.{}]|"
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The liftM2 function that we use here is defined as follows:

-- file: ch14/Logger.hs
liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c
liftM2 f m1 m2 =
    m1 >>= \a ->
    m2 >>= \b ->
    return (f a b)

It executes the first action, then the second, and then combines their results using the
pure function f, and wraps that result. In addition to liftM2, the variants in
Control.Monad go up to liftM5.

Putting a Few Misconceptions to Rest
We’ve now seen enough examples of monads in action to have some feel for what’s
going on. Before we continue, there are a few oft-repeated myths about monads that
we’re going to address. You’re bound to encounter these assertions “in the wild,” so
you might as well be prepared with a few good retorts:

Monads can be hard to understand
We’ve already shown that monads “fall out naturally” from several problems.
We’ve found that the best key to understanding them is to explain several concrete
examples, and then talk about what they have in common.

Monads are only useful for I/O and imperative coding
While we use monads for I/O in Haskell, they’re valuable for many other purposes
as well. We’ve already used them for short-circuiting a chain of computations,
hiding complicated state, and logging. Even so, we’ve barely scratched the surface.

Monads are unique to Haskell
Haskell is probably the language that makes the most explicit use of monads, but
people write them in other languages, too, ranging from C++ to OCaml. They
happen to be particularly tractable in Haskell, due to do notation, the power and
inference of the type system, and the language’s syntax.

Monads are for controlling the order of evaluation

Building the Logger Monad
The definition of our Logger type is very simple:

-- file: ch14/Logger.hs
newtype Logger a = Logger { execLogger :: (a, Log) }

It’s a pair, where the first element is the result of an action, and the second is a list of
messages logged while that action was run.
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We’ve wrapped the tuple in a newtype to make it a distinct type. The runLogger function
extracts the tuple from its wrapper. The function that we’re exporting to execute a
logged action, runLogger, is just a synonym for execLogger:

-- file: ch14/Logger.hs
runLogger = execLogger

Our record helper function creates a singleton list of the message that we pass it:

-- file: ch14/Logger.hs
record s = Logger ((), [s])

The result of this action is (), so that’s the value we put in the result slot.

Let’s begin our Monad instance with return, which is trivial. It logs nothing and stores
its input in the result slot of the tuple:

-- file: ch14/Logger.hs
instance Monad Logger where
    return a = Logger (a, [])

Slightly more interesting is (>>=), which is the heart of the monad. It combines an action
and a monadic function to give a new result and a new log:

-- file: ch14/Logger.hs
    -- (>>=) :: Logger a -> (a -> Logger b) -> Logger b
    m >>= k = let (a, w) = execLogger m
                  n      = k a
                  (b, x) = execLogger n
              in Logger (b, w ++ x)

Let’s spell out explicitly what is going on. We use runLogger to extract the result a from
the action m, and we pass it to the monadic function k. We extract the result b from that
in turn, and put it into the result slot of the final action. We concatenate the logs w and
x to give the new log.

Sequential Logging, Not Sequential Evaluation
Our definition of (>>=) ensures that messages logged on the left will appear in the new
log before those on the right. However, it says nothing about when the values a and b
are evaluated: (>>=) is lazy.

Like most other aspects of a monad’s behavior, strictness is under the control of the its
implementor. It is not a constant shared by all monads. Indeed, some monads come in
multiple flavors, each with different levels of strictness.

The Writer Monad
Our Logger monad is a specialized version of the standard Writer monad, which can
be found in the Control.Monad.Writer module of the mtl package. We will present a
Writer example in “Using Typeclasses” on page 378.
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The Maybe Monad
The Maybe type is very nearly the simplest instance of Monad. It represents a computation
that might not produce a result:

-- file: ch14/Maybe.hs
instance Monad Maybe where
    Just x >>= k  =  k x
    Nothing >>= _ =  Nothing

    Just _ >> k   =  k
    Nothing >> _  =  Nothing

    return x      =  Just x

    fail _        =  Nothing

If, when we chain together a number of computations over Maybe using (>>=) or (>>),
any of them returns Nothing, we don’t evaluate any of the remaining computations.

Note, though, that the chain is not completely short-circuited. Each (>>=) or (>>) in
the chain will still match a Nothing on its left and produce a Nothing on its right, all the
way to the end. It’s easy to forget this point: when a computation in the chain fails, the
subsequent production, chaining, and consumption of Nothing values are cheap at
runtime, but they’re not free.

Executing the Maybe Monad
A function suitable for executing the Maybe monad is maybe. (Remember that “execut-
ing” a monad involves evaluating it and returning a result that’s had the monad’s type
wrapper removed.)

-- file: ch14/Maybe.hs
maybe :: b -> (a -> b) -> Maybe a -> b
maybe n _ Nothing  = n
maybe _ f (Just x) = f x

Its first parameter is the value to return if the result is Nothing. The second is a function
to apply to a result wrapped in the Just constructor; the result of that application is
then returned.

Since the Maybe type is so simple, it’s about as common to simply pattern match on a
Maybe value as it is to call maybe. Each one is more readable in different circumstances.

Maybe at Work, and Good API Design
Here’s an example of Maybe in use as a monad. Given a customer’s name, we want to
find the billing address of her mobile phone carrier:
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-- file: ch14/Carrier.hs
import qualified Data.Map as M

type PersonName = String
type PhoneNumber = String
type BillingAddress = String
data MobileCarrier = Honest_Bobs_Phone_Network
                   | Morrisas_Marvelous_Mobiles
                   | Petes_Plutocratic_Phones
                     deriving (Eq, Ord)

findCarrierBillingAddress :: PersonName
                          -> M.Map PersonName PhoneNumber
                          -> M.Map PhoneNumber MobileCarrier
                          -> M.Map MobileCarrier BillingAddress
                          -> Maybe BillingAddress

Our first version is the dreaded ladder of code marching off the right of the screen, with
many boilerplate case expressions:

-- file: ch14/Carrier.hs
variation1 person phoneMap carrierMap addressMap =
    case M.lookup person phoneMap of
      Nothing -> Nothing
      Just number ->
          case M.lookup number carrierMap of
            Nothing -> Nothing
            Just carrier -> M.lookup carrier addressMap

The Data.Map module’s lookup function has a monadic return type:

ghci> :module +Data.Map
ghci> :type Data.Map.lookup
Data.Map.lookup :: (Ord k, Monad m) => k -> Map k a -> m a

In other words, if the given key is present in the map, lookup injects it into the monad
using return. Otherwise, it calls fail. This is an interesting piece of API design, though
one that we think was a poor choice:

• On the positive side, the behaviors of success and failure are automatically cus-
tomized to our needs, based on the monad from which we’re calling lookup. Better
yet, lookup itself doesn’t know or care what those behaviors are.

The case expressions just shown typecheck because we’re comparing the result of
lookup against values of type Maybe.

• The hitch is, of course, that using fail in the wrong monad throws a bothersome
exception. We have already warned against the use of fail, so we will not repeat
ourselves here.

In practice, everyone uses Maybe as the result type for lookup. The result type of such a
conceptually simple function provides generality where it is not needed: lookup should
have been written to return Maybe.
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Let’s set aside the API question and deal with the ugliness of our code. We can make
more sensible use of Maybe’s status as a monad:

-- file: ch14/Carrier.hs
variation2 person phoneMap carrierMap addressMap = do
  number <- M.lookup person phoneMap
  carrier <- M.lookup number carrierMap
  address <- M.lookup carrier addressMap
  return address

If any of these lookups fails, the definitions of (>>=) and (>>) mean that the result of
the function as a whole will be Nothing, just as it was for our first attempt that used
case explicitly.

This version is much tidier, but the return isn’t necessary. Stylistically, it makes the
code look more regular, and perhaps more familiar to the eyes of an imperative pro-
grammer, but behaviorally it’s redundant. Here’s an equivalent piece of code:

-- file: ch14/Carrier.hs
variation2a person phoneMap carrierMap addressMap = do
  number <- M.lookup person phoneMap
  carrier <- M.lookup number carrierMap
  M.lookup carrier addressMap

When we introduced maps, we mentioned in “Partial application awkwardness” on
page 290 that the type signatures of functions in the Data.Map module often make them
awkward to partially apply. The lookup function is a good example. If we flip its ar-
guments, we can write the function body as a one-liner:

-- file: ch14/Carrier.hs
variation3 person phoneMap carrierMap addressMap =
    lookup phoneMap person >>= lookup carrierMap >>= lookup addressMap
  where lookup = flip M.lookup

The List Monad
While the Maybe type can represent either no value or one, there are many situations
where we might want to return some number of results that we do not know in advance.
Obviously, a list is well suited to this purpose. The type of a list suggests that we might
be able to use it as a monad, because its type constructor has one free variable. And
sure enough, we can use a list as a monad.

Rather than simply present the Prelude’s Monad instance for the list type, let’s try to
figure out what an instance ought to look like. This is easy to do: we’ll look at the types
of (>>=) and return, perform some substitutions, and see if we can use a few familiar
list functions.

The more obvious of the two functions is return. We know that it takes a type a, and
wraps it in a type constructor m to give the type m a. We also know that the type con-
structor here is []. Substituting this type constructor for the type variable m gives us the
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type [] a (yes, this really is valid notation!), which we can rewrite in more familiar form
as [a].

We now know that return for lists should have the type a -> [a]. There are only a few
sensible possibilities for an implementation of this function. It might return the empty
list, a singleton list, or an infinite list. The most appealing behavior, based on what we
know so far about monads, is the singleton list—it doesn’t throw away information,
nor does it repeat it infinitely:

-- file: ch14/ListMonad.hs
returnSingleton :: a -> [a]
returnSingleton x = [x]

If we perform the same substitution trick on the type of (>>=) as we did with return,
we discover that it should have the type [a] -> (a -> [b]) -> [b]. This seems close
to the type of map:

ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type map
map :: (a -> b) -> [a] -> [b]

The ordering of the types in map’s arguments doesn’t match, but that’s easy to fix:

ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type flip map
flip map :: [a] -> (a -> b) -> [b]

We’ve still got a problem: the second argument of flip map has the type a -> b, whereas
the second argument of (>>=) for lists has the type a -> [b]. What do we do about this?

Let’s do a little more substitution and see what happens with the types. The function
flip map can return any type b as its result. If we substitute [b] for b in both places
where it appears in flip map’s type signature, its type signature reads as a -> (a ->
[b]) -> [[b]]. In other words, if we map a function that returns a list over a list, we
get a list of lists back:

ghci> flip map [1,2,3] (\a -> [a,a+100])
[[1,101],[2,102],[3,103]]

Interestingly, we haven’t really changed how closely our type signatures match. The
type of (>>=) is [a] -> (a -> [b]) -> [b], while that of flip map when the mapped
function returns a list is [a] -> (a -> [b]) -> [[b]]. There’s still a mismatch in one
type term—we’ve just moved that term from the middle of the type signature to the
end. However, our juggling wasn’t in vain—we now need a function that takes a
[[b]] and returns a [b], and one readily suggests itself in the form of concat:

ghci> :type concat
concat :: [[a]] -> [a]
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The types suggest that we should flip the arguments to map, and then concat the results
to give a single list:

ghci> :type \xs f -> concat (map f xs)
\xs f -> concat (map f xs) :: [a] -> (a -> [a1]) -> [a1]

This is exactly the definition of (>>=) for lists:

-- file: ch14/ListMonad.hs
instance Monad [] where
    return x = [x]
    xs >>= f = concat (map f xs)

It applies f to every element in the list xs, and concatenates the results to return a single
list.

With our two core Monad definitions in hand, the implementations of the noncore def-
initions that remain, (>>) and fail, ought to be obvious:

-- file: ch14/ListMonad.hs
    xs >> f = concat (map (\_ -> f) xs)
    fail _ = []

Understanding the List Monad
The list monad is similar to a familiar Haskell tool, the list comprehension. We can
illustrate this similarity by computing the Cartesian product of two lists. First, we’ll
write a list comprehension:

-- file: ch14/CartesianProduct.hs
comprehensive xs ys = [(x,y) | x <- xs, y <- ys]

For once, we’ll use bracketed notation for the monadic code instead of layout notation.
This will highlight how structurally similar the monadic code is to the list
comprehension:

-- file: ch14/CartesianProduct.hs
monadic xs ys = do { x <- xs; y <- ys; return (x,y) }

The only real difference is that the value we’re constructing comes at the end of the
sequence of expressions, instead of at the beginning as in the list comprehension. Also,
the results of the two functions are identical:

ghci> comprehensive [1,2] "bar"
[(1,'b'),(1,'a'),(1,'r'),(2,'b'),(2,'a'),(2,'r')]
ghci> comprehensive [1,2] "bar" == monadic [1,2] "bar"
True

It’s easy to be baffled by the list monad early on, so let’s walk through our monadic
Cartesian product code again in more detail. This time, we’ll rearrange the function to
use layout instead of brackets:

-- file: ch14/CartesianProduct.hs
blockyDo xs ys = do
    x <- xs
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    y <- ys
    return (x, y)

For every element in the list xs, the rest of the function is evaluated once, with x bound
to a different value from the list each time. Then for every element in the list ys, the
remainder of the function is evaluated once, with y bound to a different value from the
list each time.

What we really have here is a doubly nested loop! This highlights an important fact
about monads: you cannot predict how a block of monadic code will behave unless you
know what monad it will execute in.

We’ll now walk through the code even more explicitly, but first let’s get rid of the do
notation to make the underlying structure clearer. We’ve indented the code a little
unusually to make the loop nesting more obvious:

-- file: ch14/CartesianProduct.hs
blockyPlain xs ys =
    xs >>=
    \x -> ys >>=
    \y -> return (x, y)

blockyPlain_reloaded xs ys =
    concat (map (\x ->
                 concat (map (\y ->
                              return (x, y))
                         ys))
            xs)

If xs has the value [1,2,3], the two lines that follow are evaluated with x bound to 1,
then to 2, and finally to 3. If ys has the value [True, False], the final line is evaluated
six times: once with x as 1 and y as True; again with x as 1 and y as False; and so on.
The return expression wraps each tuple in a single-element list.

Putting the List Monad to Work
Here is a simple brute-force constraint solver. Given an integer, it finds all pairs of
positive integers that, when multiplied, give that value (this is the constraint being
solved):

-- file: ch14/MultiplyTo.hs
guarded :: Bool -> [a] -> [a]
guarded True  xs = xs
guarded False _  = []

multiplyTo :: Int -> [(Int, Int)]
multiplyTo n = do
  x <- [1..n]
  y <- [x..n]
  guarded (x * y == n) $
    return (x, y)

The List Monad | 343



Let’s try this in ghci:

ghci> multiplyTo 8
[(1,8),(2,4)]
ghci> multiplyTo 100
[(1,100),(2,50),(4,25),(5,20),(10,10)]
ghci> multiplyTo 891
[(1,891),(3,297),(9,99),(11,81),(27,33)]

Desugaring of do Blocks
Haskell’s do syntax is an example of syntactic sugar: it provides an alternative way of
writing monadic code, without using (>>=) and anonymous functions. Desugaring is
the translation of syntactic sugar back to the core language.

The rules for desugaring a do block are easy to follow. We can think of a compiler as
applying these rules mechanically and repeatedly to a do block until no more do key-
words remain.

A do keyword followed by a single action is translated to that action by itself:

-- file: ch14/Do.hs            -- file: ch14/Do.hs 
doNotation1 =                  translated1 =
    do act                         act

A do keyword followed by more than one action is translated to the first action, then
(>>), followed by a do keyword and the remaining actions. When we apply this rule
repeatedly, the entire do block ends up chained together by applications of (>>):

-- file: ch14/Do.hs            -- file: ch14/Do.hs
doNotation2 =                  translated2 =
    do act1                        act1 >>
       act2                        do act2
       {- ... etc. -}                 {- ... etc. -}
       actN                           actN

                              finalTranslation2 =
                                  act1 >>
                                  act2 >>
                                  {- ... etc. -}
                                  actN

The <- notation has a translation that’s worth paying close attention to. On the left of
the <- is a normal Haskell pattern. This can be a single variable or something more
complicated, but a guard expression is not allowed:

-- file: ch14/Do.hs            -- file: ch14/Do.hs
doNotation3 =                  translated3 =
    do pattern <- act1             let f pattern = do act2
       act2                                           let f pattern = do act2
       {- ... etc. -}                                 actN
       actN                            f _     = fail "..."
                                   in act1 >>= f
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This pattern is translated into a let binding that declares a local function with a unique
name (we’re just using f as an example). The action on the right of the <- is then chained
with this function using (>>=).

What’s noteworthy about this translation is that if the pattern match fails, the local
function calls the monad’s fail implementation. Here’s an example using the Maybe
monad:

-- file: ch14/Do.hs
robust :: [a] -> Maybe a
robust xs = do (_:x:_) <- Just xs
               return x

The fail implementation in the Maybe monad simply returns Nothing. If the pattern
match in the preceding function fails, we thus get Nothing as our result:

ghci> robust [1,2,3]
Just 2
ghci> robust [1]
Nothing

Finally, when we write a let expression in a do block, we can omit the usual in keyword.
Subsequent actions in the block must be lined up with the let keyword:

-- file: ch14/Do.hs            -- file: ch14/Do.hs
doNotation4 =                  translated4 =
    do let val1 = expr1            let val1 = expr1
           val2 = expr2                val2 = expr2
           {- ... etc. -}              valN = exprN
           valN = exprN            in do act1
       act1                              act2
       act2                              {- ... etc. -}
       {- ... etc. -}                    actN       
       actN

Monads as a Programmable Semicolon
Earlier in “The Offside Rule Is Not Mandatory” on page 66, we mentioned that layout
is the norm in Haskell, but it’s not required. We can write a do block using explicit
structure instead of layout:

-- file: ch14/Do.hs            -- file: ch14/Do.hs
semicolon = do                 semicolonTranslated =
  {                                act1 >>
    act1;                          let f val1 = let val2 = expr1
    val1 <- act2;                               in actN
    let { val2 = expr1 };              f _ = fail "..."
    actN;                          in act2 >>= f
  }

Even though this use of explicit structure is rare, the fact that it uses semicolons to
separate expressions has given rise to an apt slogan: monads are a kind of
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“programmable semicolon,” because the behaviors of (>>) and (>>=) are different in
each monad.

Why Go Sugar-Free?
When we write (>>=) explicitly in our code, it reminds us that we’re stitching functions
together using combinators, not simply sequencing actions.

As long as you feel like a novice with monads, we think you should prefer to explicitly
write (>>=) over the syntactic sugar of do notation. The repeated reinforcement of
what’s really happening seems, for many programmers, to help keep things clear. (It
can be easy for an imperative programmer to relax a little too much from exposure to
the IO monad and assume that a do block means nothing more than a simple sequence
of actions.)

Once you’re feeling more familiar with monads, you can choose whichever style seems
more appropriate for writing a particular function. Indeed, when you read other peo-
ple’s monadic code, you’ll see that it’s unusual, but by no means rare, to mix both do
notation and (>>=) in a single function.

The (=<<) function shows up frequently whether or not we use do notation. It is a flipped
version of (>>=):

ghci> :type (>>=)
(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
ghci> :type (=<<)
(=<<) :: (Monad m) => (a -> m b) -> m a -> m b

It comes in handy if we want to compose monadic functions in the usual Haskell right-
to-left style:

-- file: ch14/CartesianProduct.hs
wordCount = print . length . words =<< getContents

The State Monad
We discovered earlier in this chapter that Parse from Chapter 10 was a monad. It has
two logically distinct aspects. One is the idea of a parse failing and providing a message
with the details (we represented this using the Either type). The other involves carrying
around a piece of implicit state, in our case, the partially consumed ByteString.

This need for a way to read and write state is common enough in Haskell programs
that the standard libraries provide a monad named State that is dedicated to this pur-
pose. This monad lives in the Control.Monad.State module.

Where our Parse type carried around a ByteString as its piece of state, the State monad
can carry any type of state. We’ll refer to the state’s unknown type as s.

What’s an obvious and general thing we might want to do with a state? Given a state
value, we inspect it, and then produce a result and a new state value. Let’s say the result
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can be of any type a. A type signature that captures this idea is s -> (a, s). Take a
state s, do something with it, and return a result a and possibly a new state s.

Almost a State Monad
Let’s develop some simple code that’s almost the State monad, and then take a look at
the real thing. We’ll start with our type definition, which has exactly the obvious type
that we just described:

-- file: ch14/SimpleState.hs
type SimpleState s a = s -> (a, s)

Our monad is a function that transforms one state into another, yielding a result when
it does so. Because of this, the State monad is sometimes called the state transformer
monad.

Yes, this is a type synonym, not a new type, and so we’re cheating a little. Bear with us
for now; this simplifies the description that follows.

Earlier in this chapter, we said that a monad has a type constructor with a single type
variable, and yet here we have a type with two parameters. The key is to understand
that we can partially apply a type just as we can partially apply a normal function. This
is easiest to follow with an example:

-- file: ch14/SimpleState.hs
type StringState a = SimpleState String a

Here, we’ve bound the type variable s to String. The type StringState still has a type
parameter a, though. It’s now more obvious that we have a suitable type constructor
for a monad. In other words, our monad’s type constructor is SimpleState s, not
SimpleState alone.

The next ingredient we need to make a monad is a definition for the return function:

-- file: ch14/SimpleState.hs
returnSt :: a -> SimpleState s a
returnSt a = \s -> (a, s)

All this does is take the result and the current state and “tuple them up.” You may now
be used to the idea that a Haskell function with multiple parameters is just a chain of
single-parameter functions, but just in case you’re not, here’s a more familiar way of
writing returnSt that makes it more obvious how simple this function is:

-- file: ch14/SimpleState.hs
returnAlt :: a -> SimpleState s a
returnAlt a s = (a, s)

Our final piece of the monadic puzzle is a definition for (>>=). Here it is, using the
actual variable names from the standard library’s definition of (>>=) for State:

-- file: ch14/SimpleState.hs
bindSt :: (SimpleState s a) -> (a -> SimpleState s b) -> SimpleState s b
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bindSt m k = \s -> let (a, s') = m s
                   in (k a) s'

Those single-letter variable names aren’t exactly a boon to readability, so let’s see if we
can substitute some more meaningful names:

-- file: ch14/SimpleState.hs
-- m == step
-- k == makeStep
-- s == oldState

bindAlt step makeStep oldState =
    let (result, newState) = step oldState
    in  (makeStep result) newState

To understand this definition, remember that step is a function with the type
s -> (a, s). When we evaluate this, we get a tuple, which we have to use to return a
new function of type s -> (a, s). This is perhaps easier to follow if we get rid of the
SimpleState type synonyms from bindAlt’s type signature, and then examine the types
of its parameters and result:

-- file: ch14/SimpleState.hs
bindAlt :: (s -> (a, s))        -- step
        -> (a -> s -> (b, s))   -- makeStep
        -> (s -> (b, s))        -- (makeStep result) newState

Reading and Modifying the State
The definitions of (>>=) and return for the State monad simply act as plumbing: they
move a piece of state around, but they don’t touch it in any way. We need a few other
simple functions to actually do useful work with the state:

-- file: ch14/SimpleState.hs
getSt :: SimpleState s s
getSt = \s -> (s, s)

putSt :: s -> SimpleState s ()
putSt s = \_ -> ((), s)

The getSt function simply takes the current state and returns it as the result, while
putSt ignores the current state and replaces it with a new one.

Will the Real State Monad Please Stand Up?
The only simplifying trick we played in the previous section was to use a type synonym
instead of a type definition for SimpleState. If we had introduced a newtype wrapper at
the same time, the extra wrapping and unwrapping would have made our code harder
to follow.

In order to define a Monad instance, we have to provide a proper type constructor as
well as definitions for (>>=) and return. This leads us to the real definition of State:
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-- file: ch14/State.hs
newtype State s a = State {
      runState :: s -> (a, s)
    }

All we’ve done is wrap our s -> (a, s) type in a State constructor. We’re automatically
given a runState function that will unwrap a State value from its constructor when we
use Haskell’s record syntax to define the type. The type of runState is
State s a -> s -> (a, s).

The definition of return is almost the same as for SimpleState, except we wrap our
function with a State constructor:

-- file: ch14/State.hs
returnState :: a -> State s a
returnState a = State $ \s -> (a, s)

The definition of (>>=) is a little more complicated, because it has to use runState to
remove the State wrappers:

-- file: ch14/State.hs
bindState :: State s a -> (a -> State s b) -> State s b
bindState m k = State $ \s -> let (a, s') = runState m s
                              in runState (k a) s'

This function differs from our earlier bindSt only in adding the wrapping and unwrap-
ping of a few values. By separating the “real work” from the bookkeeping, we’ve hope-
fully made it clearer what’s really happening.

We modify the functions for reading and modifying the state in the same way, by adding
a little wrapping:

-- file: ch14/State.hs
get :: State s s
get = State $ \s -> (s, s)

put :: s -> State s ()
put s = State $ \_ -> ((), s)

Using the State Monad: Generating Random Values
We’ve already used Parse, our precursor to the State monad, to parse binary data. In
that case, we wired the type of the state we were manipulating directly into the Parse
type.

The State monad, by contrast, accepts any type of state as a parameter. We supply the
type of the state to give, for example, State ByteString.

The State monad will probably feel more familiar to you than many other monads if
you have a background in imperative languages. After all, imperative languages are all
about carrying around some implicit state, reading some parts, and modifying others
through assignment, which is just what the State monad is for.
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So instead of unnecessarily cheerleading for the idea of using the State monad, we’ll
begin by demonstrating how to use it for something simple: pseudorandom value gen-
eration. In an imperative language, there’s usually an easily available source of uni-
formly distributed pseudorandom numbers. For example, in C, there’s a standard
rand function that generates a pseudorandom number, using a global state that it
updates.

Haskell’s standard random value generation module is named System.Random. It allows
the generation of random values of any type, not just numbers. The module contains
several handy functions that live in the IO monad. For example, a rough equivalent of
C’s rand function would be the following:

-- file: ch14/Random.hs
import System.Random

rand :: IO Int
rand = getStdRandom (randomR (0, maxBound))

(The randomR function takes an inclusive range within which the generated random
value should lie.)

The System.Random module provides a typeclass, RandomGen, that lets us define new
sources of random Int values. The type StdGen is the standard RandomGen instance. It
generates pseudorandom values. If we had an external source of truly random data, we
could make it an instance of RandomGen and get truly random, instead of merely
pseudorandom, values.

Another typeclass, Random, indicates how to generate random values of a particular type.
The module defines Random instances for all of the usual simple types.

Incidentally, the definition of rand here reads and modifies a built-in global random
generator that inhabits the IO monad.

A First Attempt at Purity
After all of our emphasis so far on avoiding the IO monad wherever possible, it would
be a shame if we were dragged back into it just to generate some random values. Indeed,
System.Random contains pure random number generation functions.

The traditional downside of purity is that we have to get or create a random number
generator, and then ship it from the point we created it to the place where it’s needed.
When we finally call it, it returns a new random number generator—we’re in pure code,
remember, so we can’t modify the state of the existing generator.

If we forget about immutability and reuse the same generator within a function, we get
back exactly the same “random” number every time:

-- file: ch14/Random.hs
twoBadRandoms :: RandomGen g => g -> (Int, Int)
twoBadRandoms gen = (fst $ random gen, fst $ random gen)
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Needless to say, this has unpleasant consequences:

ghci> twoBadRandoms `fmap` getStdGen
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
(639600350314210417,639600350314210417)

The random function uses an implicit range instead of the user-supplied range employed
by randomR. The getStdGen function retrieves the current value of the global standard
number generator from the IO monad.

Unfortunately, correctly passing around and using successive versions of the generator
does not make for palatable reading. Here’s a simple example:

-- file: ch14/Random.hs
twoGoodRandoms :: RandomGen g => g -> ((Int, Int), g)
twoGoodRandoms gen = let (a, gen') = random gen
                         (b, gen'') = random gen'
                     in ((a, b), gen'')

Now that we know about the State monad, though, it looks like a fine candidate to
hide the generator. The State monad lets us manage our mutable state tidily, while
guaranteeing that our code will be free of other unexpected side effects, such as mod-
ifying files or making network connections. This makes it easier to reason about the
behavior of our code.

Random Values in the State Monad
Here’s a State monad that carries around a StdGen as its piece of state:

-- file: ch14/Random.hs
type RandomState a = State StdGen a

The type synonym is, of course, not necessary, but it’s handy. It saves a little key-
boarding, and if we want to swap another random generator for StdGen, it would reduce
the number of type signatures we’d need to change.

Generating a random value is now a matter of fetching the current generator, using it,
then modifying the state to replace it with the new generator:

-- file: ch14/Random.hs
getRandom :: Random a => RandomState a
getRandom =
  get >>= \gen ->
  let (val, gen') = random gen in
  put gen' >>
  return val
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We can now use some of the monadic machinery that we saw earlier to write a much
more concise function for giving us a pair of random numbers:

-- file: ch14/Random.hs
getTwoRandoms :: Random a => RandomState (a, a)
getTwoRandoms = liftM2 (,) getRandom getRandom

E X E R C I S E

1. Rewrite getRandom to use do notation.

Running the State Monad
As we’ve already mentioned, each monad has its own specialized evaluation functions.
In the case of the State monad, we have several to choose from:

runState
Returns both the result and the final state

evalState
Returns only the result, throwing away the final state

execState
Throws the result away, returning only the final state

The evalState and execState functions are simply compositions of fst and snd with
runState, respectively. Thus, of the three, runState is the one most worth remembering.

Here’s a complete example of how to implement our getTwoRandoms function:

-- file: ch14/Random.hs
runTwoRandoms :: IO (Int, Int)
runTwoRandoms = do
  oldState <- getStdGen
  let (result, newState) = runState getTwoRandoms oldState
  setStdGen newState
  return result

The call to runState follows a standard pattern: we pass it a function in the State monad
and an initial state. It returns the result of the function and the final state.

The code surrounding the call to runState merely obtains the current global StdGen
value, and then replaces it afterwards so that subsequent calls to runTwoRandoms or other
random generation functions will pick up the updated state.

What About a Bit More State?
It’s a little hard to imagine writing much interesting code in which there’s only a single
state value to pass around. When we want to track multiple pieces of state at once, the
usual trick is to maintain them in a data type. The following is an example of keeping
track of how many of random numbers we are handing out:
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-- file: ch14/Random.hs
data CountedRandom = CountedRandom {
      crGen :: StdGen
    , crCount :: Int
    }

type CRState = State CountedRandom

getCountedRandom :: Random a => CRState a
getCountedRandom = do
  st <- get
  let (val, gen') = random (crGen st)
  put CountedRandom { crGen = gen', crCount = crCount st + 1 }
  return val

This example happens to consume both elements of the state, and it constructs a com-
pletely new state, every time we call into it. More frequently, we’re likely to read or
modify only part of a state. This function gets the number of random values generated
so far:

-- file: ch14/Random.hs
getCount :: CRState Int
getCount = crCount `liftM` get

This example illustrates why we used record syntax to define our CountedRandom state.
It gives us accessor functions that we can glue together with get to read specific pieces
of the state.

If we want to partially update a state, the code doesn’t come out quite so appealingly:

-- file: ch14/Random.hs
putCount :: Int -> CRState ()
putCount a = do
  st <- get
  put st { crCount = a }

Here, instead of a function, we’re using record update syntax. The expression
st { crCount = a } creates a new value that’s an identical copy of st, except in its
crCount field, which is given the value a. Because this is a syntactic hack, we don’t get
the same kind of flexibility as with a function. Record syntax may not exhibit Haskell’s
usual elegance, but it at least gets the job done.

There is a function named modify that combines the get and put steps. It takes as ar-
gument a state transformation function, but it’s hardly more satisfactory—we still can’t
escape from the clumsiness of record update syntax:

-- file: ch14/Random.hs
putCountModify :: Int -> CRState ()
putCountModify a = modify $ \st -> st { crCount = a }
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Monads and Functors
Functors and monads are closely related. The terms are borrowed from a branch of
mathematics called category theory, but they did not make the transition to Haskell
completely unscathed.

In category theory, a monad is built from a functor. You might expect that in Haskell,
the Monad typeclass would thus be a subclass of Functor, but it isn’t defined as such in
the standard Prelude—an unfortunate oversight.

However, authors of Haskell libraries use a workaround: when programmers define an
instance of Monad for a type, they almost always write a Functor instance for it, too. You
can expect that you’ll be able to use the Functor typeclass’s fmap function with any
monad.

If we compare the type signature of fmap with those of some of the standard monad
functions that we’ve already seen, we get a hint as to what fmap on a monad does:

ghci> :type fmap
fmap :: (Functor f) => (a -> b) -> f a -> f b
ghci> :module +Control.Monad
ghci> :type liftM
liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r

Sure enough, fmap lifts a pure function into the monad, just as liftM does.

Another Way of Looking at Monads
Now that we know about the relationship between functors and monads, if we look
back at the list monad, we can see something interesting. Specifically, take a look at
the definition of (>>=) for lists:

-- file: ch14/ListMonad.hs
instance Monad [] where
    return x = [x]
    xs >>= f = concat (map f xs)

Recall that f has type a -> [a]. When we call map f xs, we get back a value of type
[[a]], which we have to “flatten” using concat.

Consider what we could do if Monad was a subclass of Functor. Since fmap for lists is
defined to be map, we could replace map with fmap in the definition of (>>=). This is not
very interesting by itself, but suppose we go further.

The concat function is of type [[a]] -> [a]. As we mentioned, it flattens the nesting
of lists. We could generalize this type signature from lists to monads, giving us the
“remove a level of nesting” type m (m a) -> m a. The function that has this type is
conventionally named join.
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If we had definitions of join and fmap, we wouldn’t need to write a definition of
(>>=) for every monad, because it would be completely generic. Here’s what an alter-
native definition of the Monad typeclass might look like, along with a definition of
(>>=):

-- file: ch14/AltMonad.hs
import Prelude hiding ((>>=), return)

class Functor m => AltMonad m where
    join :: m (m a) -> m a
    return :: a -> m a

(>>=) :: AltMonad m => m a -> (a -> m b) -> m b
xs >>= f = join (fmap f xs)

Neither definition of a monad is “better,” because if we have join we can write (>>=)
and vice versa, but the different perspectives can be refreshing.

Removing a layer of monadic wrapping can, in fact, be useful in realistic circumstances.
We can find a generic definition of join in the Control.Monad module:

-- file: ch14/MonadJoin.hs
join :: Monad m => m (m a) -> m a
join x = x >>= id

Here are some examples of what it does:

ghci> join (Just (Just 1))
Just 1
ghci> join Nothing
Nothing
ghci> join [[1],[2,3]]
[1,2,3]

The Monad Laws and Good Coding Style
In “Thinking More About Functors” on page 249, we introduced two rules for how
functors should always behave:

-- file: ch14/MonadLaws.hs
fmap id        ==   id 
fmap (f . g)   ==   fmap f . fmap g

There are also rules for how monads ought to behave. The three laws described in the
following paragraphs are referred to as the monad laws. A Haskell implementation
doesn’t enforce these laws—it’s up to the author of a Monad instance to follow them.

The monad laws are simply formal ways of saying “a monad shouldn’t surprise me.”
In principle, we could probably get away with skipping over them entirely. It would be
a shame if we did, however, because the laws contain gems of wisdom that we might
otherwise overlook.
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Reading the laws
You can read each of the following laws as “the expression on the left
of the == is equivalent to that on the right.”

The first law states that return is a left identity for (>>=):

-- file: ch14/MonadLaws.hs
return x >>= f            ===   f x

Another way to phrase this is that there’s no reason to use return to wrap up a pure
value if all you’re going to do is unwrap it again with (>>=). It’s actually a common
style error among programmers new to monads to wrap a value with return, and then
unwrap it with (>>=) a few lines later in the same function. Here’s the same law written
with do notation:

-- file: ch14/MonadLaws.hs
do y <- return x
   f y                    ===   f x

This law has practical consequences for our coding style: we don’t want to write un-
necessary code, and the law lets us assume that the terse code will be identical in its
effect to the more verbose version.

The second monad law states that return is a right identity for (>>=):

-- file: ch14/MonadLaws.hs
m >>= return              ===   m

This law also has style consequences in real programs, particularly if you’re coming
from an imperative language: there’s no need to use return if the last action in a block
would otherwise be returning the correct result. Let’s look at this law in do notation:

-- file: ch14/MonadLaws.hs
do y <- m
   return y               ===   m

Once again, if we assume that a monad obeys this law, we can write the shorter code
with the knowledge that it will have the same effect as the longer code.

The final law is concerned with associativity:

-- file: ch14/MonadLaws.hs
m >>= (\x -> f x >>= g)   ===   (m >>= f) >>= g

This law can be a little more difficult to follow, so let’s look at the contents of the
parentheses on each side of the equation. We can rewrite the expression on the left as
follows:

-- file: ch14/MonadLaws.hs
m >>= s
  where s x = f x >>= g
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On the right, we can also rearrange things:

-- file: ch14/MonadLaws.hs
t >>= g
  where t = m >>= f

We’re now claiming that the following two expressions are equivalent:

-- file: ch14/MonadLaws.hs
m >>= s                   ===   t >>= g

This means that if we want to break up an action into smaller pieces, it doesn’t matter
which subactions we hoist out to make new actions, provided we preserve their order-
ing. If we have three actions chained together, we can substitute the first two and leave
the third in place, or we can replace the second two and leave the first in place.

Even this more complicated law has a practical consequence. In the terminology of
software refactoring, the extract method technique is a fancy term for snipping out a
piece of inline code, turning it into a function, and calling the function from the site of
the snipped code. This law essentially states that this technique can be applied to mo-
nadic Haskell code.

We’ve now seen how each of the monad laws offers us an insight into writing better
monadic code. The first two laws show us how to avoid any unnecessary use of
return. The third suggests that we can safely refactor a complicated action into several
simpler ones. We can now safely let the details fade, with the knowledge that our “do
what I mean” intuitions won’t be violated when we use properly written monads.

Incidentally, a Haskell compiler cannot guarantee that a monad actually follows the
monad laws. It is the responsibility of a monad’s author to satisfy—or, preferably, prove
to—himself that his code follows the laws.
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CHAPTER 15

Programming with Monads

Golfing Practice: Association Lists
Web clients and servers often pass information around as a simple textual list of key-
value pairs:

name=Attila+%42The+Hun%42&occupation=Khan

The encoding is named application/x-www-form-urlencoded, and it’s easy to under-
stand. Each key-value pair is separated by an & character. Within a pair, a key is a series
of characters, followed by an =, followed by a value.

We can obviously represent a key as a String, but the HTTP specification is not clear
about whether a key must be followed by a value. We can capture this ambiguity by
representing a value as a Maybe String. If we use Nothing for a value, then there is no
value present. If we wrap a string in Just, then there is a value. Using Maybe lets us
distinguish between “no value” and “empty value.”

Haskell programmers use the name association list for the type [(a, b)], where we can
think of each element as an association between a key and a value. The name originates
in the Lisp community, where it’s usually abbreviated as an alist. We could thus rep-
resent the preceding string as the following Haskell value:

-- file: ch15/MovieReview.hs
    [("name",       Just "Attila \"The Hun\""),
     ("occupation", Just "Khan")]

In “Parsing a URL-Encoded Query String” on page 393, we’ll parse an application/
x-www-form-urlencoded string, and we will represent the result as an alist of
[(String, Maybe String)]. Let’s say we want to use one of these alists to fill out a data
structure:

-- file: ch15/MovieReview.hs
data MovieReview = MovieReview {
      revTitle :: String
    , revUser :: String
    , revReview :: String
    }
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We’ll begin by belaboring the obvious with a naive function:

-- file: ch15/MovieReview.hs
simpleReview :: [(String, Maybe String)] -> Maybe MovieReview
simpleReview alist =
  case lookup "title" alist of
    Just (Just title@(_:_)) ->
      case lookup "user" alist of
        Just (Just user@(_:_)) ->
          case lookup "review" alist of
            Just (Just review@(_:_)) ->
                Just (MovieReview title user review)
            _ -> Nothing -- no review
        _ -> Nothing -- no user
    _ -> Nothing -- no title

It returns a MovieReview only if the alist contains all of the necessary values, and they’re
all nonempty strings. However, the fact that it validates its inputs is its only merit. It
suffers badly from the “staircasing” that we’ve learned to be wary of, and it knows the
intimate details of the representation of an alist.

Since we’re now well acquainted with the Maybe monad, we can tidy up the staircasing:

-- file: ch15/MovieReview.hs
maybeReview alist = do
    title <- lookup1 "title" alist
    user <- lookup1 "user" alist
    review <- lookup1 "review" alist
    return (MovieReview title user review)

lookup1 key alist = case lookup key alist of
                      Just (Just s@(_:_)) -> Just s
                      _ -> Nothing

Although this is much neater, we’re still repeating ourselves. We can take advantage
of the fact that the MovieReview constructor acts as a normal, pure function by lifting it
into the monad, as we discussed in “Mixing Pure and Monadic Code” on page 334:

-- file: ch15/MovieReview.hs
liftedReview alist =
    liftM3 MovieReview (lookup1 "title" alist)
                       (lookup1 "user" alist)
                       (lookup1 "review" alist)

We still have some repetition here, but it is dramatically reduced and also more difficult
to remove.

Generalized Lifting
Although using liftM3 tidies up our code, we can’t use a liftM-family function to solve
this sort of problem in general, because the standard libraries define them only up to
liftM5. We could write variants up to whatever number we pleased, but that would
amount to drudgery.
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If we had a constructor or pure function that takes, say, 10 parameters, and decided to
stick with the standard libraries, you might think we’d be out of luck.

Of course, our toolbox isn’t empty yet. In Control.Monad, there’s a function named ap
with an interesting type signature:

ghci> :m +Control.Monad
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b

You might wonder who would put a single-argument pure function inside a monad,
and why. Recall, however, that all Haskell functions really take only one argument,
and you’ll begin to see how this might relate to the MovieReview constructor:

ghci> :type MovieReview
MovieReview :: String -> String -> String -> MovieReview

We can just as easily write that type as:

String -> (String -> (String -> MovieReview))

If we use plain old liftM to lift MovieReview into the Maybe monad, we’ll have a value of
type:

Maybe (String -> (String -> (String -> MovieReview)))

We can now see that this type is suitable as an argument for ap, in which case, the result
type will be:

        Maybe (String -> (String -> MovieReview))

We can pass this, in turn, to ap, and continue to chain until we end up with this
definition:

-- file: ch15/MovieReview.hs
apReview alist =
    MovieReview `liftM` lookup1 "title" alist
                   `ap` lookup1 "user" alist
                   `ap` lookup1 "review" alist

We can chain applications of ap such as this as many times as we need to, thereby
bypassing the liftM family of functions.

Another helpful way to look at ap is that it’s the monadic equivalent of the familiar
($) operator; think of pronouncing ap as apply. We can see this clearly when we com-
pare the type signatures of the two functions:

ghci> :type ($)
($) :: (a -> b) -> a -> b
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b

In fact, ap is usually defined as either liftM2 id or liftM2 ($).
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Looking for Alternatives
Here’s a simple representation of a person’s phone numbers:

-- file: ch15/VCard.hs
data Context = Home | Mobile | Business
               deriving (Eq, Show)

type Phone = String

albulena = [(Home, "+355-652-55512")]

nils = [(Mobile, "+47-922-55-512"), (Business, "+47-922-12-121"),
        (Home, "+47-925-55-121"), (Business, "+47-922-25-551")]

twalumba = [(Business, "+260-02-55-5121")]

Suppose we want to get in touch with someone to make a personal call. We don’t want
his business number, and we’d prefer to use his home number (if he has one) instead
of their mobile number:

-- file: ch15/VCard.hs
onePersonalPhone :: [(Context, Phone)] -> Maybe Phone
onePersonalPhone ps = case lookup Home ps of
                        Nothing -> lookup Mobile ps
                        Just n -> Just n

Of course, if we use Maybe as the result type, we can’t accommodate the possibility that
someone might have more than one number that meets our criteria. For that, we switch
to a list:

-- file: ch15/VCard.hs
allBusinessPhones :: [(Context, Phone)] -> [Phone]
allBusinessPhones ps = map snd numbers
    where numbers = case filter (contextIs Business) ps of
                      [] -> filter (contextIs Mobile) ps
                      ns -> ns

contextIs a (b, _) = a == b

Notice that these two functions structure their case expressions similarly—one alter-
native handles the case where the first lookup returns an empty result, while the other
handles the nonempty case:

ghci> onePersonalPhone twalumba
Nothing
ghci> onePersonalPhone albulena
Just "+355-652-55512"
ghci> allBusinessPhones nils
["+47-922-12-121","+47-922-25-551"]

Haskell’s Control.Monad module defines a typeclass, MonadPlus, that lets us abstract the
common pattern out of our case expressions:

362 | Chapter 15: Programming with Monads



-- file: ch15/VCard.hs
class Monad m => MonadPlus m where
   mzero :: m a    
   mplus :: m a -> m a -> m a

The value mzero represents an empty result, while mplus combines two results into one.
Here are the standard definitions of mzero and mplus for Maybe and lists:

-- file: ch15/VCard.hs
instance MonadPlus [] where
   mzero = []
   mplus = (++)

instance MonadPlus Maybe where
   mzero = Nothing

   Nothing `mplus` ys  = ys
   xs      `mplus` _ = xs

We can now use mplus to get rid of our case expressions entirely. For variety, let’s fetch
one business and all personal phone numbers:

-- file: ch15/VCard.hs
oneBusinessPhone :: [(Context, Phone)] -> Maybe Phone
oneBusinessPhone ps = lookup Business ps `mplus` lookup Mobile ps

allPersonalPhones :: [(Context, Phone)] -> [Phone]
allPersonalPhones ps = map snd $ filter (contextIs Home) ps `mplus`
                                 filter (contextIs Mobile) ps

In these functions, because we know that lookup returns a value of type Maybe, and
filter returns a list, it’s obvious which version of mplus is going to be used in each case.

What’s more interesting is that we can use mzero and mplus to write functions that will
be useful for any MonadPlus instance. As an example, here’s the standard lookup func-
tion, which returns a value of type Maybe:

-- file: ch15/VCard.hs
lookup :: (Eq a) => a -> [(a, b)] -> Maybe b
lookup _ []                      = Nothing
lookup k ((x,y):xys) | x == k    = Just y
                     | otherwise = lookup k xys

We can easily generalize the result type to any instance of MonadPlus as follows:

-- file: ch15/VCard.hs
lookupM :: (MonadPlus m, Eq a) => a -> [(a, b)] -> m b
lookupM _ []    = mzero
lookupM k ((x,y):xys)
    | x == k    = return y `mplus` lookupM k xys
    | otherwise = lookupM k xys

This lets us get either no result or one, if our result type is Maybe; all results, if our result
type is a list; or something more appropriate for some other exotic instance of
MonadPlus.
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For small functions, such as those we present here, there’s little benefit to using
mplus. The advantage lies in more complex code and in code that is independent of the
monad in which it executes. Even if you don’t find yourself needing MonadPlus for your
own code, you are likely to encounter it in other people’s projects.

The Name mplus Does Not Imply Addition
Even though the mplus function contains the text “plus,” you should not think of it as
necessarily implying that we’re trying to add two values.

Depending on the monad we’re working in, mplus may implement an operation that
looks like addition. For example, mplus in the list monad is implemented as the (++)
operator:

ghci> [1,2,3] `mplus` [4,5,6]
[1,2,3,4,5,6]

However, if we switch to another monad, the obvious similarity to addition falls away:

ghci> Just 1 `mplus` Just 2
Just 1
-

Rules for Working with MonadPlus
Instances of the MonadPlus typeclass must follow a few simple rules in addition to the
usual monad rules.

An instance must short-circuit if mzero appears on the left of a bind expression. In other
words, an expression mzero >>= f must evaluate to the same result as mzero alone:

-- file: ch15/MonadPlus.hs
    mzero >>= f == mzero

An instance must short-circuit if mzero appears on the right of a sequence expression:

-- file: ch15/MonadPlus.hs
    v >> == mzero

Failing Safely with MonadPlus
When we introduced the fail function in “The Monad Typeclass” on page 329, we
took pains to warn against its use: in many monads, it’s implemented as a call to
error, which has unpleasant consequences.

The MonadPlus typeclass gives us a gentler way to fail a computation, without fail or
error blowing up in our faces. The rules that we just introduced allow us to introduce
an mzero into our code wherever we need to, and computation will short-circuit at that
point.
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In the Control.Monad module, the standard function guard packages up this idea in a
convenient form:

-- file: ch15/MonadPlus.hs
guard        :: (MonadPlus m) => Bool -> m ()
guard True   =  return ()
guard False  =  mzero

As a simple example, here’s a function that takes a number x and computes its value
modulo some other number n. If the result is zero, it returns x; otherwise, the current
monad’s mzero:

-- file: ch15/MonadPlus.hs
x `zeroMod` n = guard ((x `mod` n) == 0) >> return x

Adventures in Hiding the Plumbing
In “Using the State Monad: Generating Random Values” on page 349, we showed how
to use the State monad to give ourselves access to random numbers in a way that is
easy to use.

A drawback of the code we developed is that it’s leaky:  Users know that they’re exe-
cuting inside the State monad. This means that they can inspect and modify the state
of the random number generator just as easily as we, the authors, can.

Human nature dictates that if we leave our internal workings exposed, someone will
surely come along and monkey with them. For a sufficiently small program, this may
be fine, but in a larger software project, when one consumer of a library modifies its
internals in a way that other consumers are not prepared for, the resulting bugs can be
among the most difficult to track down. These bugs occur at a level where we’re unlikely
to question our basic assumptions about a library until long after we’ve exhausted all
other avenues of inquiry.

Even worse, once we leave our implementation exposed for a while, and some well-
intentioned person inevitably bypasses our APIs and uses the implementation directly,
we have a nasty quandary if we need to fix a bug or make an enhancement. Either we
can modify our internals and break code that depends on them; or we’re stuck with
our existing internals and must try to find some other way to make the change that we
need.

How can we revise our random number monad so that the fact that we’re using the
State monad is hidden? We need to somehow prevent our users from being able to call
get or put. This is not difficult to do, and it introduces some tricks that we’ll reuse often
in day-to-day Haskell programming.

To widen our scope, we’ll move beyond random numbers and implement a monad that
supplies unique values of any kind. The name we’ll give to our monad is Supply. We’ll
provide the execution function, runSupply, with a list of values (it will be up to us to
ensure that each one is unique):
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-- file: ch15/Supply.hs
runSupply :: Supply s a -> [s] -> (a, [s])

The monad won’t care what the values are. They might be random numbers, or names
for temporary files, or identifiers for HTTP cookies.

Within the monad, every time a consumer asks for a value, the next action will take the
next one from the list and give it to the consumer. Each value is wrapped in a Maybe
constructor in case the list isn’t long enough to satisfy the demand:

-- file: ch15/Supply.hs
next :: Supply s (Maybe s)

To hide our plumbing, in our module declaration, we export only the type constructor,
the execution function, and the next action:

-- file: ch15/Supply.hs
module Supply
    (
      Supply
    , next
    , runSupply
    ) where

Since a module that imports the library can’t see the internals of the monad, it can’t
manipulate them.

Our plumbing is exceedingly simple. We use a newtype declaration to wrap the existing
State monad:

-- file: ch15/Supply.hs
import Control.Monad.State

newtype Supply s a = S (State [s] a)

The s parameter is the type of the unique values we are going to supply, and a is the
usual type parameter that we must provide in order to make our type a monad.

Our use of newtype for the Supply type and our module header join forces to prevent
our clients from using the State monad’s get and set actions. Because our module does
not export the S data constructor, clients have no programmatic way to see that we’re
wrapping the State monad, or to access it.

At this point, we’ve got a type, Supply, that we need to make an instance of the Monad
typeclass. We could follow the usual pattern of defining (>>=) and return, but this
would be pure boilerplate code. All we’d be doing is wrapping and unwrapping the
State monad’s versions of (>>=) and return using our S value constructor. Here is how
such code would look:

-- file: ch15/AltSupply.hs
unwrapS :: Supply s a -> State [s] a
unwrapS (S s) = s

instance Monad (Supply s) where

366 | Chapter 15: Programming with Monads



    s >>= m = S (unwrapS s >>= unwrapS . m)
    return = S . return

Haskell programmers are not fond of boilerplate, and sure enough, GHC has a lovely
language extension that eliminates the work. To use it, we add the following directive
to the top of our source file, before the module header:

-- file: ch15/Supply.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

Usually, we can only automatically derive instances of a handful of standard type-
classes, such as Show and Eq. As its name suggests, the GeneralizedNewtypeDeriving
extension broadens our ability to derive typeclass instances, and it is specific to
newtype declarations. If the type we’re wrapping is an instance of any typeclass, the
extensions can automatically make our new type an instance of that typeclass as
follows:

-- file: ch15/Supply.hs
    deriving (Monad)

This takes the underlying type’s implementations of (>>=) and return, adds the nec-
essary wrapping and unwrapping with our S data constructor, and uses the new versions
of those functions to derive a Monad instance for us.

What we gain here is very useful beyond just this example. We can use newtype to wrap
any underlying type; we selectively expose only those typeclass instances that we want;
and we expend almost no effort to create these narrower, more specialized types.

Now that we’ve seen the GeneralizedNewtypeDeriving technique, all that remains is to
provide definitions of next and runSupply:

-- file: ch15/Supply.hs
next = S $ do st <- get
              case st of
                [] -> return Nothing
                (x:xs) -> do put xs
                             return (Just x)

runSupply (S m) xs = runState m xs

If we load our module into ghci, we can try it out in a few simple ways:

ghci> :load Supply
[1 of 1] Compiling Supply           ( Supply.hs, interpreted )
Ok, modules loaded: Supply.
ghci> runSupply next [1,2,3]
Loading package mtl-1.1.0.1 ... linking ... done.
(Just 1,[2,3])
ghci> runSupply (liftM2 (,) next next) [1,2,3]
((Just 1,Just 2),[3])
ghci> runSupply (liftM2 (,) next next) [1]
((Just 1,Nothing),[])

We can also verify that the State monad has not somehow leaked out:
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ghci> :browse Supply
data Supply s a
next :: Supply s (Maybe s)
runSupply :: Supply s a -> [s] -> (a, [s])
ghci> :info Supply
data Supply s a     -- Defined at Supply.hs:17:8-13
instance Monad (Supply s) -- Defined at Supply.hs:17:8-13

Supplying Random Numbers
If we want to use our Supply monad as a source of random numbers, we have a small
difficulty to face. Ideally, we’d like to be able to provide it with an infinite stream of
random numbers. We can get a StdGen in the IO monad, but we must “put back” a
different StdGen when we’re done. If we don’t, the next piece of code to get a StdGen
will get the same state as we did. This means it will generate the same random numbers
as we did, which is potentially catastrophic.

From the parts of the System.Random module we’ve seen so far, it’s difficult to reconcile
these demands. We can use getStdRandom, whose type ensures that when we get a
StdGen, we put one back:

ghci> :type getStdRandom
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

We can use random to get back a new StdGen when they give us a random number. And
we can use randoms to get an infinite list of random numbers. But how do we get both
an infinite list of random numbers and a new StdGen?

The answer lies with the RandomGen typeclass’s split function, which takes one random
number generator and turns it into two generators. Splitting a random generator such
as this is a most unusual thing to be able to do: it’s obviously tremendously useful in a
pure functional setting, but it is essentially either never necessary an impure language,
or the language doesn’t provide for it.

With the split function, we can use one StdGen to generate an infinite list of random
numbers to feed to runSupply, while we give the other back to the IO monad:

-- file: ch15/RandomSupply.hs
import Supply
import System.Random hiding (next)

randomsIO :: Random a => IO [a]
randomsIO =
    getStdRandom $ \g ->
        let (a, b) = split g
        in (randoms a, b)

If we’ve written this function properly, our example ought to print a different random
number on each invocation:

ghci> :load RandomSupply
[1 of 2] Compiling Supply           ( Supply.hs, interpreted )
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[2 of 2] Compiling RandomSupply     ( RandomSupply.hs, interpreted )
Ok, modules loaded: RandomSupply, Supply.
ghci> (fst . runSupply next) `fmap` randomsIO

<interactive>:1:17:
    Ambiguous occurrence `next'
    It could refer to either `Supply.next', imported from Supply at RandomSupply.hs:4:
                                              (defined at Supply.hs:32:0)
                          or `System.Random.next', imported from System.Random
ghci> (fst . runSupply next) `fmap` randomsIO

<interactive>:1:17:
    Ambiguous occurrence `next'
    It could refer to either `Supply.next', imported from Supply at RandomSupply.hs:4:
                                              (defined at Supply.hs:32:0)
                          or `System.Random.next', imported from System.Random

Recall that our runSupply function returns both the result of executing the monadic
action and the unconsumed remainder of the list. Since we passed it an infinite list of
random numbers, we compose with fst to ensure that we don’t get drowned in random
numbers when ghci tries to print the result.

Another Round of Golf
The pattern of applying a function to one element of a pair and constructing a new pair
with the other original element untouched is common enough in Haskell code that it
has been turned into standard code.

Two functions, first and second, perform this operation in the Control.Arrow module:

ghci> :m +Control.Arrow
ghci> first (+3) (1,2)
(4,2)
ghci> second odd ('a',1)
('a',True)

(Indeed, we already encountered second in “JSON Typeclasses Without Overlapping
Instances” on page 159.) We can use first to golf our definition of randomsIO, turning
it into a one-liner:

-- file: ch15/RandomGolf.hs
import Control.Arrow (first)

randomsIO_golfed :: Random a => IO [a]
randomsIO_golfed = getStdRandom (first randoms . split)

Separating Interface from Implementation
In the previous section, we saw how to hide the fact that we’re using a State monad to
hold the state for our Supply monad.
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Another important way to make code more modular involves separating its interface
(what the code can do) from its implementation—how it does it.

The standard random number generator in System.Random is known to be quite slow.
If we use our randomsIO function to provide it with random numbers, then our next
action will not perform well.

One simple and effective way that we could deal with this is to provide Supply with a
better source of random numbers. Let’s set this idea aside, though, and consider an
alternative approach, one that is useful in many settings. We will separate the actions
we can perform with the monad from how it works using a typeclass:

-- file: ch15/SupplyClass.hs
class (Monad m) => MonadSupply s m | m -> s where
    next :: m (Maybe s)

This typeclass defines the interface that any supply monad must implement. It bears
careful inspection, since it uses several unfamiliar Haskell language extensions. We will
cover each one in the sections that follow.

Multiparameter Typeclasses
How should we read the snippet MonadSupply s m in the typeclass? If we add paren-
theses, an equivalent expression is (MonadSupply s) m, which is a little clearer. In other
words, given some type variable m that is a Monad, we can make it an instance of the
typeclass MonadSupply s. Unlike a regular typeclass, this one has a parameter.

As this language extension allows a typeclass to have more than one parameter, its
name is MultiParamTypeClasses. The parameter s serves the same purpose as the
Supply type’s parameter of the same name: it represents the type of the values handed
out by the next function.

Notice that we don’t need to mention (>>=) or return in the definition of
MonadSupply s, since the typeclass’s context (superclass) requires that a
MonadSupply s must already be a Monad.

Functional Dependencies
To revisit a snippet that we ignored earlier, | m -> s is a functional dependency, often
called a fundep. We can read the vertical bar | as “such that,” and the arrow -> as
“uniquely determines.” Our functional dependency establishes a relationship between
m and s.

The FunctionalDependencies language pragma governs the availability of functional
dependencies.

The purpose behind us declaring a relationship is to help the type checker. Recall that
a Haskell type checker is essentially a theorem prover, and that it is conservative in how
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it operates: it insists that its proofs must terminate. A nonterminating proof results in
the compiler either giving up or getting stuck in an infinite loop.

With our functional dependency, we are telling the type checker that every time it sees
some monad m being used in the context of a MonadSupply s, the type s is the only
acceptable type to use with it. If we were to omit the functional dependency, the type
checker would simply give up with an error message.

It’s hard to picture what the relationship between m and s really means, so let’s look at
an instance of this typeclass:

-- file: ch15/SupplyClass.hs
import qualified Supply as S

instance MonadSupply s (S.Supply s) where
    next = S.next

Here, the type variable m is replaced by the type S.Supply s. Thanks to our functional
dependency, the type checker now knows that when it sees a type S.Supply s, the type
can be used as an instance of the typeclass MonadSupply s.

If we didn’t have a functional dependency, the type checker would not be able to figure
out the relationship between the type parameter of the class MonadSupply s and that of
the type Supply s, and it would abort compilation with an error. The definition itself
would compile; the type error would not arise until the first time we tried to use it.

To strip away one final layer of abstraction, consider the type S.Supply Int. Without
a functional dependency, we could declare this an instance of MonadSupply s. However,
if we try to write code using this instance, the compiler would not be able to figure out
that the type’s Int parameter needs to be the same as the typeclass’s s parameter, and
it would report an error.

Functional dependencies can be tricky to understand, and once we move beyond simple
uses, they often prove difficult to work with in practice. Fortunately, the most frequent
use of functional dependencies is in situations as simple as ours, where they cause little
trouble.

Rounding Out Our Module
If we save our typeclass and instance in a source file named SupplyClass.hs, we’ll need
to add a module header such as the following:

-- file: ch15/SupplyClass.hs
{-# LANGUAGE FlexibleInstances, FunctionalDependencies,
             MultiParamTypeClasses #-}

module SupplyClass
    (
      MonadSupply(..)
    , S.Supply
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    , S.runSupply
    ) where

The FlexibleInstances extension is necessary so that the compiler will accept our in-
stance declaration. This extension relaxes the normal rules for writing instances in some
circumstances, in a way that still lets the compiler’s type checker guarantee that it will
terminate. Our need for FlexibleInstances here is caused by our use of functional
dependencies, but the details are unfortunately beyond the scope of this book.

How to know when a language extension is needed
If GHC cannot compile a piece of code because it would require some
language extension to be enabled, it will tell us which extension we
should use. For example, if it decides that our code needs flexible in-
stance support, it will suggest that we try compiling with the
-XFlexibleInstances option. A -X option has the same effect as a
LANGUAGE directive: it enables a particular extension.

Finally, notice that we’re re-exporting the runSupply and Supply names from this mod-
ule. It’s perfectly legal to export a name from one module even though it’s defined in
another. In our case, it means that client code needs only to import the SupplyClass
module, without also importing the Supply module. This reduces the number of “mov-
ing parts” that a user of our code needs to keep in mind.

Programming to a Monad’s Interface
Here is a simple function that fetches two values from our Supply monad, formats them
as a string, and returns them:

-- file: ch15/Supply.hs
showTwo :: (Show s) => Supply s String
showTwo = do
  a <- next
  b <- next
  return (show "a: " ++ show a ++ ", b: " ++ show b)

This code is tied by its result type to our Supply monad. We can easily generalize to any
monad that implements our MonadSupply interface by modifying our function’s type.
Notice that the body of the function remains unchanged:

-- file: ch15/SupplyClass.hs
showTwo_class :: (Show s, Monad m, MonadSupply s m) => m String
showTwo_class = do
  a <- next
  b <- next
  return (show "a: " ++ show a ++ ", b: " ++ show b)
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The Reader Monad
The State monad lets us plumb a piece of mutable state through our code. Sometimes,
we would like to be able to pass some immutable state around, such as a program’s
configuration data. We could use the State monad for this purpose, but we might then
find ourselves accidentally modifying data that should remain unchanged.

Let’s forget about monads for a moment and think about what a function with our
desired characteristics ought to do. It should accept a value of some type e (for
environment) that represents the data that we’re passing in, and return a value of some
other type a as its result. The overall type we want is e -> a.

To turn this type into a convenient Monad instance, we’ll wrap it in a newtype:

-- file: ch15/SupplyInstance.hs
newtype Reader e a = R { runReader :: e -> a }

Making this into a Monad instance doesn’t take much work:

-- file: ch15/SupplyInstance.hs
instance Monad (Reader e) where
    return a = R $ \_ -> a
    m >>= k = R $ \r -> runReader (k (runReader m r)) r

We can think of our value of type e as an environment in which we’re evaluating some
expression. The return action should have the same effect no matter what the envi-
ronment is, so our version ignores its environment.

Our definition of (>>=) is a little more complicated, but only because we have to make
the environment—here the variable r—available both in the current computation and
in the computation we’re chaining into.

How does a piece of code executing in this monad find out what’s in its environment?
It simply has to ask:

-- file: ch15/SupplyInstance.hs
ask :: Reader e e
ask = R id

Within a given chain of actions, every invocation of ask will return the same value, since
the value stored in the environment doesn’t change. Our code is easy to test in ghci:

ghci> runReader (ask >>= \x -> return (x * 3)) 2
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
6

The Reader monad is included in the standard mtl library, which is usually bundled
with GHC. You can find it in the Control.Monad.Reader module. The motivation for
this monad may initially seem a little thin, because it is most often useful in complicated
code. We’ll often need to access a piece of configuration information deep in the bowels
of a program; passing that information in as a normal parameter would require a painful
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restructuring of our code. By hiding this information in our monad’s plumbing, inter-
mediate functions that don’t care about the configuration information don’t need to
see it.

The clearest motivation for the Reader monad will come in Chapter 18, when we discuss
combining several monads to build a new monad. There, we’ll see how to gain finer
control over state, so that our code can modify some values via the State monad, while
other values remain immutable, courtesy of the Reader monad.

A Return to Automated Deriving
Now that we know about the Reader monad, let’s use it to create an instance of our
MonadSupply typeclass. To keep our example simple, we’ll violate the spirit of
MonadSupply here: our next action will always return the same value, instead of always
returning a different one.

It would be a bad idea to directly make the Reader type an instance of the
MonadSupply class, because then any Reader could act as a MonadSupply. This would
usually not make any sense.

Instead, we create a newtype based on Reader. The newtype hides the fact that we’re
using Reader internally. We must now make our type an instance of both of the type-
classes we care about. With the GeneralizedNewtypeDeriving extension enabled,
GHC will do most of the hard work for us:

-- file: ch15/SupplyInstance.hs
newtype MySupply e a = MySupply { runMySupply :: Reader e a }
    deriving (Monad)

instance MonadSupply e (MySupply e) where
    next = MySupply $ do
             v <- ask
             return (Just v)

    -- more concise:
    -- next = MySupply (Just `liftM` ask)

Notice that we must make our type an instance of MonadSupply e, not MonadSupply. If
we omit the type variable, the compiler will complain.

To try out our MySupply type, we’ll first create a simple function that should work with
any MonadSupply instance:

-- file: ch15/SupplyInstance.hs
xy :: (Num s, MonadSupply s m) => m s
xy = do
  Just x <- next
  Just y <- next
  return (x * y)
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If we use this with our Supply monad and randomsIO function, we get a different answer
every time, as we expect:

ghci> (fst . runSupply xy) `fmap` randomsIO
3155268008533561605104245047686121354
ghci> (fst . runSupply xy) `fmap` randomsIO
1764220767702892260034822063450517650

Because our MySupply monad has two layers of newtype wrapping, we can write a custom
execution function for it to make it easier to use:

-- file: ch15/SupplyInstance.hs
runMS :: MySupply i a -> i -> a
runMS = runReader . runMySupply

When we apply our xy action using this execution function, we get the same answer
every time. Our code remains the same, but because we are executing it in a different
implementation of MonadSupply, its behavior has changed:

ghci> runMS xy 2
4
ghci> runMS xy 2
4

Like our MonadSupply typeclass and Supply monad, almost all of the common Haskell
monads are built with a split between interface and implementation. For example, the
get and put functions that we introduced as “belonging to” the State monad are actually
methods of the MonadState typeclass; the State type is an instance of this class.

Similarly, the standard Reader monad is an instance of the MonadReader typeclass, which
specifies the ask method.

While the separation of interface and implementation that we discussed is appealing
for its architectural cleanliness, it has important practical applications that will become
clearer later. When we start combining monads in Chapter 18, we will save a lot of
effort through the use of GeneralizedNewtypeDeriving and typeclasses.

Hiding the IO Monad
The blessing and curse of the IO monad is that it is extremely powerful. If we believe
that careful use of types helps us to avoid programming mistakes, then the IO monad
should be a great source of unease. Because the IO monad imposes no restrictions on
what we can do, it leaves us vulnerable to all kinds of accidents.

How can we tame its power? Let’s say that we would like guarantee to ourselves that
a piece of code can read and write files on the local filesystem, but it will not access the
network. We can’t use the plain IO monad, because it won’t restrict us.
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Using a newtype
Let’s create a module that provides a small set of functionality for reading and writing
files:

-- file: ch15/HandleIO.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module HandleIO
    (
      HandleIO
    , Handle
    , IOMode(..)
    , runHandleIO
    , openFile
    , hClose
    , hPutStrLn
    ) where
    
import System.IO (Handle, IOMode(..))
import qualified System.IO

Our first approach to creating a restricted version of IO is to wrap it with a newtype:

-- file: ch15/HandleIO.hs
newtype HandleIO a = HandleIO { runHandleIO :: IO a }
    deriving (Monad)

We do the by now familiar trick of exporting the type constructor and the
runHandleIO execution function from our module, but not the data constructor. This
will prevent code running within the HandleIO monad from getting hold of the IO monad
that it wraps.

All that remains is for us to wrap each of the actions that we want our monad to allow.
This is a simple matter of wrapping each IO with a HandleIO data constructor:

-- file: ch15/HandleIO.hs
openFile :: FilePath -> IOMode -> HandleIO Handle
openFile path mode = HandleIO (System.IO.openFile path mode)

hClose :: Handle -> HandleIO ()
hClose = HandleIO . System.IO.hClose

hPutStrLn :: Handle -> String -> HandleIO ()
hPutStrLn h s = HandleIO (System.IO.hPutStrLn h s)

We can now use our restricted HandleIO monad to perform I/O:

-- file: ch15/HandleIO.hs
safeHello :: FilePath -> HandleIO ()
safeHello path = do
  h <- openFile path WriteMode
  hPutStrLn h "hello world"
  hClose h

To run this action, we use runHandleIO:
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ghci> :load HandleIO
[1 of 1] Compiling HandleIO         ( HandleIO.hs, interpreted )
Ok, modules loaded: HandleIO.
ghci> runHandleIO (safeHello "hello_world_101.txt")
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> :m +System.Directory
ghci> removeFile "hello_world_101.txt"

If we try to sequence an action that runs in the HandleIO monad with one that is not
permitted, the type system will forbid it:

ghci> runHandleIO (safeHello "goodbye" >> removeFile "goodbye")

<interactive>:1:36:
    Couldn't match expected type `HandleIO a'
           against inferred type `IO ()'
    In the second argument of `(>>)', namely `removeFile "goodbye"'
    In the first argument of `runHandleIO', namely
        `(safeHello "goodbye" >> removeFile "goodbye")'
    In the expression:
        runHandleIO (safeHello "goodbye" >> removeFile "goodbye")

Designing for Unexpected Uses
There’s one small, but significant, problem with our HandleIO monad: it doesn’t take
into account the possibility that we might occasionally need an escape hatch. If we
define a monad such as this, it is likely that we will occasionally need to perform an
I/O action that isn’t allowed for by the design of our monad.

Our purpose in defining a monad like this is to make it easier for us to write solid code
in the common case, not to make corner cases impossible. Let’s give ourselves a way out.

The Control.Monad.Trans module defines a “standard escape hatch,” the MonadIO type-
class. This defines a single function, liftIO, which lets us embed an IO action in another
monad:

ghci> :m +Control.Monad.Trans
ghci> :info MonadIO
class (Monad m) => MonadIO m where liftIO :: IO a -> m a
      -- Defined in Control.Monad.Trans
instance MonadIO IO -- Defined in Control.Monad.Trans

Our implementation of this typeclass is trivial; we just wrap IO with our data
constructor:

-- file: ch15/HandleIO.hs
import Control.Monad.Trans (MonadIO(..))

instance MonadIO HandleIO where
    liftIO = HandleIO
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With judicious use of liftIO, we can escape our shackles and invoke IO actions where
necessary:

-- file: ch15/HandleIO.hs
tidyHello :: FilePath -> HandleIO ()
tidyHello path = do
  safeHello path
  liftIO (removeFile path)

Automatic derivation and MonadIO
We could have had the compiler automatically derive an instance of
MonadIO for us by adding the typeclass to the deriving clause of
HandleIO. In fact, in production code, this would be our usual strategy.
We avoided that here simply to separate the presentation of the earlier
material from that of MonadIO.

Using Typeclasses
The disadvantage of hiding IO in another monad is that we’re still tied to a concrete
implementation. If we want to swap HandleIO for some other monad, we must change
the type of every action that uses HandleIO.

As an alternative, we can create a typeclass that specifies the interface we want from a
monad that manipulates files:

-- file: ch15/MonadHandle.hs
{-# LANGUAGE FunctionalDependencies, MultiParamTypeClasses #-}

module MonadHandle (MonadHandle(..)) where

import System.IO (IOMode(..))

class Monad m => MonadHandle h m | m -> h where
    openFile :: FilePath -> IOMode -> m h
    hPutStr :: h -> String -> m ()
    hClose :: h -> m ()
    hGetContents :: h -> m String

    hPutStrLn :: h -> String -> m ()
    hPutStrLn h s = hPutStr h s >> hPutStr h "\n"

Here, we’ve chosen to abstract away both the type of the monad and the type of a file
handle. To satisfy the type checker, we’ve added a functional dependency: for any
instance of MonadHandle, there is exactly one handle type that we can use. When we
make the IO monad an instance of this class, we use a regular Handle:

-- file: ch15/MonadHandleIO.hs
{-# LANGUAGE FunctionalDependencies, MultiParamTypeClasses #-}

import MonadHandle
import qualified System.IO
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import System.IO (IOMode(..))
import Control.Monad.Trans (MonadIO(..), MonadTrans(..))
import System.Directory (removeFile)

import SafeHello

instance MonadHandle System.IO.Handle IO where
    openFile = System.IO.openFile
    hPutStr = System.IO.hPutStr
    hClose = System.IO.hClose
    hGetContents = System.IO.hGetContents
    hPutStrLn = System.IO.hPutStrLn

Because any MonadHandle must also be a Monad, we can write code that manipulates files
using normal do notation, without caring what monad it will finally execute in:

-- file: ch15/SafeHello.hs
safeHello :: MonadHandle h m => FilePath -> m ()
safeHello path = do
  h <- openFile path WriteMode
  hPutStrLn h "hello world"
  hClose h

Because we made IO an instance of this typeclass, we can execute this action from
ghci:

ghci> safeHello "hello to my fans in domestic surveillance"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> removeFile "hello to my fans in domestic surveillance"

The beauty of the typeclass approach is that we can swap one underlying monad for
another without touching much code, as most of our code doesn’t know or care about
the implementation. For instance, we could replace IO with a monad that compresses
files as it writes them out.

Defining a monad’s interface through a typeclass has a further benefit. It lets another
user hide our implementation in a newtype wrapper and automatically derive instances
of just the typeclasses she wants to expose.

Isolation and Testing
In fact, because our safeHello function doesn’t use the IO type, we can even use a monad
that can’t perform I/O. This allows us to test code that would normally have side effects
in a completely pure, controlled environment.

To do this, we will create a monad that doesn’t perform I/O but instead logs every file-
related event for later processing:

-- file: ch15/WriterIO.hs
data Event = Open FilePath IOMode
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           | Put String String
           | Close String
           | GetContents String
             deriving (Show)

Although we already developed a Logger type in “Using a New Monad: Show Your
Work!” on page 331, here we’ll use the standard, and more general, Writer monad.
Like other mtl monads, the API provided by Writer is defined in a typeclass—in this
case, MonadWriter. Its most useful method is tell, which logs a value:

ghci> :m +Control.Monad.Writer
ghci> :type tell
tell :: (MonadWriter w m) => w -> m ()

The values we log can be of any Monoid type. Since the list type is a Monoid, we’ll log to
a list of Event.

We could make Writer [Event] an instance of MonadHandle, but it’s cheap, easy, and
safer to make a special-purpose monad:

-- file: ch15/WriterIO.hs
newtype WriterIO a = W { runW :: Writer [Event] a }
    deriving (Monad, MonadWriter [Event])

Our execution function simply removes the newtype wrapper we added, and then calls
the normal Writer monad’s execution function:

-- file: ch15/WriterIO.hs
runWriterIO :: WriterIO a -> (a, [Event])
runWriterIO = runWriter . runW

When we try this code out in ghci, it gives us a log of the function’s file activities:

ghci> :load WriterIO
[1 of 3] Compiling MonadHandle      ( MonadHandle.hs, interpreted )
[2 of 3] Compiling SafeHello        ( SafeHello.hs, interpreted )
[3 of 3] Compiling WriterIO         ( WriterIO.hs, interpreted )
Ok, modules loaded: MonadHandle, SafeHello, WriterIO.
ghci> runWriterIO (safeHello "foo")
((),[Open "foo" WriteMode,Put "foo" "hello world",Put "foo" "\n",Close "foo"])

The Writer Monad and Lists
The Writer monad uses the Monoid’s mappend function every time we use tell. Because
mappend for lists is (++), lists are not a good practical choice for use with Writer: repeated
appends are expensive. We used lists previously purely for simplicity.

In production code, if you want to use the Writer monad and you need list-like behavior,
use a type with better append characteristics. One such type is the difference list, which
we introduced in “Taking Advantage of Functions as Data” on page 317. You don’t
need to roll your own difference list implementation: a well-tuned library is available
for download from Hackage, the Haskell package database. Alternatively, you can use
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the Seq type from the Data.Sequence module, which we introduced in “General-Purpose
Sequences” on page 322.

Arbitrary I/O Revisited
If we use the typeclass approach to restricting IO, we may still want to retain the ability
to perform arbitrary I/O actions. We might try adding MonadIO as a constraint on our
typeclass:

-- file: ch15/MonadHandleIO.hs
class (MonadHandle h m, MonadIO m) => MonadHandleIO h m | m -> h

instance MonadHandleIO System.IO.Handle IO

tidierHello :: (MonadHandleIO h m) => FilePath -> m ()
tidierHello path = do
  safeHello path
  liftIO (removeFile path)

This approach has a problem, though: the added MonadIO constraint strips us of the
ability to test our code in a pure environment, because we can no longer tell whether
a test might have damaging side effects. The alternative is to move this constraint from
the typeclass—where it “infects” all functions—to only those functions that really need
to perform I/O:

-- file: ch15/MonadHandleIO.hs
tidyHello :: (MonadIO m, MonadHandle h m) => FilePath -> m ()
tidyHello path = do
  safeHello path
  liftIO (removeFile path)

We can use pure property tests on the functions that lack MonadIO constraints and
traditional unit tests on the rest.

Unfortunately, we’ve substituted one problem for another: we can’t invoke code with
both MonadIO and MonadHandle constraints from code that has the MonadHandle constraint
alone. If we find that somewhere deep in our MonadHandle-only code that we really need
the MonadIO constraint, we must add it to all the code paths that lead to this point.

Allowing arbitrary I/O is risky, and it has a profound effect on how we develop and
test our code. When we have to choose between being permissive on the one hand, and
easier reasoning and testing on the other, we usually opt for the latter.
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E X E R C I S E S

1. Using QuickCheck, write a test for an action in the MonadHandle monad, in order
to see if it tries to write to a file handle that is not open. Try it out on safeHello.

2. Write an action that tries to write to a file handle that it has closed. Does your test
catch this bug?

3. In a form-encoded string, the same key may appear several times, with or without
values, e.g., key&key=1&key=2. What type might you use to represent the values
associated with a key in this sort of string? Write a parser that correctly captures
all of the information.
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CHAPTER 16

Using Parsec

Parsing  a file, or data of various types, is a common task for programmers. We already
learned about Haskell’s support for regular expressions back in “Regular Expressions
in Haskell” on page 198. Regular expressions are nice for many tasks, but they rapidly
become unwieldy, or cannot be used at all, when dealing with a complex data format.
For instance, we cannot use regular expressions to parse source code from most pro-
gramming languages.

Parsec is a useful parser combinator library, with which we combine small parsing
functions to build more sophisticated parsers. Parsec provides some simple parsing
functions, as well as functions to tie them all together. It should come as no surprise
that this parser library for Haskell is built around the notion of functions.

It’s helpful to know where Parsec fits compared to the tools used for parsing in other
languages. Parsing is sometimes divided into two stages: lexical analysis (the domain
of tools such as flex) and parsing itself (performed by programs such as bison). Parsec
can perform both lexical analysis and parsing.

First Steps with Parsec: Simple CSV Parsing
Let’s jump right in and write some code for parsing a CSV file. CSV files are often used
as a plain-text representation of spreadsheets or databases. Each line is a record, and
each field in the record is separated from the next by a comma. There are ways of dealing
with fields that contain commas, but we won’t worry about that now.

This first example is much longer than it really needs to be. We will soon introduce
more Parsec features that will shrink the parser down to only four lines!

-- file: ch16/csv1.hs
import Text.ParserCombinators.Parsec

{- A CSV file contains 0 or more lines, each of which is terminated
   by the end-of-line character (eol). -}
csvFile :: GenParser Char st [[String]]
csvFile = 
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    do result <- many line
       eof
       return result

-- Each line contains 1 or more cells, separated by a comma
line :: GenParser Char st [String]
line = 
    do result <- cells
       eol                       -- end of line
       return result
       
-- Build up a list of cells.  Try to parse the first cell, then figure out 
-- what ends the cell.
cells :: GenParser Char st [String]
cells = 
    do first <- cellContent
       next <- remainingCells
       return (first : next)

-- The cell either ends with a comma, indicating that 1 or more cells follow,
-- or it doesn't, indicating that we're at the end of the cells for this line
remainingCells :: GenParser Char st [String]
remainingCells =
    (char ',' >> cells)            -- Found comma?  More cells coming
    <|> (return [])                -- No comma?  Return [], no more cells

-- Each cell contains 0 or more characters, which must not be a comma or
-- EOL
cellContent :: GenParser Char st String
cellContent = 
    many (noneOf ",\n")
       

-- The end of line character is \n
eol :: GenParser Char st Char
eol = char '\n'

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input

Let’s take a look at the code for this example. We didn’t use many shortcuts here, so
remember that this will get shorter and simpler!

We’ve built it from the top down, so our first function is csvFile. The type of this
function is GenParser Char st [[String]]. This means that the type of the input is a
sequence of characters, which is exactly what a Haskell string is, since String is the
same as [Char]. It also means that we will return a value of type [[String]]: a list of a
list of strings. The st can be ignored for now.

Parsec programmers often omit type declarations, since we write so many small func-
tions. Haskell’s type inference can figure it out. We’ve listed the types for the first
example, here so you can get a better idea of what’s going on. You can always use :t
in ghci to inspect types as well.
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The csvFile uses a do block. As this implies, Parsec is a monadic library: it defines its
own special parsing monad,* GenParser.

We start by running many line. many is a function that takes a function as an argument.
It tries to repeatedly parse the input using the function passed to it. It gathers up the
results from all that repeated parsing and returns a list of them. So, here, we are storing
the results of parsing all lines in result. Then we look for the end-of-file indicator,
called eof. Finally, we return the result. So, a CSV file is made up of many lines, and
then the end of file. We can often read out Parsec functions in plain English just like this.

Now we must answer the question: what is a line? We define the line function to do
just that. Reading the function, we can see that a line consists of cells followed by the
end-of-line character.

So what are cells? We defined them in the cells function. The cells of a line start with
the content of the first cell, and then continue with the content of the remaining cells,
if any. The result is simply the first cell and the remaining cells assembled into a list.

Let’s skip over remainingCells for a minute and look at cellContent. A cell contains
any number of characters, but each character must not be a comma or end-of-line
character. The noneOf function matches one item, so long as it isn’t in the list of items
that we pass. So, saying many (noneOf ",\n") defines a cell the way we want it.

Back in remainingCells, we have the first example of a choice in Parsec. The choice
operator is <|>. This operator behaves like this: it will try the parser on the left, and if
it consumes no input,† it will try the parser on the right.

So, in remainingCells, our task is to come up with all the cells after the first. Recall that
cellContent uses noneOf ",\n". So it will not consume the comma or end-of-line char-
acter from the input. If we see a comma after parsing a cell, it means that at least one
more cell follows. Otherwise, we’re done. So, our first choice in remainingCells is
char ','. This parser simply matches the passed character in the input. If we find a
comma, we want this function to return the remaining cells on the line. At this point,
the “remaining cells” looks exactly like the start of the line, so we call cells recursively
to parse them. If we don’t find a comma, we return the empty list, signifying no re-
maining cells on the line.

Finally, we must define what the end-of-line indicator is. We set it to char '\n', which
will suit our purposes fine for now.

At the very end of the program, we define a function parseCSV that takes a String and
parses it as a CSV file. This function is just a shortcut that calls Parsec’s parse function,
filling in a few parameters. parse returns Either ParseError [[String]] for the CSV

* For more on monads, refer to Chapter 14.

† For information on dealing with choices that may consume some input before failing, see “Lookahead” on
page 389.
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file. If there is an error, the return value will be Left with the error; otherwise, it will
be Right with the result.

Now that we understand this code, let’s play with it a bit and see what it does:

ghci> :l csv1.hs
[1 of 1] Compiling Main             ( csv1.hs, interpreted )
Ok, modules loaded: Main.
ghci> parseCSV ""
Loading package parsec-2.1.0.1 ... linking ... done.
Right []

That makes sense—parsing the empty string returns an empty list. Let’s try parsing a
single cell:

ghci> parseCSV "hi"
Left "(unknown)" (line 1, column 3):
unexpected end of input
expecting "," or "\n"

Look at that. Recall how we defined that each line must end with the end-of-line char-
acter, and we didn’t give it. Parsec’s error message helpfully indicated the line number
and column number of the problem, and even told us what it was expecting! Let’s give
it an end-of-line character and continue experimenting:

ghci> parseCSV "hi\n"
Right [["hi"]]
ghci> parseCSV "line1\nline2\nline3\n"
Right [["line1"],["line2"],["line3"]]
ghci> parseCSV "cell1,cell2,cell3\n"
Right [["cell1","cell2","cell3"]]
ghci> parseCSV "l1c1,l1c2\nl2c1,l2c2\n"
Right [["l1c1","l1c2"],["l2c1","l2c2"]]
ghci> parseCSV "Hi,\n\n,Hello\n"
Right [["Hi",""],[""],["","Hello"]]

You can see that parseCSV is doing exactly what we want it to do. It’s even handling
empty cells and empty lines properly.

The sepBy and endBy Combinators
We promised you earlier that we could simplify our CSV parser significantly by using
a few Parsec helper functions. There are two that will dramatically simplify this code.

The first tool is the sepBy function. This function takes two functions as arguments:
the first parses some sort of content, while the second parses a separator. sepBy starts
by trying to parse content, and then separators, and alternates back and forth until it
can’t parse a separator. It returns a list of all the content that it was able to parse.

The second tool is endBy. It’s similar to sepBy, but expects the very last item to be
followed by the separator. That is, it continues parsing until it can’t parse any more
content.
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So, we can use endBy to parse lines, since every line must end with the end-of-line
character. We can use sepBy to parse cells, since the last cell will not end with a comma.
Take a look at how much simpler our parser is now:

-- file: ch16/csv2.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = many (noneOf ",\n")
eol = char '\n'

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input

This program behaves exactly the same as the first one. We can verify this by using
ghci to rerun our examples from the earlier example. We’ll get the same result from
every one. Yet the program is much shorter and more readable. It won’t be long before
you can translate Parsec code such as this into a file format definition in plain English.
As you read over this code, you can see that:

• A CSV file contains zero or more lines, each of which is terminated by the end-of-
line character.

• A line contains one or more cells, separated by a comma.

• A cell contains zero or more characters, which must be neither the comma nor the
end-of-line character.

• The end-of-line character is the newline, \n.

Choices and Errors
Different operating systems use different characters to mark the end of line. Unix/
Linux systems, and Windows in text mode, use simply "\n". DOS and Windows sys-
tems use "\r\n", and Macs traditionally use "\r". We could add support for "\n\r" too,
just in case anybody uses that.

We could easily adapt our example to be able to handle all these types of line endings
in a single file. We would need to make two modifications: adjust eol to recognize the
different endings, and adjust the noneOf pattern in cell to ignore \r.

This must be done carefully. Recall that our earlier definition of eol was simply
char '\n'. There is a parser called string that we can use to match the multicharacter
patterns. Let’s start by thinking of how we would add support for \n\r.

Our first attempt might look like this:

-- file: ch16/csv3.hs
-- This function is not correct!
eol = string "\n" <|> string "\n\r"
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This isn’t quite right. Recall that the <|> operator always tries the left alternative first.
Looking for the single character \n will match both types of line endings, so it will look
to the system that the following line begins with \r. Not what we want. Try it in ghci:

ghci> :m Text.ParserCombinators.Parsec
ghci> let eol = string "\n" <|> string "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
ghci> parse eol "" "\n"
Right "\n"
ghci> parse eol "" "\n\r"
Right "\n"

It may seem like the parser worked for both endings, but actually looking at it this way,
we can’t tell. If it left something unparsed, we don’t know, because we’re not trying to
consume anything else from the input. So let’s look for the end of file after our end of
line:

ghci> parse (eol >> eof) "" "\n\r"
Left (line 2, column 1):
unexpected "\r"
expecting end of input
ghci> parse (eol >> eof) "" "\n"
Right ()

As expected, we got an error from the \n\r ending. So the next temptation may be to
try it this way:

-- file: ch16/csv4.hs
-- This function is not correct!
eol = string "\n\r" <|> string "\n"

This also isn’t right. Recall that <|> attempts the option on the right only if the option
on the left consumes no input. But by the time we are able to see if there is a \r after
the \n, we’ve already consumed the \n. This time, we fail on the other case in ghci:

ghci> :m Text.ParserCombinators.Parsec
ghci> let eol = string "\n\r" <|> string "\n"
Loading package parsec-2.1.0.1 ... linking ... done.
ghci> parse (eol >> eof) "" "\n\r"
Right ()
ghci> parse (eol >> eof) "" "\n"
Left (line 1, column 1):
unexpected end of input
expecting "\n\r"

We’ve stumbled upon the lookahead problem. It turns out that, when writing parsers,
it’s often very convenient to be able to “look ahead” at the data that’s coming in. Parsec
supports this, but before showing you how to use it, let’s see how you would have to
write this to get along without it. You’d have to manually expand all the options after
the \n like this:

-- file: ch16/csv5.hs
eol = 
    do char '\n'
       char '\r' <|> return '\n'
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This function first looks for \n. If it finds it, then it will look for \r, consuming it if
possible. Since the return type of char '\r' is a Char, the alternative action is to simply
return a Char without attempting to parse anything. Parsec has a function option that
can also express this idiom as option '\n' (char '\r'). Let’s test this with ghci:

ghci> :l csv5.hs
[1 of 1] Compiling Main             ( csv5.hs, interpreted )
Ok, modules loaded: Main.
ghci> parse (eol >> eof) "" "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
Right ()
ghci> parse (eol >> eof) "" "\n"
Right ()

This time, we got the right result! But we could have done it easier with Parsec’s look-
ahead support.

Lookahead
Parsec has a function called try that is used to express lookaheads. try takes one func-
tion, a parser, and applies it. If the parser doesn’t succeed, try behaves as if it hadn’t
consumed any input at all. So, when you use try on the left side of <|>, Parsec will try
the option on the right even if the left side failed after consuming some input. try has
an effect only if it is on the left of a <|>. Keep in mind, though, that many functions use
<|> internally. Here’s a way to add expanded end-of-line support to our CSV parser
using try:

-- file: ch16/csv6.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = many (noneOf ",\n\r")

eol =   try (string "\n\r")
    <|> try (string "\r\n")
    <|> string "\n"
    <|> string "\r"

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input

Here we put both of the two-character endings first, and run both tests under try. Both
of them occur to the left of a <|>, so they will do the right thing. We could have put
string "\n" within a try, but it wouldn’t have altered any behavior since they look at
only one character anyway. We can load this up and test the eol function in ghci:

ghci> :l csv6.hs
[1 of 1] Compiling Main             ( csv6.hs, interpreted )
Ok, modules loaded: Main.
ghci> parse (eol >> eof) "" "\n\r"
Loading package parsec-2.1.0.1 ... linking ... done.
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Right ()
ghci> parse (eol >> eof) "" "\n"
Right ()
ghci> parse (eol >> eof) "" "\r\n"
Right ()
ghci> parse (eol >> eof) "" "\r"
Right ()

All four endings were handled properly. You can also test the full CSV parser with some
different endings like this:

ghci> parseCSV "line1\r\nline2\nline3\n\rline4\rline5\n"
Right [["line1"],["line2"],["line3"],["line4"],["line5"]]

As you can see, this program even supports different line endings within a single file.

Error Handling
At the beginning of this chapter, you saw how Parsec could generate error messages
that list the location where the error occurred as well as what was expected. As parsers
get more complex, the list of what was expected can become cumbersome. Parsec pro-
vides a way for you to specify custom error messages in the event of parse failures.

Let’s look at what happens when our current CSV parser encounters an error:

ghci> parseCSV "line1"
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting ",", "\n\r", "\r\n", "\n" or "\r"

That’s a pretty long, and technical, error message. We could make an attempt to resolve
this using the monad fail function, like so:

-- file: ch16/csv7.hs
eol =   try (string "\n\r")
    <|> try (string "\r\n")
    <|> string "\n"
    <|> string "\r"
    <|> fail "Couldn't find EOL"

Under ghci, we can see the result:

ghci> :l csv7.hs
[1 of 1] Compiling Main             ( csv7.hs, interpreted )
Ok, modules loaded: Main.
ghci> parseCSV "line1"
Loading package parsec-2.1.0.1 ... linking ... done.
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting ",", "\n\r", "\r\n", "\n" or "\r"
Couldn't find EOL

We added to the error result but didn’t really help clean up the output. Parsec has an
<?> operator that is designed for just these situations. It is similar to <|> in that it first
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tries the parser on its left. Instead of trying another parser in the event of a failure, it
presents an error message. Here’s how we’d use it:

-- file: ch16/csv8.hs
eol =   try (string "\n\r")
    <|> try (string "\r\n")
    <|> string "\n"
    <|> string "\r"
    <?> "end of line"

Now, when you generate an error, you’ll get more helpful output:

ghci> :l csv8.hs
[1 of 1] Compiling Main             ( csv8.hs, interpreted )
Ok, modules loaded: Main.
ghci> parseCSV "line1"
Loading package parsec-2.1.0.1 ... linking ... done.
Left "(unknown)" (line 1, column 6):
unexpected end of input
expecting "," or end of line

That’s pretty helpful! The general rule of thumb is that you put a human description
of what you’re looking for to the right of <?>.

Extended Example: Full CSV Parser
Our earlier CSV examples have had an important flaw—they weren’t able to handle
cells that contain a comma. CSV generating programs typically put quotation marks
around such data. But then you have another problem: what to do if a cell contains a
quotation mark and a comma. In these cases, the embedded quotation marks are dou-
bled up.

Here is a full CSV parser. You can use this from ghci, or if you compile it to a standalone
program, it will parse a CSV file on standard input and convert it to a different format
on output:

-- file: ch16/csv9.hs
import Text.ParserCombinators.Parsec

csvFile = endBy line eol
line = sepBy cell (char ',')
cell = quotedCell <|> many (noneOf ",\n\r")

quotedCell = 
    do char '"'
       content <- many quotedChar
       char '"' <?> "quote at end of cell"
       return content

quotedChar =
        noneOf "\""
    <|> try (string "\"\"" >> return '"')

Extended Example: Full CSV Parser | 391



eol =   try (string "\n\r")
    <|> try (string "\r\n")
    <|> string "\n"
    <|> string "\r"
    <?> "end of line"

parseCSV :: String -> Either ParseError [[String]]
parseCSV input = parse csvFile "(unknown)" input

main =
    do c <- getContents
       case parse csvFile "(stdin)" c of
            Left e -> do putStrLn "Error parsing input:"
                         print e
            Right r -> mapM_ print r

That’s a full-featured CSV parser in just 21 lines of code, plus an additional 10 lines for
the parseCSV and main utility functions.

Let’s look at the changes in this program from the previous versions. First, a cell may
now be either a bare cell or a quoted cell. We give the quotedCell option first, because
we want to follow that path if the first character in a cell is the quote mark.

The quotedCell begins and ends with a quote mark and contains zero or more charac-
ters. These characters can’t be copied directly, though, because they may contain em-
bedded, doubled-up quote marks themselves, so we define a custom quotedChar to
process them.

When we’re processing characters inside a quoted cell, we first say noneOf "\"". This
will match and return any single character as long as it’s not the quote mark. Otherwise,
if it is the quote mark, we see if we have two in a row. If so, we return a single quote
mark to go on our result string.

Notice that try in quotedChar is on the right side of <|>. Recall that we said that try has
an effect only if it is on the left side of <|>. This try does occur on the left side of a
<|>, but on the left of one that must be within the implementation of many.

This try is important. Let’s say we are parsing a quoted cell and are getting towards
the end of it. There will be another cell following. So we will expect to see a quote to
end the current cell, followed by a comma. When we hit quotedChar, we will fail the
noneOf test and proceed to the test that looks for two quotes in a row. We’ll also fail
that one because we’ll have a quote, and then a comma. If we hadn’t used try, we’d
crash with an error at this point, saying that it was expecting the second quote, because
the first quote was already consumed. Since we use try, this is properly recognized as
not part of the cell, so it terminates the many quotedChar expression as expected. Look-
ahead has once again proven very useful, and the fact that it is so easy to add makes it
a remarkable tool in Parsec.

We can test this program with ghci over some quoted cells:
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ghci> :l csv9.hs
[1 of 1] Compiling Main             ( csv9.hs, interpreted )
Ok, modules loaded: Main.
ghci> parseCSV "\"This, is, one, big, cell\"\n"
Loading package parsec-2.1.0.1 ... linking ... done.
Right [["This, is, one, big, cell"]]
ghci> parseCSV "\"Cell without an end\n"
Left "(unknown)" (line 2, column 1):
unexpected end of input
expecting "\"\"" or quote at end of cell

Let’s run it over a real CSV file. Here’s one generated by a spreadsheet program:

"Product","Price"
"O'Reilly Socks",10
"Shirt with ""Haskell"" text",20
"Shirt, ""O'Reilly"" version",20
"Haskell Caps",15

Now, we can run this under our test program and watch:

$ runhaskell csv9.hs < test.csv
["Product","Price"]
["O'Reilly Socks","10"]
["Shirt with \"Haskell\" text","20"]
["Shirt, \"O'Reilly\" version","20"]
["Haskell Caps","15"]

Parsec and MonadPlus
Parsec’s GenParser monad is an instance of the MonadPlus typeclass that we introduced
in “Looking for Alternatives” on page 362. The value mzero represents a parse failure,
while mplus combines two alternative parses into one, using (<|>):

-- file: ch16/ParsecPlus.hs
instance MonadPlus (GenParser tok st) where
    mzero = fail "mzero"
    mplus = (<|>)

Parsing a URL-Encoded Query String
When we introduced application/x-www-form-urlencoded text in “Golfing Practice:
Association Lists” on page 359, we mentioned that we’d write a parser for these strings.
We can quickly and easily do this using Parsec.

Each key-value pair is separated by the & character:

-- file: ch16/FormParse.hs
p_query :: CharParser () [(String, Maybe String)]
p_query = p_pair `sepBy` char '&'
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Notice that in the type signature, we’re using Maybe to represent a value: the HTTP
specification is unclear about whether a key must have an associated value, and we’d
like to be able to distinguish between “no value” and “empty value”:

-- file: ch16/FormParse.hs
p_pair :: CharParser () (String, Maybe String)
p_pair = do
  name <- many1 p_char
  value <- optionMaybe (char '=' >> many p_char)
  return (name, value)

The many1 function is similar to many: it applies its parser repeatedly, returning a list of
results. While many will succeed and return an empty list if its parser never succeeds,
many1 will fail if its parser never succeeds and will otherwise return a list of at least one
element.

The optionMaybe function modifies the behavior of a parser. If the parser fails,
optionMaybe doesn’t: it returns Nothing. Otherwise, it wraps the parser’s successful re-
sult with Just. This gives us the ability to distinguish between “no value” and “empty
value,” as we mentioned earlier.

Individual characters can be encoded in one of several ways:

-- file: ch16/FormParse.hs
p_char :: CharParser () Char
p_char = oneOf urlBaseChars
     <|> (char '+' >> return ' ')
     <|> p_hex

urlBaseChars = ['a'..'z']++['A'..'Z']++['0'..'9']++"$-_.!*'(),"

p_hex :: CharParser () Char
p_hex = do
  char '%'
  a <- hexDigit
  b <- hexDigit
  let ((d, _):_) = readHex [a,b]
  return . toEnum $ d

Some characters can be represented literally. Spaces are treated specially, using a +
character. Other characters must be encoded as a % character followed by two hexa-
decimal digits. The Numeric module’s readHex parses a hex string as a number:

ghci> parseTest p_query "foo=bar&a%21=b+c"
Loading package parsec-2.1.0.1 ... linking ... done.
[("foo",Just "bar"),("a!",Just "b c")]

As appealing and readable as this parser is, we can profit from stepping back and taking
another look at some of our building blocks.
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Supplanting Regular Expressions for Casual Parsing
In many popular languages, people tend to put regular expressions to work for “cas-
ual” parsing. They’re notoriously tricky for this purpose: hard to write, difficult to
debug, nearly incomprehensible after a few months of neglect, and they provide no
error messages on failure.

If we can write compact Parsec parsers, we’ll gain in readability, expressiveness, and
error reporting. Our parsers won’t be as short as regular expressions, but they’ll be
close enough to negate much of the temptation of regexps.

Parsing Without Variables
A few of our parsers just shown use do notation and bind the result of an intermediate
parse to a variable for later use. One such function is p_pair:

-- file: ch16/FormParse.hs
p_pair :: CharParser () (String, Maybe String)
p_pair = do
  name <- many1 p_char
  value <- optionMaybe (char '=' >> many p_char)
  return (name, value)

We can get rid of the need for explicit variables by using the liftM2 combinator from
Control.Monad:

-- file: ch16/FormParse.hs
p_pair_app1 =
    liftM2 (,) (many1 p_char) (optionMaybe (char '=' >> many p_char))

This parser has exactly the same type and behavior as p_pair, but it’s one line long.
Instead of writing our parser in a “procedural” style, we’ve simply switched to a pro-
gramming style that emphasizes that we’re applying parsers and combining their results.

We can take this applicative style of writing a parser much further. In most cases, the
extra compactness that we will gain will not come at any cost in readability, beyond
the initial effort of coming to grips with the idea.

Applicative Functors for Parsing
The standard Haskell libraries include a module named Control.Applicative, which
we already encountered in “Infix Use of fmap” on page 248. This module defines a
typeclass named Applicative, which represents an applicative functor. This is a little
bit more structured than a functor, but a little bit less than a monad. It also defines
Alternative, which is similar to MonadPlus.

As usual, we think that the best way to introduce applicative functors is to put them to
work. In theory, every monad is an applicative functor, but not every applicative functor
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is a monad. Because applicative functors were added to the standard Haskell libraries
long after monads, we often don’t get an Applicative instance for free; frequently, we
have to declare the monad we’re using to be Applicative or Alternative.

To do this for Parsec, we’ll write a small module that we can import instead of the
normal Parsec module:

-- file: ch16/ApplicativeParsec.hs
module ApplicativeParsec
    (
      module Control.Applicative
    , module Text.ParserCombinators.Parsec
    ) where

import Control.Applicative
import Control.Monad (MonadPlus(..), ap)
-- Hide a few names that are provided by Applicative.
import Text.ParserCombinators.Parsec hiding (many, optional, (<|>))

-- The Applicative instance for every Monad looks like this.
instance Applicative (GenParser s a) where
    pure  = return
    (<*>) = ap

-- The Alternative instance for every MonadPlus looks like this.
instance Alternative (GenParser s a) where
    empty = mzero
    (<|>) = mplus

For convenience, our module’s export section exports all the names we imported from
both the Applicative and Parsec modules. Because we hid Parsec’s version of (<|>)
when importing, the one that will be exported is from Control.Applicative—as we
would like.

Applicative Parsing by Example
We’ll start by rewriting our existing form parser from the bottom up, beginning with
p_hex, which parses a hexadecimal escape sequence. Here’s the code in normal do-
notation style:

-- file: ch16/FormApp.hs
p_hex :: CharParser () Char
p_hex = do
  char '%'
  a <- hexDigit
  b <- hexDigit
  let ((d, _):_) = readHex [a,b]
  return . toEnum $ d

And here’s our applicative version:
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-- file: ch16/FormApp.hs
a_hex = hexify <$> (char '%' *> hexDigit) <*> hexDigit
    where hexify a b = toEnum . fst . head . readHex $ [a,b]

Although the individual parsers are mostly untouched, the combinators that we’re
gluing them together with have changed. The only familiar one is (<$>), which we
already know is a synonym for fmap.

From our definition of Applicative, we know that (<*>) is ap.

The remaining unfamiliar combinator is (*>), which applies its first argument, throws
away its result, and then applies the second and returns its result. In other words, it’s 
similar to (>>).

A handy tip about angle brackets
Before we continue, here’s a useful aid for remembering what all the
angle brackets are for in the combinators from Control.Applicative: if
there’s an angle bracket pointing to a side, the result from that side
should be used.

For example, (*>) returns the result on its right; (<*>) returns results
from both sides; and (<*)—which we have not seen yet—returns the
result on its left.

Although the concepts here should mostly be familiar from our earlier coverage of
functors and monads, we’ll walk through this function to explain what’s happening.
First, to get a grip on our types, we’ll hoist hexify to the top level and give it a signature:

-- file: ch16/FormApp.hs
hexify :: Char -> Char -> Char
hexify a b = toEnum . fst . head . readHex $ [a,b]

Parsec’s hexDigit parser parses a single hexadecimal digit:

ghci> :type hexDigit
hexDigit :: CharParser st Char

Therefore, char '%' *> hexDigit has the same type, since (*>) returns the result on its
right. (The CharParser type is nothing more than a synonym for GenParser Char.)

ghci> :type char '%' *> hexDigit
char '%' *> hexDigit :: GenParser Char st Char

The expression hexify <$> (char '%' *> hexDigit) is a parser that matches a % char-
acter followed by hexDigit, and whose result is a function:

ghci> :type hexify <$> (char '%' *> hexDigit)
hexify <$> (char '%' *> hexDigit) :: GenParser Char st (Char -> Char)

Finally, (<*>) applies the parser on its left, and then the parser on its right, and then
applies the function that’s the result of the left parse to the value that’s the result of the
right.
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If you’ve been able to follow this, you understand the (<*>) and ap combinators—
(<*>) is plain old ($) lifted to applicative functors, and ap is the same thing lifted to
monads:

ghci> :type ($)
($) :: (a -> b) -> a -> b
ghci> :type (<*>)
(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b
ghci> :type ap
ap :: (Monad m) => m (a -> b) -> m a -> m b

Next, we’ll consider the p_char parser:

-- file: ch16/FormApp.hs
p_char :: CharParser () Char
p_char = oneOf urlBaseChars
     <|> (char '+' >> return ' ')
     <|> p_hex

urlBaseChars = ['a'..'z']++['A'..'Z']++['0'..'9']++"$-_.!*'(),"

This remains almost the same in an applicative style, save for one piece of convenient
notation:

-- file: ch16/FormApp.hs
a_char = oneOf urlBaseChars
     <|> (' ' <$ char '+')
     <|> a_hex

Here, the (<$) combinator uses the value on the left if the parser on the right succeeds.

Finally, the equivalent of p_pair_app1 is almost identical:

-- file: ch16/FormParse.hs
p_pair_app1 =
    liftM2 (,) (many1 p_char) (optionMaybe (char '=' >> many p_char))

All we’ve changed is the combinator we use for lifting—the liftA functions act in the
same way as their liftM cousins:

-- file: ch16/FormApp.hs
a_pair :: CharParser () (String, Maybe String)
a_pair = liftA2 (,) (many1 a_char) (optionMaybe (char '=' *> many a_char))

Parsing JSON Data
To give ourselves a better feel for parsing with applicative functors, and to explore a
few more corners of Parsec, we’ll write a JSON parser that follows the definition in
RFC 4627.

At the top level, a JSON value must be either an object or an array:

-- file: ch16/JSONParsec.hs
p_text :: CharParser () JValue
p_text = spaces *> text
     <?> "JSON text"

398 | Chapter 16: Using Parsec



    where text = JObject <$> p_object
             <|> JArray <$> p_array

These are structurally similar, with an opening character, followed by one or more items
separated by commas, followed by a closing character. We capture this similarity by
writing a small helper function:

-- file: ch16/JSONParsec.hs
p_series :: Char -> CharParser () a -> Char -> CharParser () [a]
p_series left parser right =
    between (char left <* spaces) (char right) $
            (parser <* spaces) `sepBy` (char ',' <* spaces)

Here, we finally have a use for the (<*) combinator that we introduced earlier. We use
it to skip over any whitespace that might follow certain tokens. With this p_series
function, parsing an array is simple:

-- file: ch16/JSONParsec.hs
p_array :: CharParser () (JAry JValue)
p_array = JAry <$> p_series '[' p_value ']'

Dealing with a JSON object is hardly more complicated, requiring just a little additional
effort to produce a name/value pair for each of the object’s fields:

-- file: ch16/JSONParsec.hs
p_object :: CharParser () (JObj JValue)
p_object = JObj <$> p_series '{' p_field '}'
    where p_field = (,) <$> (p_string <* char ':' <* spaces) <*> p_value

Parsing an individual value is a matter of calling an existing parser, and then wrapping
its result with the appropriate JValue constructor:

-- file: ch16/JSONParsec.hs
p_value :: CharParser () JValue
p_value = value <* spaces
  where value = JString <$> p_string
            <|> JNumber <$> p_number
            <|> JObject <$> p_object
            <|> JArray <$> p_array
            <|> JBool <$> p_bool
            <|> JNull <$ string "null"
            <?> "JSON value"

p_bool :: CharParser () Bool
p_bool = True <$ string "true"
     <|> False <$ string "false"

The choice combinator allows us to represent this kind of ladder-of-alternatives as a
list. It returns the result of the first parser to succeed:

-- file: ch16/JSONParsec.hs
p_value_choice = value <* spaces
  where value = choice [ JString <$> p_string
                       , JNumber <$> p_number
                       , JObject <$> p_object
                       , JArray <$> p_array
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                       , JBool <$> p_bool
                       , JNull <$ string "null"
                       ]
                <?> "JSON value"

This leads us to the two most interesting parsers, for numbers and strings. We’ll deal
with numbers first, since they’re simpler:

-- file: ch16/JSONParsec.hs
p_number :: CharParser () Double
p_number = do s <- getInput
              case readSigned readFloat s of
                [(n, s')] -> n <$ setInput s'
                _         -> empty

Our trick here is to take advantage of Haskell’s standard number parsing library func-
tions, which are defined in the Numeric module. The readFloat function reads an un-
signed floating-point number; readSigned takes a parser for an unsigned number and
turns it into a parser for possibly signed numbers.

Since these functions know nothing about Parsec, we have to work with them specially.
Parsec’s getInput function gives us direct access to Parsec’s unconsumed input stream.
If readSigned readFloat succeeds, it returns both the parsed number and the rest of the
unparsed input. We then use setInput to give this back to Parsec as its new unconsumed
input stream.

Parsing a string isn’t difficult, merely detailed:

-- file: ch16/JSONParsec.hs
p_string :: CharParser () String
p_string = between (char '\"') (char '\"') (many jchar)
    where jchar = char '\\' *> (p_escape <|> p_unicode)
              <|> satisfy (`notElem` "\"\\")

We can parse and decode an escape sequence with the help of the choice combinator
that we just met:

-- file: ch16/JSONParsec.hs
p_escape = choice (zipWith decode "bnfrt\\\"/" "\b\n\f\r\t\\\"/")
    where decode c r = r <$ char c

Finally, JSON lets us encode a Unicode character in a string as \u, followed by four
hexadecimal digits:

-- file: ch16/JSONParsec.hs
p_unicode :: CharParser () Char
p_unicode = char 'u' *> (decode <$> count 4 hexDigit)
    where decode x = toEnum code
              where ((code,_):_) = readHex x

The only piece of functionality that applicative functors are missing, compared to mo-
nads, is the ability to bind a value to a variable, which we need here in order to be able
to validate the value we’re trying to decode.

400 | Chapter 16: Using Parsec



This is the one place in our parser that we’ve needed to use a monadic function. This
pattern extends to more complicated parsers, too—only infrequently do we need the
extra bit of power that monads offer.

As of this writing, applicative functors are still quite new to Haskell, and people are
only beginning to explore the possible uses for them beyond the realm of parsing.

Parsing a HTTP Request
As another example of applicative parsing, we will develop a basic parser for HTTP
requests:

-- file: ch16/HttpRequestParser.hs
module HttpRequestParser
    (
      HttpRequest(..)
    , Method(..)
    , p_request
    , p_query
    ) where

import ApplicativeParsec
import Numeric (readHex)
import Control.Monad (liftM4)
import System.IO (Handle)

An HTTP request consists of a method, an identifier, a series of headers, and an optional
body. For simplicity, we’ll focus on just two of the six method types specified by the
HTTP 1.1 standard. A POST method has a body; a GET has none:

-- file: ch16/HttpRequestParser.hs
data Method = Get | Post
          deriving (Eq, Ord, Show)

data HttpRequest = HttpRequest {
      reqMethod :: Method
    , reqURL :: String
    , reqHeaders :: [(String, String)]
    , reqBody :: Maybe String
    } deriving (Eq, Show)

Because we’re writing in an applicative style, our parser can be both brief and readable.
Readable, that is, if you’re becoming used to the applicative parsing notation:

-- file: ch16/HttpRequestParser.hs
p_request :: CharParser () HttpRequest
p_request = q "GET" Get (pure Nothing)
        <|> q "POST" Post (Just <$> many anyChar)
  where q name ctor body = liftM4 HttpRequest req url p_headers body
            where req = ctor <$ string name <* char ' '
        url = optional (char '/') *>
              manyTill notEOL (try $ string " HTTP/1." <* oneOf "01")
              <* crlf
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Briefly, the q helper function accepts a method name, the type constructor to apply to
it, and a parser for a request’s optional body. The url helper does not attempt to validate
a URL, because the HTTP specification does not state what characters a URL contain.
The function just consumes input until either the line ends or it reaches an HTTP
version identifier.

Backtracking and Its Discontents
The try combinator has to hold onto input in case it needs to restore it so that an
alternative parser can be used. This practice is referred to as backtracking. Because
try must save input, it is expensive to use. Sprinkling a parser with unnecessary uses
of try is a very effective way to slow it down, sometimes to the point of unacceptable
performance.

The standard way to avoid the need for backtracking is to tidy up a parser so that we
can decide whether it will succeed or fail using only a single token of input. In this case,
the two parsers consume the same initial tokens, so we turn them into a single parser:

ghci> let parser = (++) <$> string "HT" <*> (string "TP" <|> string "ML")
ghci> parseTest parser "HTTP"
"HTTP"
ghci> parseTest parser "HTML"
"HTML"

Even better, Parsec gives us an improved error message if we feed it nonmatching input:

ghci> parseTest parser "HTXY"
parse error at (line 1, column 3):
unexpected "X"
expecting "TP" or "ML"

Parsing Headers
Following the first line of a HTTP request is a series of zero or more headers. A header
begins with a field name, followed by a colon, followed by the content. If the lines that
follow begin with spaces, they are treated as continuations of the current content:

-- file: ch16/HttpRequestParser.hs
p_headers :: CharParser st [(String, String)]
p_headers = header `manyTill` crlf
  where header = liftA2 (,) fieldName (char ':' *> spaces *> contents)
        contents = liftA2 (++) (many1 notEOL <* crlf)
                               (continuation <|> pure [])
        continuation = liftA2 (:) (' ' <$ many1 (oneOf " \t")) contents
        fieldName = (:) <$> letter <*> many fieldChar
        fieldChar = letter <|> digit <|> oneOf "-_"

crlf :: CharParser st ()
crlf = (() <$ string "\r\n") <|> (() <$ newline)
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notEOL :: CharParser st Char
notEOL = noneOf "\r\n"

E X E R C I S E S

1. Our HTTP request parser is too simple to be useful in real deployments. It is miss-
ing vital functionality and is not resistant to even the most basic denial-of-service
attacks.

Make the parser honor the Content-Length field properly, if it is present.

2. A popular denial-of-service attack against naive web servers is simply to send un-
reasonably long headers. A single header might contain 10s or 100s of megabytes
of garbage text, causing a server to run out of memory.

Restructure the header parser so that it will fail if any line is longer than 4,096
characters. It must fail immediately when this occurs; it cannot wait until the end
of a line eventually shows up.

3. Add the ability to honor the Transfer-Encoding: chunked header if it is present.
See section 3.6.1 of RFC 2616 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec3
.html#sec3.6.1) for details.

4. Another popular attack is to open a connection and either leave it idle or send data
extremely slowly.

Write a wrapper in the IO monad that will invoke the parser. Use the
System.Timeout module to close the connection if the parser does not complete
within 30 seconds.
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CHAPTER 17

Interfacing with C: The FFI

Programming languages do not exist in perfect isolation. They inhabit an ecosystem of
tools and libraries, built up over decades, and often written in a range of programming
languages. Good engineering practice suggests we reuse that effort. The Haskell Foreign
Function Interface (the FFI) is the means by which Haskell code can use, and be used
by, code written in other languages. In this chapter, we’ll look at how the FFI works
and how to produce a Haskell binding to a C library, including how to use an FFI
preprocessor to automate much of the work. The challenge: take PCRE, the standard
Perl-compatible regular expression library, and make it usable from Haskell in an effi-
cient and functional way. Throughout, we’ll seek to abstract out manual effort required
by the C implementation, delegating that work to Haskell to make the interface more
robust, yielding a clean, high-level binding. We assume only some basic familiarity with
regular expressions.

Binding one language to another is a nontrivial task. The binding language needs to
understand the calling conventions, type system, data structures, memory allocation
mechanisms, and linking strategy of the target language, just to get things working.
The task is to carefully align the semantics of both languages so that both can under-
stand the data that passes between them.

For Haskell, this technology stack is specified by FFI (http://www.cse.unsw.edu.au/
~chak/haskell/ffi/) to the Haskell report. The FFI report describes how to correctly bind
Haskell and C together and how to extend bindings to other languages. The standard
is designed to be portable so that FFI bindings will work reliably across Haskell
implementations, operating systems, and C compilers.

All implementations of Haskell support the FFI, and it is a key technology when using
Haskell in a new field. Instead of reimplementing the standard libraries in a domain,
we just bind to existing ones written in languages other than Haskell.
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The FFI adds a new dimension of flexibility to the language: if we need to access raw
hardware for some reason (say we’re programming new hardware or implementing an
operating system), the FFI lets us get access to that hardware. It also gives us a per-
formance escape hatch: if we can’t get a code hot spot fast enough, there’s always the
option of trying again in C. So let’s look at what the FFI actually means for writing code.

Foreign Language Bindings: The Basics
The most common operation we’ll want to do, unsurprisingly, is call a C function from
Haskell. So let’s do that, by binding to some functions from the standard C math library.
We’ll put the binding in a source file, and then compile it into a Haskell binary that
makes use of the C code.

To start with, we need to enable the FFI extension, as the FFI addendum support isn’t
enabled by default. We do this, as always, via a LANGUAGE pragma at the top of our source
file:

-- file: ch17/SimpleFFI.hs
{-# LANGUAGE ForeignFunctionInterface #-}

The LANGUAGE pragmas indicate which extensions to Haskell 98 a module uses. We bring
just the FFI extension in play this time. It is important to track which extensions to the
language you need. Fewer extensions generally means more portable, more robust
code. Indeed, it is common for Haskell programs written more than a decade ago to
compile perfectly well today, thanks to standardization, despite changes to the lan-
guage’s syntax, type system, and core libraries.

The next step is to import the Foreign modules, which provide useful types (such as
pointers, numerical types, and arrays) and utility functions (such as malloc and
alloca) for writing bindings to other languages:

-- file: ch17/SimpleFFI.hs
import Foreign
import Foreign.C.Types

For extensive work with foreign libraries, a good knowledge of the Foreign module is
essential. Other useful modules include Foreign.C.String, Foreign.Ptr, and
Foreign.Marshal.Array.

Now we can get down to work calling C functions. To do this, we need to know three
things: the name of the C function, its type, and its associated header file. Additionally,
for code that isn’t provided by the standard C library, we’ll need to know the C library’s
name for linking purposes. The actual binding work is done with a foreign import
declaration, like so:

-- file: ch17/SimpleFFI.hs
foreign import ccall "math.h sin"
     c_sin :: CDouble -> CDouble
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This defines a new Haskell function, c_sin, whose concrete implementation is in C, via
the sin function. When c_sin is called, a call to the actual sin will be made (using the
standard C calling convention, indicated by ccall). The Haskell runtime passes control
to C, which returns its results back to Haskell. The result is then wrapped up as a
Haskell value of type CDouble.

A common idiom when writing FFI bindings is to expose the C function with the prefix
c_, distinguishing it from more user-friendly, higher-level functions. The raw C function
is specified by the math.h header, where it is declared to have the type:

double sin(double x);

When writing the binding, the programmer has to translate C type signatures such as
this into their Haskell FFI equivalents, making sure that the data representations match
up. For example, double in C corresponds to CDouble in Haskell. We need to be careful
here, since if a mistake is made, the Haskell compiler will happily generate incorrect
code to call C! The poor Haskell compiler doesn’t know anything about what types the
C function actually requires, so if instructed to, it will call the C function with the wrong
arguments. At best this will lead to C compiler warnings, and more likely, it will end
with with a runtime crash. At worst the error will silently go unnoticed until some
critical failure occurs. So make sure you use the correct FFI types, and don’t be wary
of using QuickCheck to test your C code via the bindings.*

The most important primitive C types are represented in Haskell with the somewhat
intuitive names (for signed and unsigned types) CChar, CUChar, CInt, CUInt, CLong,
CULong, CSize, CFloat, and CDouble. More are defined in the FFI standard and can be
found in the Haskell base library under Foreign.C.Types. It is also possible to define
your own Haskell-side representation types for C, as we’ll see later.

Be Careful of Side Effects
One point to note is that we bound sin as a pure function in Haskell, one with no side
effects. That’s fine in this case, since the sin function in C is referentially transparent.
By binding pure C functions to pure Haskell functions, the Haskell compiler is taught
something about the C code—namely, that it has no side effects, making optimizations
easier. Pure code is also more flexible for the Haskell programmer, as it yields naturally
persistent data structures and threadsafe functions. However, while pure Haskell code
is always threadsafe, this is harder to guarantee of C. Even if the documentation indi-
cates the function is likely to expose no side effects, there’s little to ensure it is also
threadsafe, unless explicitly documented as “reentrant.” Pure, threadsafe C code, while
rare, is a valuable commodity. It is the easiest flavor of C to use from Haskell.

* Some more advanced binding tools provide greater degrees of type checking. For example, c2hs is able to
parse the C header, and generate the binding definition for you, and it is especially suited for large projects
where the full API is specified.
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Of course, code with side effects is more common in imperative languages, where the
explicit sequencing of statements encourages the use of effects. It is much more com-
mon in C for functions to return different values, given the same arguments, due to
changes in global or local state, or to have other side effects. Typically, this is signalled
in C by the function returning only a status value or some void type, rather than a useful
result value. This indicates that the real work of the function was in its side effects. For
such functions, we’ll need to capture those side effects in the IO monad (by changing
the return type to IO CDouble, for example). We also need to be very careful with pure
C functions that aren’t also reentrant, as multiple threads are extremely common in
Haskell code, in comparison to C. We might need to moderate access to the FFI binding
with a transactional lock, or by duplicating the underlying C state to make nonreentrant
code safe for use.

A High-Level Wrapper
With the foreign imports out of the way, the next step is to convert the C types we pass
to and receive from the foreign language call into native Haskell types, wrapping the
binding so that it appears as a normal Haskell function:

-- file: ch17/SimpleFFI.hs
fastsin :: Double -> Double
fastsin x = realToFrac (c_sin (realToFrac x))

The main thing to remember when writing convenient wrappers over bindings such as
this is to correctly convert input and output back to normal Haskell types. To convert
between floating-point values, we can use realToFrac, which lets us translate different
floating-point values to each other (and these conversions, such as from CDouble to
Double, are usually free, as the underlying representations are unchanged). For integer 
values, fromIntegral is available. For other common C data types, such as arrays, we
may need to unpack the data to a more workable Haskell type (such as a list), or possibly
leave the C data opaque and operate on it indirectly only (perhaps via a ByteString).
The choice depends on how costly the transformation is and the functions that are
available on the source and destination types.

We can now proceed to use the bound function in a program. For example, we can
apply the C sin function to a Haskell list of 10ths:

-- file: ch17/SimpleFFI.hs
main = mapM_ (print . fastsin) [0/10, 1/10 .. 10/10]

This simple program prints each result as it is computed. Putting the complete binding
in the file SimpleFFI.hs allows us to run it in ghci:

$ ghci SimpleFFI.hs
*Main> main
0.0
9.983341664682815e-2
0.19866933079506122
0.2955202066613396
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0.3894183423086505
0.479425538604203
0.5646424733950354
0.644217687237691
0.7173560908995227
0.7833269096274833
0.8414709848078964

Alternatively, we can compile the code to an executable, dynamically linked against
the corresponding C library:

$ ghc -O --make SimpleFFI.hs
[1 of 1] Compiling Main             ( SimpleFFI.hs, SimpleFFI.o )
Linking SimpleFFI ...

and then run that:

$ ./SimpleFFI 
0.0
9.983341664682815e-2
0.19866933079506122
0.2955202066613396
0.3894183423086505
0.479425538604203
0.5646424733950354
0.644217687237691
0.7173560908995227
0.7833269096274833
0.8414709848078964

We’re well on our way now, with a full program, statically linked against C, which
interleaves C and Haskell code and passes data across the language boundary. Simple
bindings such as the one just shown are almost trivial, as the standard Foreign library
provides convenient aliases for common types such as CDouble. In the next section, we’ll
look at a larger engineering task: binding to the PCRE library, which brings up issues
of memory management and type safety.

Regular Expressions for Haskell: A Binding for PCRE
As we’ve seen in previous sections, Haskell programs have something of a bias towards
lists as a foundational data structure. List functions are a core part of the base library,
and convenient syntax for constructing and taking apart list structures is wired into the
language. Strings are, of course, simply lists of characters (rather than, for example, flat
arrays of characters). This flexibility is all well and good, but it results in a tendency for
the standard library to favor polymorphic list operations at the expense of string-
specific operations.

Indeed, many common tasks can be solved via regular-expression-based string pro-
cessing, yet support for regular expressions isn’t part of the Haskell Prelude. So let’s
look at how we’d take an off-the-shelf regular expression library, PCRE, and provide a
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natural, convenient Haskell binding to it, giving us useful regular expressions for
Haskell.

PCRE itself is a ubiquitous C library implementing Perl-style regular expressions. It is
widely available and preinstalled on many systems. You can find it at http://www.pcre
.org/. In the following sections, we’ll assume the PCRE library and headers are available
on the machine.

Simple Tasks: Using the C Preprocessor
The simplest task when setting out to write a new FFI binding from Haskell to C is to
bind constants defined in C headers to equivalent Haskell values. For example, PCRE
provides a set of flags for modifying how the core pattern matching system works (such
as ignoring case or allowing matching on newlines). These flags appear as numeric
constants in the PCRE header files:

/* Options */

#define PCRE_CASELESS           0x00000001
#define PCRE_MULTILINE          0x00000002
#define PCRE_DOTALL             0x00000004
#define PCRE_EXTENDED           0x00000008

To export these values to Haskell, we need to insert them into a Haskell source file
somehow. One obvious way to do this is by using the C preprocessor to substitute
definitions from C into the Haskell source, which we then compile as a normal Haskell
source file. Using the preprocessor, we can even declare simple constants, via textual
substitutions on the Haskell source file:

-- file: ch17/Enum1.hs
{-# LANGUAGE CPP #-}

#define N 16

main = print [ 1 .. N ]

The file is processed with the preprocessor in a similar manner to C source (with CPP
run for us by the Haskell compiler, when it spots the LANGUAGE pragma), resulting in
program output:

$ runhaskell Enum.hs
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

However, relying on CPP is a rather fragile approach. The C preprocessor isn’t aware
it is processing a Haskell source file and will happily include text, or transform source,
in such a way as to make our Haskell code invalid. We need to be careful not to confuse
CPP. If we were to include C headers, we risk substituting unwanted symbols, or in-
serting C type information and prototypes into the Haskell source, resulting in a broken
mess.
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To solve these problems, the binding preprocessor hsc2hs is distributed with GHC. It
provides a convenient syntax for including C binding information in Haskell, as well
as letting us safely operate with headers. It is the tool of choice for the majority of
Haskell FFI bindings.

Binding Haskell to C with hsc2hs
To use hsc2hs as an intelligent binding tool for Haskell, we need to create an .hsc file,
Regex.hsc, which will hold the Haskell source for our binding, along with hsc2hs pro-
cessing rules, C headers, and C type information. To start off, we need some pragmas
and imports:

-- file: ch17/Regex-hsc.hs
{-# LANGUAGE CPP, ForeignFunctionInterface #-}

module Regex where

import Foreign
import Foreign.C.Types

#include <pcre.h>

The module begins with a typical preamble for an FFI binding: enable CPP, enable the
FFI syntax, declare a module name, and then import some things from the base library.
The unusual item is the final line, where we include the C header for PCRE. This
wouldn’t be valid in a .hs source file, but is fine in .hsc code.

Adding Type Safety to PCRE
Next we need a type to represent PCRE compile-time flags. In C, these are integer flags
to the compile function, so we could just use CInt to represent them. All we know about
the flags is that they’re C numeric constants, so CInt is the appropriate representation.

As a Haskell library writer though, this feels sloppy. The type of values that can be used
as regex flags contains fewer values than CInt allows for. Nothing would prevent the
end user from passing illegal integer values as arguments, or mixing up flags that should
be passed only at regex compile time, with runtime flags. It is also possible to do arbi-
trary math on flags or to make other mistakes where integers and flags are confused.
We really need to more precisely specify that the type of flags is distinct from its runtime
representation as a numeric value. If we can do this, we can statically prevent a class
of bugs relating to misuse of flags.

Adding such a layer of type safety is relatively easy, and a great use case for newtype,
the type introduction declaration. newtype lets us create a type with an identical runtime
representation type to another type, but which is treated as a separate type at compile
time. We can represent flags as CInt values, but at compile time they’ll be tagged dis-
tinctly for the type checker. This makes it a type error to use invalid flag values (as we
specify only those valid flags and prevent access to the data constructor), or to pass
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flags to functions expecting integers. We get to use the Haskell type system to introduce
a layer of type safety to the C PCRE API.

To do this, we define a newtype for PCRE compile-time options, whose representation
is actually that of a CInt value, like so:

-- file: ch17/Regex-hsc.hs
-- | A type for PCRE compile-time options. These are newtyped CInts,
-- which can be bitwise-or'd together, using '(Data.Bits..|.)'
--
newtype PCREOption = PCREOption { unPCREOption :: CInt }
    deriving (Eq,Show)

The type name is PCREOption, and it has a single constructor, also named PCREOption,
which lifts a CInt value into a new type by wrapping it in a constructor. We can also
happily define an accessor, unPCREOption, using the Haskell record syntax to access the
underlying CInt. That’s a lot of convenience in one line. While we’re here, we can also
derive some useful typeclass operations for flags (equality and printing). We need to
remember to export the data constructor abstractly from the source module, ensuring
that users can’t construct their own PCREOption values.

Binding to Constants
Now that we’ve pulled in the required modules, turned on the language features we
need, and defined a type to represent PCRE options, we need to actually define some
Haskell values corresponding to those PCRE constants.

We can do this in two ways with hsc2hs. The first is to use the #const keyword
hsc2hs provides. This lets us name constants to be provided by the C preprocessor. We
can bind to the constants manually by listing the CPP symbols for them using the
#const keyword:

-- file: ch17/Regex-hsc-const.hs
caseless       :: PCREOption
caseless       = PCREOption #const PCRE_CASELESS

dollar_endonly :: PCREOption
dollar_endonly = PCREOption #const PCRE_DOLLAR_ENDONLY

dotall         :: PCREOption
dotall         = PCREOption #const PCRE_DOTALL

This introduces three new constants on the Haskell side, caseless, dollar_endonly, and
dotall, corresponding to the similarly named C definitions. We immediately wrap the
constants in a newtype constructor, so they’re exposed to the programmer as abstract
PCREOption types only.

Creating a .hsc file is the first step. We now need to actually create a Haskell source
file, with the C preprocessing done. Time to run hsc2hs over the .hsc file:

$ hsc2hs Regex.hsc
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This creates a new output file, Regex.hs, where the CPP variables have been expanded,
yielding valid Haskell code:

-- file: ch17/Regex-hsc-const-generated.hs
caseless       :: PCREOption
caseless       = PCREOption 1
{-# LINE 21 "Regex.hsc" #-}

dollar_endonly :: PCREOption
dollar_endonly = PCREOption 32
{-# LINE 24 "Regex.hsc" #-}

dotall         :: PCREOption
dotall         = PCREOption 4
{-# LINE 27 "Regex.hsc" #-}

Notice how the original line in the .hsc file is listed next to each expanded definition
via the LINE pragma. The compiler uses this information to report errors in terms of
their source, in the original file, rather than in the generated one. We can load this
generated .hs file into the interpreter and play with the results:

$ ghci Regex.hs
*Regex> caseless
PCREOption {unPCREOption = 1}
*Regex> unPCREOption caseless
1
*Regex> unPCREOption caseless + unPCREOption caseless
2
*Regex> caseless + caseless
interactive>:1:0:
    No instance for (Num PCREOption)

So things are working as expected. The values are opaque, we get type errors if we try
to break the abstraction, and we can unwrap them and operate on them if needed. The
unPCREOption accessor is used to unwrap the boxes. That’s a good start, but let’s see
how we can simplify this task further.

Automating the Binding
Clearly, manually listing all the C defines and wrapping them is tedious and error prone.
Wrapping all the literals in newtype constructors is also annoying. This kind of binding
is such a common task that hsc2hs provides convenient syntax to automate it: the
#enum construct.

We can replace our list of top-level bindings with the equivalent:

-- file: ch17/Regex-hsc.hs
-- PCRE compile options
#{enum PCREOption, PCREOption
  , caseless             = PCRE_CASELESS
  , dollar_endonly       = PCRE_DOLLAR_ENDONLY
  , dotall               = PCRE_DOTALL
  }
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This is much more concise! The #enum construct gives us three fields to work with. The
first is the name of the type we’d like the C defines to be treated as. This lets us pick
something other than just CInt for the binding. We chose PCREOption’s to construct.

The second field is an optional constructor to place in front of the symbols. This is
specifically for the case we want to construct newtype values, and where much of the
grunt work is saved. The final part of the #enum syntax is self-explanatory: it just defines
Haskell names for constants to be filled in via CPP.

Running this code through hsc2hs, as before, generates a Haskell file with the following
binding code produced (with LINE pragmas removed for brevity):

-- file: ch17/Regex.hs
caseless              :: PCREOption
caseless              = PCREOption 1
dollar_endonly        :: PCREOption
dollar_endonly        = PCREOption 32
dotall                :: PCREOption
dotall                = PCREOption 4

Perfect. Now we can do something in Haskell with these values. Our aim here is to
treat flags as abstract types, not as bit fields in integers in C. Passing multiple flags in
C would be done by bitwise or-ing multiple flags together. For an abstract type though,
that would expose too much information. In order to preserve the abstraction and give
it a Haskell flavor, we’d prefer that users pass in flags in a list that the library itself
combined. This is achievable with a simple fold:

-- file: ch17/Regex.hs
-- | Combine a list of options into a single option, using bitwise (.|.)
combineOptions :: [PCREOption] -> PCREOption
combineOptions = PCREOption . foldr ((.|.) . unPCREOption) 0

This simple loop starts with an initial value of 0, unpacks each flag, and uses bitwise-
or—(.|.)—on the underlying CInt, to combine each value with the loop accumulator.
The final accumulated state is then wrapped up in the PCREOption constructor.

Let’s turn now to actually compiling some regular expressions.

Passing String Data Between Haskell and C
The next task is to write a binding to the PCRE regular expression compile function.
Let’s look at its type, straight from the pcre.h header file:

pcre *pcre_compile(const char *pattern,
                   int options,
                   const char **errptr,
                   int *erroffset,
                   const unsigned char *tableptr);
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This function compiles a regular expression pattern into some internal format, taking
the pattern as an argument, along with some flags and some variables for returning
status information.

We need to work out what Haskell types to represent each argument with. Most of
these types are covered by equivalents defined for us by the FFI standard and are avail-
able in Foreign.C.Types. The first argument, the regular expression itself, is passed as
a null-terminated char pointer to C, equivalent to the Haskell CString type. We’ve
already chosen PCRE compile-time options to represent the abstract PCREOption
newtype, whose runtime representation is a CInt. As the representations are guaranteed
to be identical, we can pass the newtype safely. The other arguments are a little more
complicated and require some work to construct and take apart.

The third argument, a pointer to a C string, will be used as a reference to any error
message generated when compiling the expression. The value of the pointer will be
modified by the C function to point to a custom error string. We can represent this
with a Ptr CString type. Pointers in Haskell are heap-allocated containers for raw ad-
dresses and can be created and operated on with a number of allocation primitives in
the FFI library. For example, we can represent a pointer to a C int as Ptr CInt, and a
pointer to an unsigned char as a Ptr Word8.

A note about pointers
Once we have a Haskell Ptr value handy, we can do various pointer-like
things with it. We can compare it for equality with the null pointer,
represented with the special nullPtr constant. We can cast a pointer
from one type to a pointer to another, or we can advance a pointer by
an offset in bytes with plusPtr. We can even modify the value pointed
to, using poke, and, of course, dereference a pointer yielding that which
it points to, with peek. In the majority of circumstances, a Haskell pro-
grammer doesn’t need to operate on pointers directly, but when they
are needed, these tools come in handy.

The question then is how to represent the abstract pcre pointer returned when we
compile the regular expression. We need to find a Haskell type that is as abstract as the
C type. Since the C type is treated abstractly, we can assign any heap-allocated Haskell
type to the data, as long as it has few or no operations on it. This is a common trick for
arbitrarily typed foreign data. The idiomatic simple type to use to represent unknown
foreign data is a pointer to the () type. We can use a type synonym to remember the
binding:

-- file: ch17/PCRE-compile.hs
type PCRE = ()

That is, the foreign data is some unknown, opaque object, and we’ll just treat it as a
pointer to (), knowing full well that we’ll never actually dereference that pointer. This
gives us the following foreign import binding for pcre_compile, which must be in IO,
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as the pointer returned will vary on each call, even if the returned object is functionally
equivalent:

-- file: ch17/PCRE-compile.hs
foreign import ccall unsafe "pcre.h pcre_compile"
    c_pcre_compile  :: CString
                    -> PCREOption
                    -> Ptr CString
                    -> Ptr CInt
                    -> Ptr Word8
                    -> IO (Ptr PCRE)

Typed Pointers
We can increase safety in the binding futher by using a typed pointer, instead of using
the () type. That is, a unique type, distinct from the unit type, that has no meaningful
runtime representation. A type for which no data can be constructed, making derefer-
encing it a type error. One good way to build such provably uninspectable data types
is with a nullary data type:

-- file: ch17/PCRE-nullary.hs
data PCRE

A note about safety
When making a foreign import declaration, we can optionally specify a
safety level to use when making the call, using either the safe or
unsafe keyword. A safe call is less efficient but guarantees that the Has-
kell system can be safely called into from C. An unsafe call has far less
overhead, but the C code that is called must not call back into Haskell.
By default, foreign imports are safe, but in practice it is rare for C code
to call back into Haskell, so for efficiency we mostly use unsafe calls.

This requires the EmptyDataDecls language extension. This type clearly contains no
values! We can only ever construct pointers to such values, as there are no concrete
values (other than bottom) that have this type.

We can also achieve the same thing, without requiring a language extension, using a
recursive newtype:

-- file: ch17/PCRE-recursive.hs
newtype PCRE = PCRE (Ptr PCRE)

Again, we can’t really do anything with a value of this type, as it has no runtime rep-
resentation. Using typed pointers in these ways is just another way to add safety to a
Haskell layer over what C provides. What would require discipline on the part of the
C programmer (remembering never to dereference a PCRE pointer) can be enforced
statically in the type system of the Haskell binding. If this code compiles, the type
checker has given us a proof that the PCRE objects returned by C are never dereferenced
on the Haskell side.
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We have the foreign import declaration sorted out now, and the next step is to marshal
data into the right form so that we can finally call the C code.

Memory Management: Let the Garbage Collector Do the Work
One question that isn’t resolved yet is how to manage the memory associated with the
abstract PCRE structure returned by the C library. The caller didn’t have to allocate it—
the library took care of that by allocating memory on the C side. At some point, though,
we’ll need to deallocate it. This, again, is an opportunity to abstract the tedium of using
the C library by hiding the complexity inside the Haskell binding.

We’ll use the Haskell garbage collector to automatically deallocate the C structure once
it is no longer in use. To do this, we’ll make use of Haskell garbage collector finalizers
and the ForeignPtr type.

We don’t want users to have to manually deallocate the Ptr PCRE value returned by the
foreign call. The PCRE library specifically states that structures are allocated on the C
side with malloc and need to be freed when no longer in use, or we risk leaking memory.
The Haskell garbage collector already goes to great lengths to automate the task of
managing memory for Haskell values. Cleverly, we can also assign our hardworking
garbage collector the task of looking after C’s memory for us. The trick is to associate
a piece of Haskell data with the foreign allocator data and to give the Haskell garbage
collector an arbitrary function that is to deallocate the C resource once it notices that
the Haskell data is finished.

We have two tools at our disposal here—the opaque ForeignPtr data type and the
newForeignPtr function, which has type:

-- file: ch17/ForeignPtr.hs
newForeignPtr :: FinalizerPtr a -> Ptr a -> IO (ForeignPtr a)

The function takes two arguments: a finalizer to run when the data goes out of scope
and a pointer to the associated C data. It returns a new managed pointer, which will
have its finalizer run once the garbage collector decides the data is no longer in use.
What a lovely abstraction!

These finalizable pointers are appropriate whenever a C library requires the user to
explicitly deallocate, or otherwise clean up a resource, when it is no longer in use. It is
a simple piece of equipment that goes a long way towards making the C library binding
more natural, more functional, and in flavor.

So with this in mind, we can hide the manually managed Ptr PCRE type inside an
automatically managed data structure. This yields us the data type used to represent
regular expressions that users will see:

-- file: ch17/PCRE-compile.hs
data Regex = Regex !(ForeignPtr PCRE)
                   !ByteString
        deriving (Eq, Ord, Show)
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This new Regex data type consists of two parts. The first is an abstract ForeignPtr, which
we’ll use to manage the underlying PCRE data allocated in C. The second component is
a strict ByteString, which is the string representation of the regular expression that we
compiled. By keeping the user-level representation of the regular expression handy
inside the Regex type, it’ll be easier to print friendly error messages and show the
Regex itself in a meaningful way.

A High-Level Interface: Marshaling Data
The challenge when writing FFI bindings, once the Haskell types have been decided
upon, is to convert regular data types that a Haskell programmer will be familiar with
into low-level pointers to arrays and other C types. What would an ideal Haskell
interface to regular expression compilation look like? We have some design intuitions
to guide us.

For starters, the act of compilation should be a referentially transparent operation:
passing the same regex string will yield functionally the same compiled pattern each
time, although the C library will give us observably different pointers to functionally
identical expressions. If we can hide these memory management details, we should be
able to represent the binding as a pure function. The ability to represent a C function
in Haskell as a pure operation is a key step towards flexibility, and an indicator that
the interface will be easy to use (as it won’t require complicated state to be initialized
before it can be used).

Despite being pure, the function can still fail. If the regular expression input the user
provides is ill-formed, an error string is returned. A good data type to represent optional
failure with an error value is Either. That is, either we return a valid compiled regular
expression or we return an error string. Encoding the results of a C function in a familiar,
foundational Haskell type such as this is another useful step to make the binding more
idiomatic.

For the user-supplied parameters, we’ve already decided to pass compilation flags in
as a list. We can choose to pass the input regular expression either as an efficient
ByteString or as a regular String. An appropriate type signature, then, for referentially
transparent compilation success with a value or failure with an error string would be:

-- file: ch17/PCRE-compile.hs
compile :: ByteString -> [PCREOption] -> Either String Regex

The input is a ByteString, available from the Data.ByteString.Char8 module (and we’ll
import this qualified to avoid name clashes), containing the regular expression and a
list of flags (or the empty list if there are no flags to pass). The result is either an error
string, or a new, compiled regular expression.
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Marshaling ByteStrings
Given this type, we can sketch out the compile function: the high-level interface to the
raw C binding. At its heart, it will call c_pcre_compile. Before it does that, it has to
marshal the input ByteString into a CString. This is done with the ByteString library’s
useAsCString function, which copies the input ByteString into a null-terminated C
array (there is also an unsafe, zero copy variant, which assumes the ByteString is already
null-terminated):

-- file: ch17/ForeignPtr.hs
useAsCString :: ByteString -> (CString -> IO a) -> IO a

This function takes a ByteString as input. The second argument is a user-defined func-
tion that will run with the resulting CString. We see here another useful idiom: data
marshaling functions that are naturally scoped via closures. Our useAsCString function
will convert the input data to a C string, which we can then pass to C as a pointer. Our
burden then is to supply it with a chunk of code to call C.

Code in this style is often written in a dangling do-block notation. The following
pseudocode illustrates this structure:

-- file: ch17/DoBlock.hs
useAsCString str $ \cstr -> do
   ... operate on the C string
   ... return a result

The second argument here is an anonymous function, a lambda, with a monadic do
block for a body. It is common to use the simple ($) application operator to avoid the
need for parentheses when delimiting the code block argument. This is a useful idiom
to remember when dealing with code block parameters such as this.

Allocating Local C Data: The Storable Class
We can happily marshal ByteString data to C-compatible types, but the
pcre_compile function also needs some pointers and arrays in which to place its other
return values. These should only exist briefly, so we don’t need complicated allocation
strategies. Such short-lifetime C data can be created with the alloca function:

-- file: ch17/ForeignPtr.hs
alloca :: Storable a => (Ptr a -> IO b) -> IO b

This function takes a code block accepting a pointer to some C type as an argument
and arranges to call that function with the unitialized data of the right shape, allocated
freshly. The allocation mechanism mirrors local stack variables in other languages. The
allocated memory is released once the argument function exits. In this way, we get
lexically scoped allocation of low-level data types, which are guaranteed to be released
once the scope is exited. We can use it to allocate any data types that have an instance
of the Storable typeclass. An implication of overloading the allocation operator such
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as this is that the data type allocated can be inferred from type information, based on
use! Haskell will know what to allocate based on the functions we use on that data.

To allocate a pointer to a CString, for example, which will be updated to point to a
particular CString by the called function, we would call alloca, in pseudocode as:

-- file: ch17/DoBlock.hs
alloca $ \stringptr -> do
   ... call some Ptr CString function
   peek stringptr

This locally allocates a Ptr CString and applies the code block to that pointer, which
then calls a C function to modify the pointer contents. Finally, we dereference the
pointer with the Storable class peek function, yielding a CString.

We can now put it all together, to complete our high-level PCRE compilation wrapper.

Putting It All Together
We’ve decided what Haskell type to represent the C function with, what the result data
will be represented by, and how its memory will be managed. We’ve chosen a repre-
sentation for flags to the pcre_compile function and worked out how to get C strings
to and from code inspecting it. So let’s write the complete function for compiling PCRE
regular expressions from Haskell:

-- file: ch17/PCRE-compile.hs
compile :: ByteString -> [PCREOption] -> Either String Regex
compile str flags = unsafePerformIO $
  useAsCString str $ \pattern -> do
    alloca $ \errptr       -> do
    alloca $ \erroffset    -> do
        pcre_ptr <- c_pcre_compile pattern (combineOptions flags) errptr 
        erroffset nullPtr
        if pcre_ptr == nullPtr
            then do
                err <- peekCString =<< peek errptr
                return (Left err)
            else do
                reg <- newForeignPtr finalizerFree pcre_ptr -- release with free()
                return (Right (Regex reg str))

That’s it! Let’s carefully walk through the details here, since it is rather dense. The first
thing that stands out is the use of unsafePerformIO, a rather infamous function, with a
very unusual type, imported from the ominous System.IO.Unsafe:

-- file: ch17/ForeignPtr.hs
unsafePerformIO :: IO a -> a

This function does something odd. It takes an IO value and converts it to a pure one!
After warning about the danger of effects for so long, here we have the very enabler of
dangerous effects in one line. Used unwisely, this function lets us sidestep all safety
guarantees that the Haskell type system provides, inserting arbitrary side effects into a
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Haskell program, anywhere. The dangers in doing this are significant. We can break
optimizations, modify arbitrary locations in memory, remove files on the user’s ma-
chine, or launch nuclear missiles from our Fibonacci sequences. So why does this func-
tion exist at all?

It exists precisely to enable Haskell to bind to C code that we know to be referentially
transparent, but can’t prove the case to the Haskell type system. It lets us say to the
compiler, “I know what I’m doing—this code really is pure.” For regular expression
compilation, we know this to be the case: given the same pattern, we should get the
same regular expression matcher every time. However, proving that to the compiler is
beyond the Haskell type system, so we’re forced to assert that this code is pure. Using
unsafePerformIO allows us to do just that.

However, if we know the C code is pure, why don’t we just declare it as such, by giving
it a pure type in the import declaration? We don’t because we have to allocate local
memory for the C function to work with, which must be done in the IO monad, as it is
a local side effect. Those effects won’t escape the code surrounding the foreign call,
though, so when wrapped, we use unsafePerformIO to reintroduce purity.

The argument to unsafePerformIO is the actual body of our compilation function, which
consists of four parts: marshaling Haskell data to C form; calling into the C library;
checking the return values; and finally, constructing a Haskell value from the results.

We marshal with useAsCString and alloca, setting up the data we need to pass to C,
and use combineOptions, developed previously, to collapse the list of flags into a single
CInt. Once that’s all in place, we can finally call c_pcre_compile with the pattern, flags,
and pointers for the results. We use nullPtr for the character-encoding table, which is
unused in this case.

The result returned from the C call is a pointer to the abstract PCRE structure. We then
test this against the nullPtr. If there is a problem with the regular expression, we have
to dereference the error pointer, yielding a CString. We then unpack that to a normal
Haskell list with the library function, peekCString. The final result of the error path is
a value of Left err, indicating failure to the caller.

If the call succeeds, however, we allocate a new storage-managed pointer, with the C
function using a ForeignPtr. The special value finalizerFree is bound as the finalizer
for this data, which uses the standard C free to deallocate the data. This is then wrapped
as an opaque Regex value. The successful result is tagged as such with Right, and then
returned to the user. And now we’re done!

We need to process our source file with hsc2hs, and then load the function in ghci.
However, doing this results in an error on the first attempt:

$ hsc2hs Regex.hsc
$ ghci Regex.hs

During interactive linking, GHCi couldn't find the following symbol:
  pcre_compile
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This may be due to you not asking GHCi to load extra object files,
archives, or DLLs needed by your current session.  Restart GHCi, specifying
the missing library using the -L/path/to/object/dir and -lmissinglibname
flags, or simply by naming the relevant files on the GHCi command line.

A little scary. However, this is just because we didn’t link the C library we wanted to
call to the Haskell code. Assuming the PCRE library has been installed on the system
in the default library location, we can let ghci know about it by adding -lpcre to the
ghci command line. Now we can try out the code on some regular expressions, looking
at the success and error cases:

$ ghci Regex.hs -lpcre
*Regex> :m + Data.ByteString.Char8
*Regex Data.ByteString.Char8> compile (pack "a.*b") []
Right (Regex 0x00000000028882a0 "a.*b")
*Regex Data.ByteString.Char8> compile (pack "a.*b[xy]+(foo?)") []
Right (Regex 0x0000000002888860 "a.*b[xy]+(foo?)")
*Regex Data.ByteString.Char8> compile (pack "*") []
Left "nothing to repeat"

The regular expressions are packed into byte strings and marshaled to C, where they
are compiled by the PCRE library. The result is then handed back to Haskell, where
we display the structure using the default Show instance. Our next step is to pattern
match some strings with these compiled regular expressions.

Matching on Strings
The second part of a good regular expression library is the matching function. Given a
compiled regular expression, this function does the matching of the compiled regex
against some input, indicating whether it matched, and if so, what parts of the string
matched. In PCRE, this function is pcre_exec, which has type:

int pcre_exec(const pcre *code,
              const pcre_extra *extra,
              const char *subject,
              int length,
              int startoffset,
              int options,
              int *ovector,
              int ovecsize);

The most important arguments are the input pcre pointer structure (which we obtained
from pcre_compile) and the subject string. The other flags let us provide bookkeeping
structures and space for return values. We can directly translate this type to the Haskell
import declaration:

-- file: ch17/RegexExec.hs
foreign import ccall "pcre.h pcre_exec"
    c_pcre_exec     :: Ptr PCRE
                    -> Ptr PCREExtra
                    -> Ptr Word8
                    -> CInt
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                    -> CInt
                    -> PCREExecOption
                    -> Ptr CInt
                    -> CInt
                    -> IO CInt

We use the same method as before to create typed pointers for the PCREExtra structure,
and a newtype to represent flags passed at regex execution time. This lets us ensure that
users don’t pass compile-time flags incorrectly at regex runtime.

Extracting Information About the Pattern
The main complication involved in calling pcre_exec is the array of int pointers used
to hold the offsets of matching substrings found by the pattern matcher. These offsets
are held in an offset vector, whose required size is determined by analyzing the input
regular expression to determine the number of captured patterns it contains. PCRE
provides a function, pcre_fullinfo, for determining much information about the reg-
ular expression, including the number of patterns. We’ll need to call this, and now, we
can directly write down the Haskell type for binding to pcre_fullinfo as:

-- file: ch17/RegexExec.hs
foreign import ccall "pcre.h pcre_fullinfo"
    c_pcre_fullinfo :: Ptr PCRE
                    -> Ptr PCREExtra
                    -> PCREInfo
                    -> Ptr a
                    -> IO CInt

The most important arguments to this function are the compiled regular expression
and the PCREInfo flag, which indicates which information we’re interested in. In this
case, we care about the captured pattern count. The flags are encoded in numeric con-
stants, and we need to use specifically the PCRE_INFO_CAPTURECOUNT value. There is a
range of other constants that determine the result type of the function, which we can
bind to using the #enum construct as before. The final argument is a pointer to a location
to store the information about the pattern (whose size depends on the flag argument
passed in!).

Calling pcre_fullinfo to determine the captured pattern count is pretty easy:

-- file: ch17/RegexExec.hs
capturedCount :: Ptr PCRE -> IO Int
capturedCount regex_ptr =
    alloca $ \n_ptr -> do
         c_pcre_fullinfo regex_ptr nullPtr info_capturecount n_ptr
         return . fromIntegral =<< peek (n_ptr :: Ptr CInt)

This takes a raw PCRE pointer and allocates space for the CInt count of the matched
patterns. We then call the information function and peek into the result structure,
finding a CInt. Finally, we convert this to a normal Haskell Int and pass it back to the
user.
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Pattern Matching with Substrings
Let’s now write the regex matching function. The Haskell type for matching is similar
to that for compiling regular expressions:

-- file: ch17/RegexExec.hs
match :: Regex -> ByteString -> [PCREExecOption] -> Maybe [ByteString]

This function is how users will match strings against compiled regular expressions.
Again, the main design point is that it is a pure function. Matching is a pure function:
given the same input regular expression and subject string, it will always return the
same matched substrings. We convey this information to the user via the type signature,
indicating no side effects will occur when you call this function.

The arguments are a compiled Regex, a strict ByteString (containing the input data),
and a list of flags that modify the regular expression engine’s behavior at runtime. The
result is either no match at all, indicated by a Nothing value, or just a list of matched
substrings. We use the Maybe type to clearly indicate in the type that matching may fail.
Using strict ByteStrings for the input data, we can extract matched substrings in con-
stant time, without copying, which makes the interface rather efficient. If substrings
are matched in the input, the offset vector is populated with pairs of integer offsets into
the subject string. We’ll need to loop over this result vector, reading offsets, and build-
ing ByteString slices as we go.

The implementation of the match wrapper can be broken into three parts. At the top
level, our function takes apart the compiled Regex structure, yielding the underlying
PCRE pointer:

-- file: ch17/RegexExec.hs
match :: Regex -> ByteString -> [PCREExecOption] -> Maybe [ByteString]
match (Regex pcre_fp _) subject os = unsafePerformIO $ do
  withForeignPtr pcre_fp $ \pcre_ptr -> do
    n_capt <- capturedCount pcre_ptr

    let ovec_size = (n_capt + 1) * 3
        ovec_bytes = ovec_size * sizeOf (undefined :: CInt)

As it is pure, we can use unsafePerformIO to hide any allocation effects internally. After
pattern matching on the PCRE type, we need to take apart the ForeignPtr that hides our
C-allocated raw PCRE data. We can use withForeignPtr. This holds onto the Haskell
data associated with the PCRE value while the call is being made, preventing it from
being collected for at least the time it is used by this call. We then call the information
function and use that value to compute the size of the offset vector (the formula for
which is given in the PCRE documentation). The number of bytes we need is the num-
ber of elements multiplied by the size of a CInt. To portably compute C type sizes, the
Storable class provides a sizeOf function, which takes some arbitrary value of the re-
quired type (and we can use the undefined value here to do our type dispatch).
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The next step is to allocate an offset vector of the size we computed, in order to convert
the input ByteString into a pointer to a C char array. Finally, we call pcre_exec with all
the required arguments:

-- file: ch17/RegexExec.hs
    allocaBytes ovec_bytes $ \ovec -> do

        let (str_fp, off, len) = toForeignPtr subject
        withForeignPtr str_fp $ \cstr -> do
            r <- c_pcre_exec
                         pcre_ptr
                         nullPtr
                         (cstr `plusPtr` off)
                         (fromIntegral len)
                         0
                         (combineExecOptions os)
                         ovec
                         (fromIntegral ovec_size)

For the offset vector, we use allocaBytes to control exactly the size of the allocated
array. It is like alloca, but rather than using the Storable class to determine the required
size, it takes an explicit size in bytes to allocate. Taking apart ByteStrings, yielding the
underlying pointer to memory that the Bytestrings contain, is done with
toForeignPtr, which converts our nice ByteString type into a managed pointer. Using
withForeignPtr on the result gives us a raw Ptr CChar, which is exactly what we need
to pass the input string to C. Programming in Haskell is often just solving a type puzzle!

We then just call c_pcre_exec with the raw PCRE pointer, the input string pointer at
the correct offset, its length, and the result vector pointer. A status code is returned,
and, finally, we analyze the result:

-- file: ch17/RegexExec.hs
            if r < 0
                then return Nothing
                else let loop n o acc =
                            if n == r
                              then return (Just (reverse acc))
                              else do
                                    i <- peekElemOff ovec o
                                    j <- peekElemOff ovec (o+1)
                                    let s = substring i j subject
                                    loop (n+1) (o+2) (s : acc)
                     in loop 0 0 []

  where
    substring :: CInt -> CInt -> ByteString -> ByteString
    substring x y _ | x == y = empty
    substring a b s = end
        where
            start = unsafeDrop (fromIntegral a) s
            end   = unsafeTake (fromIntegral (b-a)) start
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If the result value is less than zero, there was an error, or no match, so we return
Nothing to the user. Otherwise, we need a loop peeking pairs of offsets from the offset
vector (via peekElemOff). Those offsets are used to find the matched substrings. To build
substrings, we use a helper function that, given a start and end offset, drops the sur-
rounding portions of the subject string, yielding just the matched portion. The loop
runs until it has extracted the number of substrings we were told the matcher found.

The substrings are accumulated in a tail recursive loop, building up a reverse list of
each string. Before returning the substrings of the user, we need to flip that list around
and wrap it in a successful Just tag. Let’s try it out!

The Real Deal: Compiling and Matching Regular Expressions
If we take this function and its surrounding hsc2hs definitions and data wrappers, and
process it with hsc2hs, we can load the resulting Haskell file in GHCi and try out our
code (we need to import Data.ByteString.Char8 so we can build ByteStrings from string
literals):

$ hsc2hs Regex.hsc
$ ghci Regex.hs -lpcre
*Regex> :t compile
compile :: ByteString -> [PCREOption] -> Either String Regex
*Regex> :t match
match :: Regex -> ByteString -> Maybe [ByteString]

Things seem to be in order. Now let’s try some compilation and matching. First, some-
thing easy:

*Regex> :m + Data.ByteString.Char8
*Regex Data.ByteString.Char8> let Right r = compile (pack "the quick brown fox") []
*Regex Data.ByteString.Char8> match r (pack "the quick brown fox") []
Just ["the quick brown fox"]
*Regex Data.ByteString.Char8> match r (pack "The Quick Brown Fox") []
Nothing
*Regex Data.ByteString.Char8> match r (pack "What
  do you know about the quick brown fox?") []
Just ["the quick brown fox"]

(We could also avoid the pack calls by using the OverloadedStrings extensions). Or we
can be more adventurous:

*Regex Data.ByteString.Char8> let Right r = compile 
(pack "a*abc?xyz+pqr{3}ab{2,}xy{4,5}pq{0,6}AB{0,}zz") []
*Regex Data.ByteString.Char8> match r (pack "abxyzpqrrrabbxyyyypqAzz") []
Just ["abxyzpqrrrabbxyyyypqAzz"]
*Regex Data.ByteString.Char8> let Right r = compile 
(pack "^([^!]+)!(.+)=apquxz\\.ixr\\.zzz\\.ac\\.uk$") []
*Regex Data.ByteString.Char8> match r (pack "abc!pqr=apquxz.ixr.zzz.ac.uk") []
Just ["abc!pqr=apquxz.ixr.zzz.ac.uk","abc","pqr"]

That’s pretty awesome. The full power of Perl regular expressions in Haskell, at your
fingertips.
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In this chapter, we’ve looked at how to declare bindings that let Haskell code call C
functions, how to marshal different data types between the two languages, how to
allocate memory at a low level (by allocating locally or via C’s memory management),
and how to exploit the Haskell type system and garbage collector to automate much
of the hard work of dealing with C. Finally, we looked at how FFI preprocessors can
ease much of the labor of constructing new bindings. The result is a natural Haskell
API that is actually implemented primarily in C.

The majority of FFI tasks fall into these categories. Other advanced techniques that we
are unable to cover include linking Haskell into C programs, registering callbacks from
one language to another, and the c2hs preprocessing tool. You can find more
information about these topics online.
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CHAPTER 18

Monad Transformers

Motivation: Boilerplate Avoidance
Monads provide a powerful way to build computations with effects. Each of the stand-
ard monads is specialized to do exactly one thing. In real code, we often need to be able
to use several effects at once.

Recall the Parse type that we developed in Chapter 10, for instance. When we intro-
duced monads, we mentioned that this type was a State monad in disguise. Our monad
is more complex than the standard State monad, because it uses the Either type to
allow the possibility of a parsing failure. In our case, if a parse fails early on, we want
to stop parsing, not continue in some broken state. Our monad combines the effect of
carrying state around with the effect of early exit.

The normal State monad doesn’t let us escape in this way; it carries state only. It uses
the default implementation of fail: this calls error, which throws an exception that
we can’t catch in pure code. The State monad thus appears to allow for failure, without
that capability actually being any use. (Once again, we recommend that you almost
always avoid using fail!)

It would be ideal if we could somehow take the standard State monad and add failure
handling to it, without resorting to the wholesale construction of custom monads by
hand. The standard monads in the mtl library don’t allow us to combine them. Instead,
the library provides a set of monad transformers* to achieve the same result.

A monad transformer is similar to a regular monad, but it’s not a standalone entity.
Instead, it modifies the behavior of an underlying monad. Most of the monads in the
mtl library have transformer equivalents. By convention, the transformer version of a
monad has the same name, with a T stuck on the end. For example, the transformer
equivalent of State is StateT; it adds mutable state to an underlying monad. The

* The name mtl stands for “monad transformer library.”
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WriterT monad transformer makes it possible to write data when stacked on top of
another monad.

A Simple Monad Transformer Example
Before we introduce monad transformers, let’s look at a function written using tech-
niques we are already familiar with. The function that follows recurses into a directory
tree and returns a list of the number of entries it finds at each level of the tree:

-- file: ch18/CountEntries.hs
module CountEntries (listDirectory, countEntriesTrad) where

import System.Directory (doesDirectoryExist, getDirectoryContents)
import System.FilePath ((</>))
import Control.Monad (forM, liftM)

listDirectory :: FilePath -> IO [String]
listDirectory = liftM (filter notDots) . getDirectoryContents
    where notDots p = p /= "." && p /= ".."

countEntriesTrad :: FilePath -> IO [(FilePath, Int)]
countEntriesTrad path = do
  contents <- listDirectory path
  rest <- forM contents $ \name -> do
            let newName = path </> name
            isDir <- doesDirectoryExist newName
            if isDir
              then countEntriesTrad newName
              else return []
  return $ (path, length contents) : concat rest

We’ll now look at using the Writer monad to achieve the same goal. Since this monad
lets us record a value wherever we want, we don’t need to explicitly build up a result.

As our function must execute in the IO monad so that it can traverse directories, we
can’t use the Writer monad directly. Instead, we use WriterT to add the recording ca-
pability to IO. We will find the going easier if we look at the types involved.

The normal Writer monad has two type parameters, so it’s more properly written
Writer w a. The first parameter w is the type of the values to be recorded, and a is the
usual type that the Monad typeclass requires. Thus Writer [(FilePath, Int)] a is a writer
monad that records a list of directory names and sizes.

The WriterT transformer has a similar structure, but it adds another type parameter m:
this is the underlying monad whose behavior we are augmenting. The full signature of
WriterT is WriterT w m a.

Because we need to traverse directories, which requires access to the IO monad, we’ll
stack our writer on top of the IO monad. Our combination of monad transformer and
underlying monad will thus have the type WriterT [(FilePath, Int)] IO a. This stack
of monad transformer and monad is itself a monad:
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-- file: ch18/CountEntriesT.hs
module CountEntriesT (listDirectory, countEntries) where

import CountEntries (listDirectory)
import System.Directory (doesDirectoryExist)
import System.FilePath ((</>))
import Control.Monad (forM_, when)
import Control.Monad.Trans (liftIO)
import Control.Monad.Writer (WriterT, tell)

countEntries :: FilePath -> WriterT [(FilePath, Int)] IO ()
countEntries path = do
  contents <- liftIO . listDirectory $ path
  tell [(path, length contents)]
  forM_ contents $ \name -> do
    let newName = path </> name
    isDir <- liftIO . doesDirectoryExist $ newName
    when isDir $ countEntries newName

This code is not terribly different from our earlier version. We use liftIO to expose the
IO monad where necessary and use tell to record a visit to a directory.

To run our code, we must use one of WriterT’s execution functions:

ghci> :type runWriterT
runWriterT :: WriterT w m a -> m (a, w)
ghci> :type execWriterT
execWriterT :: (Monad m) => WriterT w m a -> m w

These functions execute the action, and then remove the WriterT wrapper and give a
result that is wrapped in the underlying monad. The runWriterT function gives both
the result of the action and whatever was recorded as it ran, while execWriterT throws
away the result and just gives us what was recorded:

ghci> :type countEntries ".."
countEntries ".." :: WriterT [(FilePath, Int)] IO ()
ghci> :type execWriterT (countEntries "..")
execWriterT (countEntries "..") :: IO [(FilePath, Int)]
ghci> take 4 `liftM` execWriterT (countEntries "..")
[("..",30),("../ch05",28),("../ch05/dist",3),("../ch05/dist/build",9)]

We use a WriterT on top of IO because there is no IOT monad transformer. Whenever
we use the IO monad with one or more monad transformers, IO will always be at the
bottom of the stack.

Common Patterns in Monads and Monad Transformers
Most of the monads and monad transformers in the mtl library follow a few common
patterns around naming and typeclasses.

To illustrate these rules, we will focus on a single straightforward monad: the reader
monad. The reader monad’s API is detailed by the MonadReader typeclass. Most mtl
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monads have similarly named typeclasses. MonadWriter defines the API of the writer
monad, and so on:

-- file: ch18/Reader.hs
class (Monad m) => MonadReader r m | m -> r where
    ask   :: m r
    local :: (r -> r) -> m a -> m a

The type variable r represents the immutable state that the reader monad carries
around. The Reader r monad is an instance of the MonadReader class, as is the
ReaderT r m monad transformer. Again, this pattern is repeated by other mtl monads:
there usually exist both a concrete monad and a transformer, each of which are instan-
ces of the typeclass that defines the monad’s API.

Returning to the specifics of the reader monad, we haven’t touched upon the local
function before. It temporarily modifies the current environment using the r -> r
function, and then executes its action in the modified environment. To make this idea
more concrete, here is a simple example:

-- file: ch18/LocalReader.hs
import Control.Monad.Reader

myName step = do
  name <- ask
  return (step ++ ", I am " ++ name)

localExample :: Reader String (String, String, String)
localExample = do
  a <- myName "First"
  b <- local (++"dy") (myName "Second")
  c <- myName "Third"
  return (a, b, c)

If we execute the localExample action in ghci, we can see that the effect of modifying
the environment is confined to one place:

ghci> runReader localExample "Fred"
Loading package mtl-1.1.0.1 ... linking ... done.
("First, I am Fred","Second, I am Freddy","Third, I am Fred")

When the underlying monad m is an instance of MonadIO, the mtl library provides an
instance for ReaderT r m and also for a number of other typeclasses. Here are a few:

-- file: ch18/Reader.hs
instance (Monad m) => Functor (ReaderT r m) where
    ...

instance (MonadIO m) => MonadIO (ReaderT r m) where
    ...

instance (MonadPlus m) => MonadPlus (ReaderT r m) where
    ...

Once again, most mtl monad transformers define instances such as these, in order to
make it easier for us to work with them.
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Stacking Multiple Monad Transformers
As we have already mentioned, when we stack a monad transformer on a normal mo-
nad, the result is another monad. This suggests the possibility that we can again stack
a monad transformer on top of our combined monad, in order to get a new monad and
in fact, this is a common thing to do. Under what circumstances might we want to
create such a stack?

• If we need to talk to the outside world, we’ll have IO at the base of the stack.
Otherwise, we will have some normal monad.

• If we add a ReaderT layer, we give ourselves access to read-only configuration
information.

• Add a StateT layer, and we gain a global state that we can modify.

• Should we need the ability to log events, we can add a WriterT layer.

The power of this approach is that we can customize the stack to our exact needs,
specifying which kinds of effects we want to support.

As a small example of stacked monad transformers in action, here is a reworking of the
countEntries function we developed earlier. We will modify it to recurse no deeper into
a directory tree than a given amount and to record the maximum depth it reaches:

-- file: ch18/UglyStack.hs
import System.Directory
import System.FilePath
import Control.Monad.Reader
import Control.Monad.State

data AppConfig = AppConfig {
      cfgMaxDepth :: Int
    } deriving (Show)

data AppState = AppState {
      stDeepestReached :: Int
    } deriving (Show)

We use ReaderT to store configuration data, in the form of the maximum depth of
recursion we will perform. We also use StateT to record the maximum depth we reach
during an actual traversal:

-- file: ch18/UglyStack.hs
type App = ReaderT AppConfig (StateT AppState IO)

Our transformer stack has IO on the bottom, then StateT, with ReaderT on top. In this
particular case, it doesn’t matter whether we have ReaderT or WriterT on top, but IO
must be on the bottom.

Even a small stack of monad transformers quickly develops an unwieldy type name.
We can use a type alias to reduce the lengths of the type signatures that we write.
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Where’s the Missing Type Parameter?
You might have noticed that our type synonym doesn’t have the usual type parameter
a that we associate with a monadic type:

-- file: ch18/UglyStack.hs
type App2 a = ReaderT AppConfig (StateT AppState IO) a

Both App and App2 work fine in normal type signatures. The difference arises when we
try to construct another type from one of these. Say we want to add another monad
transformer to the stack: the compiler will allow WriterT [String] App a, but reject
WriterT [String] App2 a.

The reason for this is that Haskell does not allow us to partially apply a type synonym.
The synonym App doesn’t take a type parameter, so it doesn’t pose a problem. However,
because App2 takes a type parameter, we must supply some type for that parameter if
we want to use App2 to create another type.

This restriction is limited to type synonyms. When we create a monad transformer
stack, we usually wrap it with a newtype (as we will see shortly). As a result, we will
rarely run into this problem in practice.

The execution function for our monad stack is simple:

-- file: ch18/UglyStack.hs
runApp :: App a -> Int -> IO (a, AppState)
runApp k maxDepth =
    let config = AppConfig maxDepth
        state = AppState 0
    in runStateT (runReaderT k config) state

Our application of runReaderT removes the ReaderT transformer wrapper, while
runStateT removes the StateT wrapper, leaving us with a result in the IO monad.

Compared to earlier versions, the only complications we added to our traversal function
are slight. We track our current depth, and record the maximum depth we reach:

-- file: ch18/UglyStack.hs
constrainedCount :: Int -> FilePath -> App [(FilePath, Int)]
constrainedCount curDepth path = do
  contents <- liftIO . listDirectory $ path
  cfg <- ask
  rest <- forM contents $ \name -> do
            let newPath = path </> name
            isDir <- liftIO $ doesDirectoryExist newPath
            if isDir && curDepth < cfgMaxDepth cfg
              then do
                let newDepth = curDepth + 1
                st <- get
                when (stDeepestReached st < newDepth) $
                  put st { stDeepestReached = newDepth }
                constrainedCount newDepth newPath
              else return []
  return $ (path, length contents) : concat rest
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Our use of monad transformers here is admittedly a little contrived. Because we’re
writing a single straightforward function, we’re not really winning anything. What’s
useful about this approach, though, is that it scales to bigger programs.

We can write most of an application’s imperative-style code in a monad stack similar
to our App monad. In a real program, we’d carry around more complex configuration
data, but we’d still use ReaderT to keep it read-only and hidden except when needed.
We’d have more mutable state to manage, but we’d still use StateT to encapsulate it.

Hiding Our Work
We can use the usual newtype technique to erect a solid barrier between the implemen-
tation of our custom monad and its interface:

-- file: ch18/UglyStack.hs
newtype MyApp a = MyA {
      runA :: ReaderT AppConfig (StateT AppState IO) a
    } deriving (Monad, MonadIO, MonadReader AppConfig,
                MonadState AppState)

runMyApp :: MyApp a -> Int -> IO (a, AppState)
runMyApp k maxDepth =
    let config = AppConfig maxDepth
        state = AppState 0
    in runStateT (runReaderT (runA k) config) state

If we export the MyApp type constructor and the runMyApp execution function from a
module, client code will not be able to tell that the internals of our monad is a stack of
monad transformers.

The large deriving clause requires the GeneralizedNewtypeDeriving language pragma.
It seems somehow magical that the compiler can derive all of these instances for us.
How does this work?

Earlier, we mentioned that the mtl library provides instances of a number of typeclasses
for each monad transformer. For example, the IO monad implements MonadIO. If the
underlying monad is an instance of MonadIO, mtl makes StateT an instance, too, and
likewise for ReaderT.

There is thus no magic going on: the top-level monad transformer in the stack is an
instance of all of the typeclasses that we’re rederiving with our deriving clause. This is
a consequence of mtl providing a carefully coordinated set of typeclasses and instances
that fit together well. There is nothing more going on than the usual automatic deri-
vation that we can perform with newtype declarations.
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E X E R C I S E S

1. Modify the App type synonym to swap the order of ReaderT and WriterT. What
effect does this have on the runApp execution function?

2. Add the WriterT transformer to the App monad transformer stack. Modify runApp
to work with this new setup.

3. Rewrite the constrainedCount function to record results using the WriterT trans-
former in your new App stack.

Moving Down the Stack
So far, our uses of monad transformers have been simple, and the plumbing of the
mtl library has allowed us to avoid the details of how a stack of monads is constructed.
Indeed, we already know enough about monad transformers to simplify many common
programming tasks.

There are a few useful ways in which we can depart from the comfort of mtl. Most
often, a custom monad sits at the bottom of the stack, or a custom monad transformer
lies somewhere within the stack. To understand the potential difficulty, let’s look at an
example.

Suppose we have a custom monad transformer, CustomT:

-- file: ch18/CustomT.hs
newtype CustomT m a = ...

In the framework that mtl provides, each monad transformer in the stack makes the
API of a lower level available by providing instances of a host of typeclasses. We could
follow this pattern and write a number of boilerplate instances:

-- file: ch18/CustomT.hs
instance MonadReader r m => MonadReader r (CustomT m) where
    ...

instance MonadIO m => MonadIO (CustomT m) where
    ...

If the underlying monad was an instance of MonadReader, we would write a
MonadReader instance for CustomT in which each function in the API passes through to
the corresponding function in the underlying instance. This would allow higher-level
code to only care that the stack as a whole is an instance of MonadReader, without
knowing or caring about which layer provides the real implementation.

Instead of relying on all of these typeclass instances to work for us behind the scenes,
we can be explicit. The MonadTrans typeclass defines a useful function named lift:

ghci> :m +Control.Monad.Trans
ghci> :info MonadTrans
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class MonadTrans t where lift :: (Monad m) => m a -> t m a
      -- Defined in Control.Monad.Trans

This function takes a monadic action from one layer down the stack, and turns it—in
other words, lifts it—into an action in the current monad transformer. Every monad
transformer is an instance of MonadTrans.

We use the name lift based on its similarity of purpose to fmap and liftM. In each case,
we hoist something from a lower level of the type system to the level we’re currently
working in. The different options are described here:

fmap
Elevates a pure function to the level of functors

liftM
Takes a pure function to the level of monads

lift
Raises a monadic action from one level beneath in the transformer stack to the
current one

Let’s revisit the App monad stack we defined earlier (before we wrapped it with a
newtype):

-- file: ch18/UglyStack.hs
type App = ReaderT AppConfig (StateT AppState IO)

If we want to access the AppState carried by the StateT, we would usually rely on
mtl’s typeclasses and instances to handle the plumbing for us:

-- file: ch18/UglyStack.hs
implicitGet :: App AppState
implicitGet = get

The lift function lets us achieve the same effect, by lifting get from StateT into
ReaderT:

-- file: ch18/UglyStack.hs
explicitGet :: App AppState
explicitGet = lift get

Obviously, when we can let mtl do this work for us, we end up with cleaner code, but
this is not always possible.

When Explicit Lifting Is Necessary
One case in which we must use lift is when we create a monad transformer stack in
which instances of the same typeclass appear at multiple levels:

-- file: ch18/StackStack.hs
type Foo = StateT Int (State String)

If we try to use the put action of the MonadState typeclass, the instance we will get is
that of StateT Int, because it’s at the top of the stack:
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-- file: ch18/StackStack.hs
outerPut :: Int -> Foo ()
outerPut = put

In this case, the only way we can access the underlying State monad’s put is through
use of lift:

-- file: ch18/StackStack.hs
innerPut :: String -> Foo ()
innerPut = lift . put

Sometimes, we need to access a monad more than one level down the stack, in which
case we must compose calls to lift. Each composed use of lift gives us access to one
deeper level:

-- file: ch18/StackStack.hs
type Bar = ReaderT Bool Foo

barPut :: String -> Bar ()
barPut = lift . lift . put

When we need to use lift, it can be good style to write wrapper functions that do the
lifting for us, as just shown, and to use those. The alternative of sprinkling explicit uses
of lift throughout our code tends to look messy. Worse, it hardwires the details of the
layout of our monad stack into our code, which will complicate any subsequent
modifications.

Understanding Monad Transformers by Building One
To give ourselves some insight into how monad transformers in general work, we will
create one and describe its machinery as we go. Our target is simple and useful:
MaybeT. Surprisingly, though, it is missing from the mtl library.

This monad transformer modifies the behavior of an underlying monad m a by wrapping
its type parameter with Maybe, in order to get m (Maybe a). As with the Maybe monad, if
we call fail in the MaybeT monad transformer, execution terminates early.

In order to turn m (Maybe a) into a Monad instance, we must make it a distinct type, via
a newtype declaration:

-- file: ch18/MaybeT.hs
newtype MaybeT m a = MaybeT {
      runMaybeT :: m (Maybe a)
    }

We now need to define the three standard monad functions. The most complex is
(>>=), and its innards shed the most light on what we are actually doing. Before we
delve into its operation, let us first take a look at its type:

-- file: ch18/MaybeT.hs
bindMT :: (Monad m) => MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
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To understand this type signature, hark back to our discussion of multiparameter
typeclasses in “Multiparameter Typeclasses” on page 370. The thing that we intend to
make a Monad instance is the partial type MaybeT m; this has the usual single type
parameter, a, that satisfies the requirements of the Monad typeclass.

The trick to understanding the body of our (>>=) implementation is that everything
inside the do block executes in the underlying monad m, whatever that is:

-- file: ch18/MaybeT.hs
x `bindMT` f = MaybeT $ do
                 unwrapped <- runMaybeT x
                 case unwrapped of
                   Nothing -> return Nothing
                   Just y -> runMaybeT (f y)

Our runMaybeT function unwraps the result contained in x. Next, recall that the <-
symbol desugars to (>>=): a monad transformer’s (>>=) must use the underlying mo-
nad’s (>>=). The final bit of case analysis determines whether we short-circuit or chain
our computation. Finally, look back at the top of the body. Here, we must wrap the
result with the MaybeT constructor, in order to once again hide the underlying monad.

The do notation just shown might be pleasant to read, but it hides the fact that we are
relying on the underlying monad’s (>>=) implementation. Here is a more idiomatic
version of (>>=) for MaybeT that makes this clearer:

-- file: ch18/MaybeT.hs
x `altBindMT` f =
    MaybeT $ runMaybeT x >>= maybe (return Nothing) (runMaybeT . f)

Now that we understand what (>>=) is doing, our implementations of return and
fail need no explanation, and neither does our Monad instance:

-- file: ch18/MaybeT.hs
returnMT :: (Monad m) => a -> MaybeT m a
returnMT a = MaybeT $ return (Just a)

failMT :: (Monad m) => t -> MaybeT m a
failMT _ = MaybeT $ return Nothing
 
instance (Monad m) => Monad (MaybeT m) where
  return = returnMT
  (>>=) = bindMT
  fail = failMT

Creating a Monad Transformer
To turn our type into a monad transformer, we must provide an instance of the
MonadTrans class so that a user can access the underlying monad:

-- file: ch18/MaybeT.hs
instance MonadTrans MaybeT where
    lift m = MaybeT (Just `liftM` m)
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The underlying monad starts out with a type parameter of a: we “inject” the Just con-
structor so that it will acquire the type that we need, Maybe a. We then hide the monad
with our MaybeT constructor.

More Typeclass Instances
Once we have an instance for MonadTrans defined, we can use it to define instances for
the umpteen other mtl typeclasses:

-- file: ch18/MaybeT.hs
instance (MonadIO m) => MonadIO (MaybeT m) where
  liftIO m = lift (liftIO m)

instance (MonadState s m) => MonadState s (MaybeT m) where
  get = lift get
  put k = lift (put k)

-- ... and so on for MonadReader, MonadWriter, etc ...

Because several of the mtl typeclasses use functional dependencies, some of our instance
declarations require us to considerably relax GHC’s usual strict type checking rules. (If
we were to forget any of these directives, the compiler would helpfully advise us which
ones we needed in its error messages.)

-- file: ch18/MaybeT.hs
{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses,
             UndecidableInstances #-}

Is it better to use lift explicitly or to spend time writing these boilerplate instances?
That depends on what we expect to do with our monad transformer. If we’re going to
use it in just a few restricted situations, we can get away with providing an instance for
MonadTrans alone. In this case, a few more instances might still make sense, such as
MonadIO. On the other hand, if our transformer is going to pop up in diverse situations
throughout a body of code, spending a dull hour to write those instances might be a
good investment.

Replacing the Parse Type with a Monad Stack
Now that we have developed a monad transformer that can exit early, we can use it to
bail if, for example, a parse fails partway through. We could thus replace the Parse type
that we developed in “Implicit State” on page 239 with a monad customized to our
needs:

-- file: ch18/MaybeTParse.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module MaybeTParse
    (
      Parse
    , evalParse
    ) where
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import MaybeT
import Control.Monad.State
import Data.Int (Int64)
import qualified Data.ByteString.Lazy as L

data ParseState = ParseState {
      string :: L.ByteString
    , offset :: Int64
    } deriving (Show)

newtype Parse a = P {
      runP :: MaybeT (State ParseState) a
    } deriving (Monad, MonadState ParseState)

evalParse :: Parse a -> L.ByteString -> Maybe a
evalParse m s = evalState (runMaybeT (runP m)) (ParseState s 0)

E X E R C I S E

1. Our Parse monad is not a perfect replacement for its earlier counterpart. Because
we are using Maybe instead of Either to represent a result, we can’t report any useful
information if a parse fails.

Create an EitherT sometype monad transformer, and use it to implement a more
capable Parse monad that can report an error message if parsing fails.

If you like to explore the Haskell libraries for fun, you may have run
across an existing Monad instance for the Either type in the Con
trol.Monad.Error module. We suggest that you do not use that as a
guide. Its design is too restrictive: it turns Either String into a mo-
nad, when you could use a type parameter instead of String.

Hint: if you follow this suggestion, you’ll probably need to use the
FlexibleInstances language extension in your definition.

Transformer Stacking Order Is Important
Fromour early examples using monad transformers such as ReaderT and StateT, it might
be easy to conclude that the order in which we stack monad transformers doesn’t
matter.

When we stack StateT on top of State, it should be clearer that order can indeed make
a difference. The types StateT Int (State String) and StateT String (State Int)
might carry around the same information, but we can’t use them interchangeably. The
ordering determines when we need to use lift to get at one or the other piece of state.
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Here’s a case that more dramatically demonstrates the importance of ordering. Suppose
we have a computation that might fail, and we want to log the circumstances under
which it does so:

-- file: ch18/MTComposition.hs
{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.Writer
import MaybeT

problem :: MonadWriter [String] m => m ()
problem = do
  tell ["this is where i fail"]
  fail "oops"

Which of these monad stacks will give us the information we need?

-- file: ch18/MTComposition.hs
type A = WriterT [String] Maybe

type B = MaybeT (Writer [String])

a :: A ()
a = problem

b :: B ()
b = problem

Let’s try the alternatives in ghci:

ghci> runWriterT a
Loading package mtl-1.1.0.1 ... linking ... done.
Nothing
ghci> runWriter $ runMaybeT b
(Nothing,["this is where i fail"])

This difference in results should not come as a surprise—just look at the signatures of
the execution functions:

ghci> :t runWriterT
runWriterT :: WriterT w m a -> m (a, w)
ghci> :t runWriter . runMaybeT
runWriter . runMaybeT :: MaybeT (Writer w) a -> (Maybe a, w)

Our WriterT-on-Maybe stack has Maybe as the underlying monad, so runWriterT must
give us back a result of type Maybe. In our test case, we get to see only the log of what
happened if nothing actually went wrong!

Stacking monad transformers is analogous to composing functions. If we change the
order in which we apply functions and then get different results, we won’t be surprised.
So it is with monad transformers, too.
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Putting Monads and Monad Transformers into Perspective
It’s useful to step back from details for a few moments and look at the weaknesses and
strengths of programming with monads and monad transformers.

Interference with Pure Code
Probably the biggest practical irritation of working with monads is that a monad’s type
constructor often gets in our way when we’d like to use pure code. Many useful pure
functions need monadic counterparts, simply to tack on a placeholder parameter m for
some monadic type constructor:

ghci> :t filter
filter :: (a -> Bool) -> [a] -> [a]
ghci> :i filterM
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
      -- Defined in Control.Monad

However, the coverage is incomplete: the standard libraries don’t always provide mo-
nadic versions of pure functions.

The reason for this lies in history. Eugenio Moggi introduced the idea of using monads
for programming in 1988, around the time the Haskell 1.0 standard was being devel-
oped. Many of the functions in today’s Prelude date back to Haskell 1.0, which was
released in 1990. In 1991, Philip Wadler started writing for a wider functional pro-
gramming audience about the potential of monads, at which point, they began to be
put in use.

Not until 1996 and the release of Haskell 1.3 did the standard acquire support for
monads. By this time, the language designers were already constrained by backwards
compatibility: they couldn’t change the signatures of functions in the Prelude, because
it would have broken existing code.

Since then, the Haskell community has learned a lot about creating suitable abstrac-
tions, so that we can write code that is less affected by the pure/monadic divide. You
can find modern distillations of these ideas in the Data.Traversable and
Data.Foldable modules. As appealing as those modules are, we do not cover them in
this book. This is in part for want of space, but also because if you’re still following us
at this point, you won’t have trouble figuring them out for yourself.

In an ideal world, would we make a break from the past and switch over Prelude to use
Traversable and Foldable types? Probably not. Learning Haskell is already a stimulating
enough adventure for newcomers. The Foldable and Traversable abstractions are easy
to pick up when we already understand functors and monads, but they would put early
learners on too pure a diet of abstraction. For teaching the language, it’s good that
map operates on lists, not on functors.
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Overdetermined Ordering
One of the principal reasons that we use monads is that they let us specify an ordering
for effects. Look again at a small snippet of code we wrote earlier:

-- file: ch18/MTComposition.hs
{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.Writer
import MaybeT

problem :: MonadWriter [String] m => m ()
problem = do
  tell ["this is where i fail"]
  fail "oops"

Because we are executing in a monad, we are guaranteed that the effect of the tell will
occur before the effect of fail. The problem is that we get this guarantee of ordering
even when we don’t necessarily want it: the compiler is not free to rearrange monadic
code, even if doing so would make it more efficient.

Runtime Overhead
Finally, when we use monads and monad transformers, we can pay an efficiency tax.
For instance, the State monad carries its state around in a closure. Closures might be
cheap in a Haskell implementation, but they’re not free.

A monad transformer adds its own overhead to that of whatever is underneath. Our
MaybeT transformer has to wrap and unwrap Maybe values every time we use (>>=). A
stack of MaybeT on top of StateT over ReaderT thus has a lot of bookkeeping to do for
each (>>=).

A sufficiently smart compiler might make some or all of these costs vanish, but that
degree of sophistication is not yet widely available.

There are relatively simple techniques to avoid some of these costs, though we lack
space to do more than mention them by name. For instance, using a continuation
monad, we can avoid the constant wrapping and unwrapping in (>>=), paying only for
effects when we use them. Much of the complexity of this approach has already been
packaged up in libraries. This area of work is still under lively development as of this
writing. If you want to make your use of monad transformers more efficient, we rec-
ommend looking on Hackage or asking for directions on a mailing list or IRC.

Unwieldy Interfaces
If we use the mtl library as a black box, all of its components mesh quite nicely. How-
ever, once we start developing our own monads and monad transformers, and also
using them with those provided by mtl, some deficiencies start to show.
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For example, if we create a new monad transformer FooT and want to follow the same
pattern as mtl, we’ll have it implement a typeclass MonadFoo. If we really want to integrate
it cleanly into the mtl, we’ll have to provide instances for each of the dozen or so mtl
typeclasses.

On top of that, we’ll have to declare instances of MonadFoo for each of the mtl trans-
formers. Most of those instances will be almost identical, and quite dull to write. If we
want to keep integrating new monad transformers into the mtl framework, the number
of moving parts we must deal with increases with the square of the number of new
transformers!

In fairness, this problem matters to a tiny number of people only. Most users of mtl
don’t need to develop new transformers at all, so they are not affected.

This weakness of mtl’s design lies with the fact that it was the first library of monad
transformers that was developed. Given that its designers were plunging into the un-
known, they did a remarkable job of producing a powerful library that is easy for most
users to understand and work with.

A newer library of monads and transformers, monadLib, corrects many of the design
flaws in mtl. If at some point you turn into a hardcore hacker of monad transformers,
it is well worth looking at.

The quadratic instances definition is actually a problem with the approach of using
monad transformers. There have been many other approaches put forward for com-
posing monads that don’t have this problem, but none of them seem as convenient to
the end user as monad transformers. Fortunately, there simply aren’t that many foun-
dational, generically useful monad transformers.

Pulling It All Together
Monads are not by any means the end of the road when it comes to working with effects
and types. What they are is the most practical resting point we have reached so far.
Language researchers are always working on systems that try to provide similar
advantages, without the same compromises.

Although we must make compromises when we use them, monads and monad trans-
formers still offer a degree of flexibility and control that has no precedent in an imper-
ative language. With just a few declarations, we can rewire something as fundamental
as the semicolon to give it a new meaning.
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CHAPTER 19

Error Handling

Error handling is one of the most important—and overlooked—topics for program-
mers, regardless of the language used. In Haskell, you will find two major types of error
handling employed: pure error handling and exceptions.

When we speak of pure error handling, we are referring to algorithms that do not
require anything from the IO monad. We can often implement error handling for them
simply by using Haskell’s expressive data type system to our advantage. Haskell also
has an exception system. Due to the complexities of lazy evaluation, exceptions in
Haskell can be thrown anywhere, but caught only within the IO monad. In this chapter,
we’ll consider both.

Error Handling with Data Types
Let’s begin our discussion of error handling with a very simple function. Let’s say that
we wish to perform division on a series of numbers. We have a constant numerator but
wish to vary the denominator. We might come up with a function like this:

-- file: ch19/divby1.hs
divBy :: Integral a => a -> [a] -> [a]
divBy numerator = map (numerator `div`)

Very simple, right? We can play around with this a bit in ghci:

ghci> divBy 50 [1,2,5,8,10]
[50,25,10,6,5]
ghci> take 5 (divBy 100 [1..])
[100,50,33,25,20]

This behaves as expected: 50 / 1 is 50, 50 / 2 is 25, and so forth.* This even worked
with the infinite list [1..]. What happens if we sneak a 0 into our list somewhere?

* We’re using integral division here, so 50 / 8 shows as 6 instead of 6.25. We’re not using floating-point
arithmetic in this example because division by zero with a Double produces the special value Infinity rather
than an error.
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ghci> divBy 50 [1,2,0,8,10]
[50,25,*** Exception: divide by zero

Isn’t that interesting? ghci started displaying the output, and then stopped with an
exception when it got to the zero. That’s lazy evaluation at work—it calculated results
as needed.

As we will see later in this chapter, in the absence of an explicit exception handler, this
exception will crash the program. That’s obviously not desirable, so let’s consider better
ways we could indicate an error in this pure function.

Use of Maybe
One immediately recognizable and easy way to indicate failure is to use Maybe.† Instead
of just returning a list and throwing an exception on failure, we can return Nothing if
the input list contains a zero anywhere, or return Just with the results otherwise. Here’s
an implementation of such an algorithm:

-- file: ch19/divby2.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy _ [] = Just []
divBy _ (0:_) = Nothing
divBy numerator (denom:xs) =
    case divBy numerator xs of
      Nothing -> Nothing
      Just results -> Just ((numerator `div` denom) : results)

If you try it out in ghci, you’ll see that it works:

ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Nothing

The function that calls divBy can now use a case statement to see if the call was suc-
cessful, just as divBy does when it calls itself.

You may note that you could use a monadic implementation of the pre-
ceding example, like so:

-- file: ch19/divby2m.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy numerator denominators = 
    mapM (numerator `safeDiv`) denominators
    where safeDiv _ 0 = Nothing
          safeDiv x y = x `div` y

We will avoid the monadic implementation in this chapter for simplicity
but wanted to point out that it exists.

† For an introduction to Maybe, refer to “A More Controlled Approach” on page 61.
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Loss and preservation of laziness

The use of Maybe is convenient, but it has come at a cost. divBy can no longer handle
infinite lists as input. Since the result is Maybe [a], the entire input list must be examined
before we can be sure that we won’t be returning Nothing due to a zero somewhere in
it. You can verify this is the case by attempting one of our earlier examples:

ghci> divBy 100 [1..] 
*** Exception: stack overflow

Note that you don’t start seeing partial output here; you get no output. Notice that at
each step in divBy (except for the case of an empty input list or a zero at the start of the
list), the results from every subsequent element must be known before the results from
the current element can be known. Thus this algorithm can’t work on infinite lists, and
it is also not very space-efficient for large finite lists.

Having said all that, Maybe is often a fine choice. In this particular case, we don’t know
whether there will be a problem until we get into evaluating the entire input. Sometimes
we know of a problem up front—for instance, tail [] in ghci produces an exception.
We could easily write an infinite-capable tail that doesn’t have this problem:

-- file: ch19/safetail.hs
safeTail :: [a] -> Maybe [a]
safeTail [] = Nothing
safeTail (_:xs) = Just xs

This simply returns Nothing if given an empty input list or Just with the result for
anything else. Since we have only to make sure the list is nonempty before knowing
whether or not we have an error, using Maybe here doesn’t reduce our laziness. We can
test this out in ghci and see how it compares with regular tail:

ghci> tail [1,2,3,4,5]
[2,3,4,5]
ghci> safeTail [1,2,3,4,5]
Just [2,3,4,5]
ghci> tail []
*** Exception: Prelude.tail: empty list
ghci> safeTail []
Nothing

Here, we can see our safeTail performed as expected. But what about infinite lists? We
don’t want to print out an infinite number of results, so we can test with take 5 (tail
[1..]) and a similar construction with safeTail:

ghci> take 5 (tail [1..])
[2,3,4,5,6]
ghci> case safeTail [1..] of {Nothing -> Nothing; Just x -> Just (take 5 x)}
Just [2,3,4,5,6]
ghci> take 5 (tail [])
*** Exception: Prelude.tail: empty list
ghci> case safeTail [] of {Nothing -> Nothing; Just x -> Just (take 5 x)}
Nothing
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Here you can see that both tail and safeTail handled infinite lists just fine. Note that
we were able to deal better with an empty input list; instead of throwing an exception,
we decided to return Nothing in that situation. We were able to achieve error handling
at no expense to laziness.

But how do we apply this to our divBy example? Let’s consider the situation there.
Failure is a property of an individual bad input, not of the input list itself. How about
making failure a property of an individual output element, rather than the output list
itself? That is, instead of a function of type a -> [a] -> Maybe [a], we will have a ->
[a] -> [Maybe a]. This will have the benefit of preserving laziness, plus the caller will
be able to determine exactly where in the list the problem is—or even just filter out the
problem results if desired. Here’s an implementation:

-- file: ch19/divby3.hs
divBy :: Integral a => a -> [a] -> [Maybe a]
divBy numerator denominators =
    map worker denominators
    where worker 0 = Nothing
          worker x = Just (numerator `div` x)

Take a look at this function. We’re back to using map, which is a good thing for both
laziness and simplicity. We can try it out in ghci and see that it works for finite and
infinite lists just fine:

ghci> divBy 50 [1,2,5,8,10]
[Just 50,Just 25,Just 10,Just 6,Just 5]
ghci> divBy 50 [1,2,0,8,10]
[Just 50,Just 25,Nothing,Just 6,Just 5]
ghci> take 5 (divBy 100 [1..])
[Just 100,Just 50,Just 33,Just 25,Just 20]

We hope that you can take from this discussion the point that there is a distinction
between the input not being well-formed (as in the case of safeTail) and the input
potentially containing some bad data, as in the case of divBy. These two cases can often
justify different handling of the results.

Usage of the Maybe monad

Back in “Use of Maybe” on page 448, we had an example program named divby2.hs.
This example didn’t preserve laziness but returned a value of type Maybe [a]. The exact
same algorithm could be expressed using a monadic style. For more information and
important background on monads, please refer to Chapter 14. Here’s our new monadic-
style algorithm:

-- file: ch19/divby4.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy _ [] = return []
divBy _ (0:_) = fail "division by zero in divBy"
divBy numerator (denom:xs) =
    do next <- divBy numerator xs
       return ((numerator `div` denom) : next)
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The Maybe monad makes the expression of this algorithm look nicer. For the Maybe
monad, return is the same as Just, and fail _ = Nothing, so our error explanation
string is never actually seen anywhere. We can test this algorithm with the same tests
we used against divby2.hs if we want:

ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Nothing
ghci> divBy 100 [1..] 
*** Exception: stack overflow

The code we wrote actually isn’t specific to the Maybe monad. By simply changing the
type, we can make it work for any monad. Let’s try it:

-- file: ch19/divby5.hs
divBy :: Integral a => a -> [a] -> Maybe [a]
divBy = divByGeneric

divByGeneric :: (Monad m, Integral a) => a -> [a] -> m [a]
divByGeneric _ [] = return []
divByGeneric _ (0:_) = fail "division by zero in divByGeneric"
divByGeneric numerator (denom:xs) =
    do next <- divByGeneric numerator xs
       return ((numerator `div` denom) : next)

The divByGeneric function contains the same code as divBy did before; we just gave it
a more general type. This is, in fact, the type that ghci infers if no type is given. We also
defined a convenience function divBy with a more specific type.

Let’s try this out in ghci:

ghci> :l divby5.hs
[1 of 1] Compiling Main             ( divby5.hs, interpreted )
Ok, modules loaded: Main.
ghci> divBy 50 [1,2,5,8,10]
Just [50,25,10,6,5]
ghci> (divByGeneric 50 [1,2,5,8,10])::(Integral a => Maybe [a])
Just [50,25,10,6,5]
ghci> divByGeneric 50 [1,2,5,8,10]
[50,25,10,6,5]
ghci> divByGeneric 50 [1,2,0,8,10]
*** Exception: user error (division by zero in divByGeneric)

The first two inputs both produce the same output that we saw earlier. Since
divByGeneric doesn’t have a specific return type, we must either give one or let the
interpreter infer one from the environment. If we don’t give a specific return type,
ghci infers the IO monad. You can see that in the third and fourth examples. The IO
monad converts fail into an exception, as you can see with the fourth example.

The Control.Monad.Error module in the mtl package makes Either String into a monad
as well. If you use Either, you can get a pure result that preserves the error message,
like so:
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ghci> :m +Control.Monad.Error
ghci> (divByGeneric 50 [1,2,5,8,10])::(Integral a => Either String [a])
Loading package mtl-1.1.0.1 ... linking ... done.
Right [50,25,10,6,5]
ghci> (divByGeneric 50 [1,2,0,8,10])::(Integral a => Either String [a])
Left "division by zero in divByGeneric"

This leads us into our next topic of discussion: using Either for returning error
information.

Use of Either
The Either type is similar to the Maybe type, with one key difference: it can carry attached
data both for an error and a success (“the Right answer”).‡ Although the language
imposes no restrictions, by convention, a function returning an Either uses a Left re-
turn value to indicate an error, and it uses Right to indicate success. If it helps you
remember, you can think of getting the Right answer. We can start with our
divby2.hs example from the earlier section on Maybe and adapt it to work with Either:

-- file: ch19/divby6.hs
divBy :: Integral a => a -> [a] -> Either String [a]
divBy _ [] = Right []
divBy _ (0:_) = Left "divBy: division by 0"
divBy numerator (denom:xs) =
    case divBy numerator xs of
      Left x -> Left x
      Right results -> Right ((numerator `div` denom) : results)

This code is almost identical to the Maybe code; we’ve substituted Right for every Just.
Left compares to Nothing, but now it can carry a message. Let’s check it out in ghci:

ghci> divBy 50 [1,2,5,8,10]
Right [50,25,10,6,5]
ghci> divBy 50 [1,2,0,8,10]
Left "divBy: division by 0"

Custom data types for errors

While a String indicating the cause of an error may be useful to humans down the road,
it’s often helpful to define a custom error type that we can use to programmatically
decide on a course of action based upon exactly what the problem was. For instance,
let’s say that for some reason, besides 0, we also don’t want to divide by 10 or 20. We
could define a custom error type like so:

-- file: ch19/divby7.hs
data DivByError a = DivBy0
                 | ForbiddenDenominator a
                   deriving (Eq, Read, Show)

divBy :: Integral a => a -> [a] -> Either (DivByError a) [a]

‡ For more information on Either, refer to “Handling Errors Through API Design” on page 210.
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divBy _ [] = Right []
divBy _ (0:_) = Left DivBy0
divBy _ (10:_) = Left (ForbiddenDenominator 10)
divBy _ (20:_) = Left (ForbiddenDenominator 20)
divBy numerator (denom:xs) =
    case divBy numerator xs of
      Left x -> Left x
      Right results -> Right ((numerator `div` denom) : results)

Now, in the event of an error, the Left data could be inspected to find the exact cause.
Or, it could simply be printed out with show, which will generate a reasonable idea of
the problem as well. Here’s this function in action:

ghci> divBy 50 [1,2,5,8]
Right [50,25,10,6]
ghci> divBy 50 [1,2,5,8,10]
Left (ForbiddenDenominator 10)
ghci> divBy 50 [1,2,0,8,10]
Left DivBy0

All of these Either examples suffer from the lack of laziness that our
early Maybe examples suffered from. We address that in an exercise
question at the end of this chapter.

Monadic use of Either

Back in “Usage of the Maybe monad” on page 450, we showed you how to use Maybe
in a monad. Either can be used in a monad too, but it can be slightly more complicated.
The reason is that fail is hardcoded to accept only a String as the failure code, so we
have to have a way to map such a string into whatever type we used for Left. As you
saw earlier, Control.Monad.Error provides built-in support for Either String a, which
involves no mapping for the argument to fail. Here’s how we can set up our example
to work with Either in the monadic style:

-- file: ch19/divby8.hs
{-# LANGUAGE FlexibleContexts #-}

import Control.Monad.Error

data Show a => 
    DivByError a = DivBy0
                  | ForbiddenDenominator a
                  | OtherDivByError String
                    deriving (Eq, Read, Show)

instance Error (DivByError a) where
    strMsg x = OtherDivByError x

divBy :: Integral a => a -> [a] -> Either (DivByError a) [a]
divBy = divByGeneric

divByGeneric :: (Integral a, MonadError (DivByError a) m) =>
                 a -> [a] -> m [a]
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divByGeneric _ [] = return []
divByGeneric _ (0:_) = throwError DivBy0
divByGeneric _ (10:_) = throwError (ForbiddenDenominator 10)
divByGeneric _ (20:_) = throwError (ForbiddenDenominator 20)
divByGeneric numerator (denom:xs) =
    do next <- divByGeneric numerator xs
       return ((numerator `div` denom) : next)

Here, we needed to turn on the FlexibleContexts language extension in order to provide
the type signature for divByGeneric. The divBy function works exactly the same as
before. For divByGeneric, we make divByError a member of the Error class by defining
what happens when someone calls fail (the strMsg function). We also convert Right
to return and Left to throwError to enable this to be generic.

Exceptions

Version 6.10.1 of GHC was released as this book went to press. It in-
troduces an extensible extension system. In the sections that follow, we
document the older exception system. The two are similar, but not
completely compatible.

Exception handling is found in many programming languages, including Haskell. It
can be useful because, when a problem occurs, exception handling can provide an easy
way of handling it, even if it occurs several layers down through a chain of function
calls. With exceptions, it’s not necessary to check the return value of every function
call for errors, and we must take care to produce a return value that reflects the error,
as C programmers must do. In Haskell, thanks to monads and the Either and Maybe
types, we can often achieve the same effects in pure code without the need to use
exceptions and exception handling.

Some problems—especially those involving I/O—call for working with exceptions. In
Haskell, exceptions may be thrown from any location in the program. However, due
to the unspecified evaluation order, they can only be caught in the IO monad. Haskell
exception handling doesn’t involve special syntax as it does in Python or Java. Rather,
the mechanisms to catch and handle exceptions are—surprise—functions.

First Steps with Exceptions
In the Control.Exception module, various functions and types relating to exceptions
are defined. There is an Exception type defined there; all exceptions are of type
Exception. There are also functions for catching and handling exceptions. Let’s start
by looking at try, which has type IO a -> IO (Either Exception a). This wraps an
IO action with exception handling. If an exception is thrown, it will return a Left value
with the exception; otherwise, it returns a Right value with the original result. Let’s try
this out in ghci. We’ll first trigger an unhandled exception, and then try to catch it:
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ghci> :m Control.Exception
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> print x
*** Exception: divide by zero
ghci> print y
5
ghci> try (print x)
Left divide by zero
ghci> try (print y)
5
Right ()

Notice that no exception was thrown by the let statements. That’s to be expected due
to lazy evaluation; the division by zero won’t be attempted until it is demanded by the
attempt to print out x. Also, notice that there were two lines of output from try
(print y). The first line was produced by print, which displayed the digit 5 on the
terminal. The second was produced by ghci and shows us that print y returned () and
didn’t throw an exception.

Laziness and Exception Handling
Now that you know how try works, let’s try another experiment. Let’s say we want to
catch the result of try for future evaluation, so we can handle the result of division.
Perhaps we would do it like this:

ghci> result <- try (return x)
Right *** Exception: divide by zero

What happened here? Let’s try to piece it together, and illustrate with another attempt:

ghci> let z = undefined
ghci> try (print z)
Left Prelude.undefined
ghci> result <- try (return z)
Right *** Exception: Prelude.undefined

As before, assigning undefined to z was not a problem. The key to this puzzle, and to
the division puzzle, lies with lazy evaluation. Specifically, it lies with return, which does
not force the evaluation of its argument; it only wraps it up. So, the result of try (return
undefined) would be Right undefined. Now, ghci wants to display this result on the
terminal. It gets as far as printing out "Right ", but we can’t print out undefined (or the
result of division by zero). So when we see the exception message, it’s coming from
ghci, not your program.

This is a key point. Let’s think about why our earlier example worked and this one
didn’t. Earlier, we put print x inside try. Printing the value of something, of course,
requires it to be evaluated, so the exception was detected at the right place. But simply
using return does not force evaluation. To solve this problem, the Control.Exception
module defines the evaluate function. It behaves just like return but forces its argument
to be evaluated immediately. Let’s try it:
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ghci> let z = undefined
ghci> result <- try (evaluate z)
Left Prelude.undefined
ghci> result <- try (evaluate x)
Left divide by zero

There, that’s what was expected. This worked for both undefined and our division by
zero example.

Remember: whenever you are trying to catch exceptions thrown by pure
code, use evaluate instead of return inside your exception-catching
function.

Using handle
Often, you may wish to perform one action if a piece of code completes without an
exception, and perform a different action otherwise. For situations such as this, there’s
a function called handle. This function has type (Exception -> IO a) -> IO a -> IO
a. That is, it takes two parameters. The first is a function to call in the event where there
is an exception while performing the second. Here’s one way we could use it:

ghci> :m Control.Exception
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> handle (\_ -> putStrLn "Error calculating result") (print x)
Error calculating result
ghci> handle (\_ -> putStrLn "Error calculating result") (print y)
5

This way, we can print out a nice message if there is an error in the calculations. It’s
nicer than having the program crash with a division by zero error, for sure.

Selective Handling of Exceptions
One problem with the previous example is that it prints "Error calculating result"
for any exception. There may have been an exception other than a division by zero
exception. For instance, there may have been an error displaying the output, or some
other exception could have been thrown by the pure code.

There’s a function handleJust for these situations. It lets you specify a test to see whether
you are interested in a given exception. Let’s take a look:

-- file: ch19/hj1.hs
import Control.Exception

catchIt :: Exception -> Maybe ()
catchIt (ArithException DivideByZero) = Just ()
catchIt _ = Nothing

handler :: () -> IO ()
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handler _ = putStrLn "Caught error: divide by zero"

safePrint :: Integer -> IO ()
safePrint x = handleJust catchIt handler (print x)

catchIt defines a function that decides whether or not we’re interested in a given ex-
ception. It returns Just if so, and Nothing if not. Also, the value attached to Just will
be passed to our handler. We can now use safePrint nicely:

ghci> :l hj1.hs
[1 of 1] Compiling Main             ( hj1.hs, interpreted )
Ok, modules loaded: Main.
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> safePrint x
Caught error: divide by zero
ghci> safePrint y
5

The Control.Exception module also presents a number of functions that we can use as
part of the test in handleJust to narrow down the kinds of exceptions we care about.
For instance, there is a function arithExceptions of type Exception -> Maybe
ArithException that will pick out any ArithException, but ignore any other one. We
could use it like this:

-- file: ch19/hj2.hs
import Control.Exception

handler :: ArithException -> IO ()
handler e = putStrLn $ "Caught arithmetic error: " ++ show e

safePrint :: Integer -> IO ()
safePrint x = handleJust arithExceptions handler (print x)

In this way, we can catch all types of ArithException, but still let other exceptions pass
through unmodified and uncaught. We can see it work like so:

ghci> :l hj2.hs
[1 of 1] Compiling Main             ( hj2.hs, interpreted )
Ok, modules loaded: Main.
ghci> let x = 5 `div` 0
ghci> let y = 5 `div` 1
ghci> safePrint x
Caught arithmetic error: divide by zero
ghci> safePrint y
5

Of particular interest is the ioErrors test, which corresponds to the large class of I/O-
related exceptions.

I/O Exceptions
Perhaps the largest source of exceptions in any program is I/O. All sorts of things can
go wrong when dealing with the outside world: disks can be full, networks can go down,
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or files can be empty when you expect them to have data. In Haskell, an I/O exception
is just like any other exception in that the Exception data type can represent it. On the
other hand, because there are so many types of I/O exceptions, a special module,
System.IO.Error, exists for dealing with them.

System.IO.Error defines two functions, catch and try, that, like their counterparts in
Control.Exception, are used to deal with exceptions. Unlike the Control.Exception
functions, however, these functions will trap only I/O errors and will pass all other
exceptions through uncaught. In Haskell, I/O errors all have type IOError, which is
defined as the same as IOException.

Be careful which names you use
Because both System.IO.Error and Control.Exception define functions
with the same names, if you import both in your program, you will get
an error message about an ambiguous reference to a function. You can
import one or the other module qualified, or hide the symbols from
one module or the other.

Note that Prelude exports System.IO.Error’s version of catch, not the
version provided by Control.Exception. Remember that the former can
catch only I/O errors, while the latter can catch all exceptions. In other
words, the catch in Control.Exception is almost always the one you will
want, but it is not the one you will get by default.

Let’s take a look at one approach to using exceptions in the I/O system to our benefit.
Back in “Working with Files and Handles” on page 169, we presented a program that
used an imperative style to read lines from a file one by one. Although we subsequently
demonstrated more compact, “Haskelly” ways to solve that problem, let’s revisit that
example here. In the mainloop function, we had to explicitly test if we were at the end
of the input file before each attempt to read a line from it. Instead, we could check if
the attempt to read a line resulted in an EOF error, like so:

-- file: ch19/toupper-impch20.hs
import System.IO
import System.IO.Error
import Data.Char(toUpper)

main :: IO ()
main = do 
       inh <- openFile "input.txt" ReadMode
       outh <- openFile "output.txt" WriteMode
       mainloop inh outh
       hClose inh
       hClose outh

mainloop :: Handle -> Handle -> IO ()
mainloop inh outh = 
    do input <- try (hGetLine inh)
       case input of
         Left e -> 
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             if isEOFError e
                then return ()
                else ioError e
         Right inpStr ->
             do hPutStrLn outh (map toUpper inpStr)
                mainloop inh outh

Here, we use the System.IO.Error version of try to check whether hGetLine threw an
IOError. If it did, we use isEOFError (defined in System.IO.Error) to see if the thrown
exception indicated that we reached the end of the file. If it did, we exit the loop. If the
exception was something else, we call ioError to rethrow it.

There are many such tests and ways to extract information from IOError defined in
System.IO.Error. We recommend that you consult that page in the library reference
when you need to know about them.

Throwing Exceptions
Thus far, we have talked in detail about handling exceptions. There is another piece to
the puzzle: throwing exceptions.§ In the examples we have visited so far in this chapter,
the Haskell system throws exceptions for you. However, it is possible to throw any
exception yourself. We’ll show you how.

You’ll notice that most of these functions appear to return a value of type a or IO a.
This means that the function can appear to return a value of any type. In fact, because
these functions throw exceptions, they never “return” anything in the normal sense.
These return values let you use these functions in various contexts where various dif-
ferent types are expected.

Let’s start our tour of ways to throw exceptions with the functions in
Control.Exception. The most generic function is throw, which has type Exception ->
a. This function can throw any Exception, and can do so in a pure context. There is a
companion function—throwIO with type Exception -> IO a—that throws an exception
in the IO monad. Both functions require an Exception to throw. You can craft an
Exception by hand or reuse an Exception that was previously created.

There is also a function ioError, which is defined identically in Control.Exception and
System.IO.Error with type IOError -> IO a. This is used when you want to generate
an arbitrary I/O-related exception.

Dynamic Exceptions
Dynamic Exceptions make use of two little-used Haskell modules: Data.Dynamic and
Data.Typeable. We will not go into a great level of detail on those modules here, but
we will give you the tools you need to craft and use your own dynamic exception type.

§ In some other languages, throwing an exception is referred to as raising it.
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In Chapter 21, you will see that the HDBC database library uses dynamic exceptions
to indicate errors from SQL databases back to applications. Errors from database
engines often have three components: an integer that represents an error code, a state,
and a human-readable error message. We will build up our own implementation of the
HDBC SqlError type here. Let’s start with the data structure representing the error
itself:

-- file: ch19/dynexc.hs
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Dynamic
import Control.Exception

data SqlError = SqlError {seState :: String,
                          seNativeError :: Int,
                          seErrorMsg :: String}
                deriving (Eq, Show, Read, Typeable)

By deriving the Typeable typeclass, we’ve made this type available for dynamically typed
programming. In order for GHC to automatically generate a Typeable instance, we had
to enable the DeriveDataTypeable language extension.‖

Now, let’s define a catchSql and a handleSql that can be used to catch an exception
that is an SqlError (note that the regular catch and handle functions cannot catch our
SqlError, because it is not a type of Exception):

-- file: ch19/dynexc.hs
{- | Execute the given IO action.

If it raises a 'SqlError', then execute the supplied 
handler and return its return value.  Otherwise, proceed
as normal. -}
catchSql :: IO a -> (SqlError -> IO a) -> IO a
catchSql = catchDyn

{- | Like 'catchSql', with the order of arguments reversed. -}
handleSql :: (SqlError -> IO a) -> IO a -> IO a
handleSql = flip catchSql

These functions are simply thin wrappers around catchDyn, which has type Typeable
exception => IO a -> (exception -> IO a) -> IO a. We simply restrict the type of this
here so that it catches only SQL exceptions.

Normally, when an exception is thrown but not caught anywhere, the program will
crash and display the exception to standard error. With a dynamic exception, however,
the system will not know how to display this, so we will simply see an unhelpful “un-
known exception” message. We can provide a utility so that application writers can
simply say main = handleSqlError $ do ... and have confidence that any exceptions
thrown (in that thread) will be displayed. Here’s how to write handleSqlError:

‖ It is possible to derive Typeable instances by hand, but that is cumbersome.
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-- file: ch19/dynexc.hs
{- | Catches 'SqlError's, and re-raises them as IO errors with fail.
Useful if you don't care to catch SQL errors, but want to see a sane
error message if one happens.  One would often use this as a 
high-level wrapper around SQL calls. -}
handleSqlError :: IO a -> IO a
handleSqlError action =
    catchSql action handler
    where handler e = fail ("SQL error: " ++ show e)

Finally, here’s an example of how to throw an SqlError as an exception. Here’s a func-
tion that will do just that:

-- file: ch19/dynexc.hs
throwSqlError :: String -> Int -> String -> a
throwSqlError state nativeerror errormsg =
    throwDyn (SqlError state nativeerror errormsg)

throwSqlErrorIO :: String -> Int -> String -> IO a
throwSqlErrorIO state nativeerror errormsg =
    evaluate (throwSqlError state nativeerror errormsg)

As a reminder, evaluate is like return but forces the evaluation of its
argument.

This completes our dynamic exception support. That was a lot of code, and you may
not have needed that much, but we wanted to give you an example of the dynamic
exception itself and the utilities that often go with it. In fact, these examples reflect
almost exactly what is present in the HDBC library. Let’s play with these in ghci for a
bit:

ghci> :l dynexc.hs
[1 of 1] Compiling Main             ( dynexc.hs, interpreted )
Ok, modules loaded: Main.
ghci> throwSqlErrorIO "state" 5 "error message"
*** Exception: (unknown)
ghci> handleSqlError $ throwSqlErrorIO "state" 5 "error message"
*** Exception: user error (SQL error: SqlError {seState = "state", seNativeError = 5,
seErrorMsg = "error message"})
ghci> handleSqlError $ fail "other error"
*** Exception: user error (other error)

From this, you can see that ghci doesn’t know how to display an SQL error by itself.
However, you can also see that our handleSqlError function helped out with that but
also passed through other errors unmodified. Let’s finally try out a custom handler:

ghci> handleSql (fail . seErrorMsg) (throwSqlErrorIO "state" 5 "my error")
*** Exception: user error (my error)

Here, we defined a custom error handler that threw a new exception, consisting of the
message in the seErrorMsg field of the SqlError. You can see that it worked as intended.
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E X E R C I S E

1. Take the Either example and made it work with laziness in the style of the Maybe
example.

Error Handling in Monads
Because we must catch exceptions in the IO monad, if we try to use them inside a monad,
or in a stack of monad transformers, we’ll get bounced out to the IO monad. This is
almost never what we would actually like.

We defined a MaybeT transformer in “Understanding Monad Transformers by Building
One” on page 438, but it is more useful as an aid to understanding than a programming
tool. Fortunately, a dedicated—and more useful—monad transformer already exists:
ErrorT, which is defined in the Control.Monad.Error module.

The ErrorT transformer lets us add exceptions to a monad, but it uses its own special
exception machinery, separate from that provided the Control.Exception module. It
gives us some interesting capabilities:

• If we stick with the ErrorT interfaces, we can both throw and catch exceptions
within this monad.

• Following the naming pattern of other monad transformers, the execution function
is named runErrorT. An uncaught ErrorT exception will stop propagating upwards
when it reaches runErrorT. We will not be kicked out to the IO monad.

• We control the type that our exceptions will have.

Do not confuse ErrorT with regular exceptions
If we use the throw function from Control.Exception inside ErrorT (or
if we use error or undefined), we will still be bounced out to the IO
monad.

As with other mtl monads, the interface that ErrorT provides is defined by a typeclass:

-- file: ch19/MonadError.hs
class (Monad m) => MonadError e m | m -> e where
    throwError :: e             -- error to throw
               -> m a

    catchError :: m a           -- action to execute
               -> (e -> m a)    -- error handler
               -> m a

The type variable e represents the error type that we want to use. Whatever our error
type is, we must make it an instance of the Error typeclass:
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-- file: ch19/MonadError.hs
class Error a where
    -- create an exception with no message
    noMsg  :: a

    -- create an exception with a message
    strMsg :: String -> a

ErrorT’s implementation of fail uses the strMsg function. It throws strMsg as an ex-
ception, passing it the string argument that it received. As for noMsg, it is used to provide
an mzero implementation for the MonadPlus typeclass.

To support the strMsg and noMsg functions, our ParseError type will have a Chatty
constructor. This will be used as the constructor if, for example, someone calls fail in
our monad.

One last piece of plumbing that we need to know about is the type of the execution
function runErrorT:

ghci> :t runErrorT
runErrorT :: ErrorT e m a -> m (Either e a)

A Tiny Parsing Framework
To illustrate the use of ErrorT, let’s develop the bare bones of a parsing library similar
to Parsec:

-- file: ch19/ParseInt.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Error
import Control.Monad.State
import qualified Data.ByteString.Char8 as B

data ParseError = NumericOverflow
                | EndOfInput
                | Chatty String
                  deriving (Eq, Ord, Show)

instance Error ParseError where
    noMsg  = Chatty "oh noes!"
    strMsg = Chatty

For our parser’s state, we will create a very small monad transformer stack. A State
monad carries around the ByteString to parse, and ErrorT is stacked on top to provide
error handling:

-- file: ch19/ParseInt.hs
newtype Parser a = P {
      runP :: ErrorT ParseError (State B.ByteString) a
    } deriving (Monad, MonadError ParseError)

As usual, we have wrapped our monad stack in a newtype. This costs us nothing in
performance but adds type safety. We deliberately avoided deriving an instance of
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MonadState B.ByteString. This means that users of the Parser monad will not be able
to use get or put to query or modify the parser’s state. As a result, we force ourselves
to do some manual lifting to get at the State monad in our stack. This is, however, very
easy to do:

-- file: ch19/ParseInt.hs
liftP :: State B.ByteString a -> Parser a
liftP m = P (lift m)

satisfy :: (Char -> Bool) -> Parser Char
satisfy p = do
  s <- liftP get
  case B.uncons s of
    Nothing         -> throwError EndOfInput
    Just (c, s')
        | p c       -> liftP (put s') >> return c
        | otherwise -> throwError (Chatty "satisfy failed")

The catchError function is useful for tasks beyond simple error handling. For instance,
we can easily defang an exception, turning it into a more friendly form:

-- file: ch19/ParseInt.hs
optional :: Parser a -> Parser (Maybe a)
optional p = (Just `liftM` p) `catchError` \_ -> return Nothing

Our execution function merely plugs together the various layers and rearranges the
result into a tidier form:

-- file: ch19/ParseInt.hs
runParser :: Parser a -> B.ByteString
          -> Either ParseError (a, B.ByteString)
runParser p bs = case runState (runErrorT (runP p)) bs of
                   (Left err, _) -> Left err
                   (Right r, bs) -> Right (r, bs)

If we load this into ghci, we can put it through its paces:

ghci> :m +Data.Char
ghci> let p = satisfy isDigit
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
ghci> runParser p (B.pack "x")
Left (Chatty "satisfy failed")
ghci> runParser p (B.pack "9abc")
Right ('9',"abc")
ghci> runParser (optional p) (B.pack "x")
Right (Nothing,"x")
ghci> runParser (optional p) (B.pack "9a")
Right (Just '9',"a")
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E X E R C I S E S

1. Write a many parser, with type Parser a -> Parser [a]. It should apply a parser
until it fails.

2. Use many to write an int parser, with type Parser Int. It should accept negative
and positive integers.

3. Modify your int parser to throw a NumericOverflow exception if it detects a numeric
overflow while parsing.
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CHAPTER 20

Systems Programming in Haskell

So far, we’ve been talking mostly about high-level concepts. Haskell can also be used
for lower-level systems programming. It is quite possible to write programs that inter-
face with the operating system at a low level using Haskell.

In this chapter, we are going to attempt something ambitious: a Perl-like “language”
that is valid Haskell, implemented in pure Haskell, that makes shell scripting easy. We
are going to implement piping, easy command invocation, and some simple tools to
handle tasks that might otherwise be performed with grep or sed.

Specialized modules exist for different operating systems. In this chapter, we will use
generic OS-independent modules as much as possible. However, we will be focusing
on the POSIX environment for much of the chapter. POSIX is a standard for Unix-like
operating systems such as Linux, FreeBSD, MacOS X, or Solaris. Windows does not
support POSIX by default, but the Cygwin environment provides a POSIX compati-
bility layer for Windows.

Running External Programs
It is possible to invoke external commands from Haskell. To do that, we suggest using
rawSystem from the System.Cmd module. This will invoke a specified program, with the
specified arguments, and return the exit code from that program. You can play with it
in ghci:

ghci> :module System.Cmd
ghci> rawSystem "ls" ["-l", "/usr"]
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
total 408
drwxr-xr-x   2 root root  94208 2008-08-22 04:51 bin
drwxr-xr-x   2 root root   4096 2008-04-07 14:44 etc
drwxr-xr-x   2 root root   4096 2008-04-07 14:44 games
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drwxr-xr-x 155 root root  16384 2008-08-20 20:54 include
drwxr-xr-x   4 root root   4096 2007-11-01 21:31 java
drwxr-xr-x   6 root root   4096 2008-03-18 11:38 kerberos
drwxr-xr-x  70 root root  36864 2008-08-21 04:52 lib
drwxr-xr-x 212 root root 126976 2008-08-21 04:53 lib64
drwxr-xr-x  23 root root  12288 2008-08-21 04:53 libexec
drwxr-xr-x  15 root root   4096 2008-04-07 14:44 local
drwxr-xr-x   2 root root  20480 2008-08-21 04:53 sbin
drwxr-xr-x 347 root root  12288 2008-08-21 11:01 share
drwxr-xr-x   5 root root   4096 2008-04-07 14:44 src
lrwxrwxrwx   1 root root     10 2008-05-16 15:01 tmp -> ../var/tmp
drwxr-xr-x   2 root root   4096 2007-04-10 11:01 X11R6
ExitSuccess

Here, we run the equivalent of the shell command ls -l /usr. rawSystem does not parse
arguments from a string or expand wild cards.* Instead, it expects every argument to
be contained in a list. If you don’t want to pass any arguments, you can simply pass an
empty list like this:

ghci> rawSystem "ls" []
calendartime.ghci  modtime.ghci    rp.ghci      RunProcessSimple.hs
cmd.ghci       posixtime.hs    rps.ghci      timediff.ghci
dir.ghci       rawSystem.ghci  RunProcess.hs  time.ghci
ExitSuccess

Directory and File Information
The System.Directory module contains quite a few functions that can be used to obtain
information from the filesystem. You can get a list of files in a directory, rename or
delete files, copy files, change the current working directory, or create new directories.
System.Directory is portable and works on any platform where GHC itself works.

The library reference for System.Directory (http://www.haskell.org/ghc/docs/latest/
html/libraries/base/System-Directory.html) provides a comprehensive list of the func-
tions available. Let’s use ghci to demonstrate a few of them. Most of these functions
are straightforward equivalents to C library calls or shell commands:

ghci> :module System.Directory
ghci> setCurrentDirectory "/etc"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
ghci> getCurrentDirectory
"/etc"
ghci> setCurrentDirectory ".."
ghci> getCurrentDirectory
"/"

* There is also a function system that takes only a single string and passes it through the shell to parse. We
recommend using rawSystem instead, because the shell attaches special meaning to certain characters, which
could lead to security issues or unexpected behavior.
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Here we saw commands to change the current working directory and obtain the current
working directory from the system. These are similar to the cd and pwd commands in
the POSIX shell:

ghci> getDirectoryContents "/"
["dev",".vmware","mnt","var","etc","net","..","lib","srv","media","lib64","opt",
".ccache","bin","selinux",".","lost+found","proc",".autorelabel",".autofsck",
"sys","misc","home","tmp","boot",".bash_history","root","sbin","usr"]

getDirectoryContents returns a list for every item in a given directory. Note that on
POSIX systems, this list normally includes the special values "." and "..". You will
usually want to filter these out when processing the content of the directory, perhaps
like this:

ghci> getDirectoryContents "/" >>= return . filter (`notElem` [".", ".."])
["dev",".vmware","mnt","var","etc","net","lib","srv","media","lib64","opt",
".ccache","bin","selinux","lost+found","proc",".autorelabel",".autofsck",
"sys","misc","home","tmp","boot",".bash_history","root","sbin","usr"]

For a more detailed discussion of filtering the results of getDirectory
Contents, refer to Chapter 8.

Is the filter (`notElem` [".", ".."]) part confusing? That could got
also be written as filter (\c -> not $ elem c [".", ".."]). The back-
ticks in this case effectively let us pass the second argument to
notElem; see “Infix Functions” on page 76 for more information on
backticks.

You can also query the system about the location of certain directories. This query will
ask the underlying operating system for the information:

ghci> getHomeDirectory
"/home/bos"
ghci> getAppUserDataDirectory "myApp"
"/home/bos/.myApp"
ghci> getUserDocumentsDirectory
"/home/bos"

Program Termination
Developers often write individual programs to accomplish particular tasks. These in-
dividual parts may be combined to accomplish larger tasks. A shell script or another
program may execute them. The calling script often needs a way to discover whether
the program was able to complete its task successfully. Haskell automatically indicates
a nonsuccessful exit whenever a program is aborted by an exception.

However, you may need more fine-grained control over the exit code than that. Perhaps
you need to return different codes for different types of errors. The System.Exit mod-
ule provides a way to exit the program and return a specific exit status code to the caller.
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You can call exitWith ExitSuccess to return a code indicating a successful termination
(0 on POSIX systems). Or, you can call something like exitWith (ExitFailure 5), which
will return code 5 to the calling program.

Dates and Times
Everything from file timestamps to business transactions involve dates and times. Has-
kell provides ways for manipulating dates and times, as well as features for obtaining
date and time information from the system.

ClockTime and CalendarTime
In Haskell, the System.Time module is primarily responsible for date and time handling.
It defines two types: ClockTime and CalendarTime.

ClockTime is the Haskell version of the traditional POSIX epoch. A ClockTime represents
a time relative to midnight the morning of January 1, 1970, Coordinated Universal
Time (UTC). A negative ClockTime represents a number of seconds prior to that date,
while a positive number represents a count of seconds after it.

ClockTime is convenient for computations. Since it tracks  UTC, it doesn’t have to adjust
for local time zones, daylight saving time, or other special cases in time handling. Every
day is exactly (60 * 60 * 24) or 86,400 seconds,† which makes time interval calculations
simple. You can, for instance, check the ClockTime at the start of a long task, again at
the end, and simply subtract the start time from the end time to determine how much
time elapsed. You can then divide by 3,600 and display the elapsed time as a count of
hours if you wish.

ClockTime is ideal for answering questions such as these:

• How much time has elapsed?

• What will be the ClockTime 14 days ahead of this precise instant?

• When was the file last modified?

• What is the precise time right now?

These are good uses of ClockTime because they refer to precise, unambiguous moments
in time. However, ClockTime is not as easily used for questions such as:

• Is today Monday?

• What day of the week will May 1 fall on next year?

† Some will note that UTC defines leap seconds at irregular intervals. The POSIX standard, which Haskell
follows, states that every day is exactly 86,400 seconds in length in its representation, so you need not be
concerned about leap seconds when performing routine calculations. The exact manner of handling leap
seconds is system-dependent and complex, though usually it can be explained as having a “long second.”
This nuance is generally only of interest when performing precise subsecond calculations.
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• What is the current time in my local time zone, taking the potential presence of 
Daylight Saving Time (DST) into account?

CalendarTime stores time the way humans do: with a year, month, day, hour, minute,
second, time zone, and DST information. It’s easy to convert this into a conveniently
displayable string, or to answer questions about the local time.

You can convert between ClockTime and CalendarTime at will. Haskell includes func-
tions to convert a ClockTime to a CalendarTime in the local time zone or to a
CalendarTime representing UTC.

Using ClockTime

ClockTime is defined in System.Time like this:

data ClockTime = TOD Integer Integer

The first Integer represents the number of seconds since the epoch. The second
Integer represents an additional number of picoseconds. Because ClockTime in Haskell
uses the unbounded Integer type, it can effectively represent a date range limited only
by computational resources.

Let’s look at some ways to use ClockTime. First, there is the getClockTime function that
returns the current time according to the system’s clock:

ghci> :module System.Time
ghci> getClockTime
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Sat Aug 23 22:30:03 PDT 2008

If you wait a second and run getClockTime again, it will return an updated time. Notice
that the output from this command is a nice-looking string, complete with day-of-week
information. That’s due to the Show instance for ClockTime. Let’s look at the
ClockTime at a lower level:

ghci> TOD 1000 0
Wed Dec 31 16:16:40 PST 1969
ghci> getClockTime >>= (\(TOD sec _) -> return sec)
1219555803

Here we first construct a ClockTime representing the point in time 1,000 seconds after
midnight on January 1, 1970, UTC. That moment in time is known as the epoch. De-
pending on your time zone, this moment in time may correspond to the evening of
December 31, 1969, in your local time zone.

In the second example we pull the number of seconds out of the value returned by
getClockTime. We can now manipulate it, like so:

ghci> getClockTime >>= (\(TOD sec _) -> return (TOD (sec + 86400) 0))
Sun Aug 24 22:30:03 PDT 2008
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This will display what the time will be exactly 24 hours from now in your local time
zone, since there are 86,400 seconds in 24 hours.

Using CalendarTime

As its name implies, CalendarTime represents time like we would on a calendar. It has
fields for information such as year, month, and day. CalendarTime and its associated
types are defined like this:

data CalendarTime = CalendarTime
   {ctYear :: Int,         -- Year (post-Gregorian)
    ctMonth :: Month, 
    ctDay :: Int,          -- Day of the month (1 to 31)
    ctHour :: Int,         -- Hour of the day (0 to 23)
    ctMin :: Int,          -- Minutes (0 to 59)
    ctSec :: Int,          -- Seconds (0 to 61, allowing for leap seconds)
    ctPicosec :: Integer,  -- Picoseconds
    ctWDay :: Day,         -- Day of the week
    ctYDay :: Int,         -- Day of the year (0 to 364 or 365)
    ctTZName :: String,    -- Name of timezone
    ctTZ :: Int,           -- Variation from UTC in seconds
    ctIsDST :: Bool        -- True if Daylight Saving Time in effect
   }

data Month = January | February | March | April | May | June 
             | July | August | September | October | November | December

data Day = Sunday | Monday | Tuesday | Wednesday
           | Thursday | Friday | Saturday

There are a few things about these structures that should be highlighted:

• ctWDay, ctYDay, and ctTZName are generated by the library functions that create a
CalendarTime but are not used in calculations. If you are creating a CalendarTime
by hand, it is not necessary to put accurate values into these fields, unless your later
calculations will depend upon them.

• All of these three types are members of the Eq, Ord, Read, and Show typeclasses. In
addition, Month and Day are declared as members of the Enum and Bounded type-
classes. For more information on these typeclasses, refer to “Important Built-in
Typeclasses” on page 139.

You can generate CalendarTime values several ways. You could start by converting
a ClockTime to a CalendarTime such as this:

ghci> :module System.Time
ghci> now <- getClockTime
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Sat Aug 23 22:29:59 PDT 2008
ghci> nowCal <- toCalendarTime now
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 23, ctHour = 22, 
ctMin = 29,ctSec = 59, ctPicosec = 877577000000, ctWDay = Saturday, 
ctYDay = 235, ctTZName ="PDT", ctTZ = -25200, ctIsDST = True}
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ghci> let nowUTC = toUTCTime now
ghci> nowCal
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 23, ctHour = 22, 
ctMin = 29, ctSec = 59, ctPicosec = 877577000000, ctWDay = Saturday, 
ctYDay = 235, ctTZName = "PDT", ctTZ = -25200, ctIsDST = True}
ghci> nowUTC
CalendarTime {ctYear = 2008, ctMonth = August, ctDay = 24, ctHour = 5, 
ctMin = 29, ctSec = 59, ctPicosec = 877577000000, ctWDay = Sunday, 
ctYDay = 236, ctTZName = "UTC", ctTZ = 0, ctIsDST = False}

We used getClockTime to obtain the current ClockTime from the system’s clock.
Next, toCalendarTime converts the ClockTime to a CalendarTime representing the
time in the local time zone. toUTCtime performs a similar conversion, but its result
is in the UTC time zone instead of the local time zone.

Notice that toCalendarTime is an IO function, but toUTCTime is not. The reason is
that toCalendarTime returns a different result depending upon the locally config-
ured time zone, but toUTCTime will return the exact same result whenever it is passed
the same source ClockTime.

It’s easy to modify a CalendarTime value:

ghci> nowCal {ctYear = 1960}
CalendarTime {ctYear = 1960, ctMonth = August, ctDay = 23, 
ctHour = 22, ctMin = 29, ctSec = 59, ctPicosec = 877577000000,
ctWDay = Saturday, ctYDay = 235, ctTZName = "PDT", 
ctTZ = -25200, ctIsDST = True}
ghci> (\(TOD sec _) -> sec) (toClockTime nowCal)
1219555799
ghci> (\(TOD sec _) -> sec) (toClockTime (nowCal {ctYear = 1960}))
-295209001

In this example, we first took the CalendarTime value from earlier and simply
switched its year to 1960. Then, we used toClockTime to convert the unmodified
value to a ClockTime, and then the modified value, so you can see the difference.
Notice that the modified value shows a negative number of seconds once converted
to ClockTime. That’s to be expected, since a ClockTime is an offset from midnight
on January 1, 1970, UTC, and this value is in 1960.

You can also create CalendarTime values manually:

ghci> let newCT = CalendarTime 2010 January 15 12 30 0 0 Sunday 0 "UTC" 0 False
ghci> newCT
CalendarTime {ctYear = 2010, ctMonth = January, ctDay = 15, ctHour = 12, 
ctMin = 30, ctSec = 0, ctPicosec = 0, ctWDay = Sunday, ctYDay = 0, 
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}
ghci> (\(TOD sec _) -> sec) (toClockTime newCT)
1263558600

Note that even though January 15, 2010, isn’t a Sunday—and isn’t day 0 in the
year—the system was able to process this just fine. In fact, if we convert the value
to a ClockTime and then back to a CalendarTime, you’ll find those fields properly
filled in:
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ghci> toUTCTime . toClockTime $ newCT
CalendarTime {ctYear = 2010, ctMonth = January, ctDay = 15, ctHour = 12, 
ctMin = 30, ctSec = 0, ctPicosec = 0, ctWDay = Friday, ctYDay = 14, 
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}

TimeDiff for ClockTime

Because it can be difficult to manage differences between ClockTime values in a human-
friendly way, the System.Time module includes a TimeDiff type. TimeDiff can be used,
where convenient, to handle these differences. It is defined like this:

data TimeDiff = TimeDiff
   {tdYear :: Int,
    tdMonth :: Int,
    tdDay :: Int,
    tdHour :: Int,
    tdMin :: Int,
    tdSec :: Int,
    tdPicosec :: Integer}

Functions such as diffClockTimes and addToClockTime take a ClockTime and a
TimeDiff and handle the calculations internally by converting to a CalendarTime in UTC,
applying the differences, and converting back to a ClockTime.

Let’s see how it works:

ghci> :module System.Time
ghci> let feb5 = toClockTime $ CalendarTime 2008 February 5 0 0 0 0 Sunday 0
"UTC" 0 False
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
ghci> feb5
Mon Feb  4 16:00:00 PST 2008
ghci> addToClockTime (TimeDiff 0 1 0 0 0 0 0) feb5
Tue Mar  4 16:00:00 PST 2008
ghci> toUTCTime $ addToClockTime (TimeDiff 0 1 0 0 0 0 0) feb5
CalendarTime {ctYear = 2008, ctMonth = March, ctDay = 5, ctHour = 0,
ctMin = 0, ctSec = 0, ctPicosec = 0, ctWDay = Wednesday, ctYDay = 64, 
ctTZName = "UTC", ctTZ = 0, ctIsDST = False}
ghci> let jan30 = toClockTime $ CalendarTime 2009 January 30 0 0 0 0 
Sunday 0 "UTC" 0 False
ghci> jan30
Thu Jan 29 16:00:00 PST 2009
ghci> addToClockTime (TimeDiff 0 1 0 0 0 0 0) jan30
Sun Mar  1 16:00:00 PST 2009
ghci> toUTCTime $ addToClockTime (TimeDiff 0 1 0 0 0 0 0) jan30
CalendarTime {ctYear = 2009, ctMonth = March, ctDay = 2, ctHour = 0, ctMin = 0, 
ctSec = 0, ctPicosec = 0, ctWDay = Monday, ctYDay = 60, ctTZName = "UTC", ctTZ = 
0, ctIsDST = False}
ghci> diffClockTimes jan30 feb5
TimeDiff {tdYear = 0, tdMonth = 0, tdDay = 0, tdHour = 0, tdMin = 0, tdSec = 31104000, 
tdPicosec = 0}
ghci> normalizeTimeDiff $ diffClockTimes jan30 feb5
TimeDiff {tdYear = 0, tdMonth = 12, tdDay = 0, tdHour = 0, tdMin = 0, tdSec = 0, 
tdPicosec = 0}
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We started by generating a ClockTime representing midnight February 5, 2008 in UTC.
Note that, unless your time zone is the same as UTC, when this time is printed out on
the display, it may show up as the evening of February 4 because it is formatted for
your local time zone.

Next, we add one month to it by calling addToClockTime. 2008 is a leap year, but the
system handled that properly and we get a result that has the same date and time in
March. Using toUTCTime, we can see the effect on this in the original UTC time zone.

For a second experiment, we set up a time representing midnight on January 30, 2009
in UTC. 2009 is not a leap year, so we might wonder what will happen when trying to
add one month to it. We can see that, since neither February 29 or 30 exist in 2009, we
wind up with March 2.

Finally, we can see how diffClockTimes turns two ClockTime values into a TimeDiff,
though only the seconds and picoseconds are filled in. The normalizeTimeDiff function
takes such a TimeDiff and reformats it as a human might expect to see it.

File Modification Times
Many programs need to find out when particular files were last modified. Programs
such as ls or graphical file managers typically display the modification time of files.
The System.Directory module contains a cross-platform getModificationTime func-
tion. It takes a filename and returns a ClockTime representing the time the file was last
modified. For instance:

ghci> :module System.Directory
ghci> getModificationTime "/etc/passwd"
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Mon Jul 14 04:06:29 PDT 2008

POSIX platforms maintain not just a modification time (known as mtime), but also the
time of last read or write access (atime) and the time of last status change (ctime). Since
this information is POSIX-specific, the cross-platform System.Directory module does
not provide access to it. Instead, you will need to use functions in
System.Posix.Files. Here is an example function to do that:

-- file: ch20/posixtime.hs
-- posixtime.hs

import System.Posix.Files
import System.Time
import System.Posix.Types

-- | Given a path, returns (atime, mtime, ctime)
getTimes :: FilePath -> IO (ClockTime, ClockTime, ClockTime)
getTimes fp =
    do stat <- getFileStatus fp
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       return (toct (accessTime stat),
               toct (modificationTime stat),
               toct (statusChangeTime stat))

-- | Convert an EpochTime to a ClockTime
toct :: EpochTime -> ClockTime
toct et = 
    TOD (truncate (toRational et)) 0

Notice that call to getFileStatus. That call maps directly to the C function stat(). Its
return value stores a vast assortment of information, including file type, permissions,
owner, group, and the three time values we’re interested in. System.Posix.Files pro-
vides various functions, such as accessTime, that extract the information we’re inter-
ested out of the opaque FileStatus type returned by getFileStatus.

The functions such as accessTime return data in a POSIX-specific type called
EpochTime, which converts to a ClockTime using the toct function.
System.Posix.Files also provides a setFileTimes function to set the atime and mtime
for a file.‡

Extended Example: Piping
We’ve  just seen how to invoke external programs. Sometimes we need more control
than that. Perhaps we need to obtain the output from those programs, provide input,
or even chain together multiple external programs. Piping can help with all of these
needs. Piping is often used in shell scripts. When you set up a pipe in the shell, you run
multiple programs. The output of the first program is sent to the input of the second.
Its output is sent to the third as input, and so on. The last program’s output normally
goes to the terminal, or it could go to a file. Here’s an example session with the POSIX
shell to illustrate piping:

$ ls /etc | grep 'm.*ap' | tr a-z A-Z
IDMAPD.CONF
MAILCAP
MAILCAP.ORDER
MEDIAPRM
TERMCAP

This command runs three programs, piping data between them. It starts with
ls /etc, which outputs a list of all files or directories in /etc. The output of ls is sent
as input to grep. We gave grep a regular expression that will cause it to output only the
lines that start with 'm' and then contain "ap" somewhere in the line. Finally, the result
of that is sent to tr. We gave tr options to convert everything to uppercase. The output
of tr isn’t set anywhere in particular, so it is displayed on the screen.

In this situation, the shell handles setting up all the pipelines between programs. By
using some of the POSIX tools in Haskell, we can accomplish the same thing.

‡ It is not normally possible to set the ctime on POSIX systems.
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Before describing how to do this, we should first warn you that the System.Posix mod-
ules expose a very low-level interface to Unix systems. The interfaces can be complex
and their interactions can be complex as well, regardless of the programming language
you use to access them. The full nature of these low-level interfaces has been the topic
of entire books themselves, so we will just scratch the surface in this chapter.

Using Pipes for Redirection
POSIX defines a function that creates a pipe. This function returns two file descriptors
(FDs), which are similar in concept to a Haskell Handle. One FD is the reading end of
the pipe, and the other is the writing end. Anything that is written to the writing end
can be read by the reading end. The data is “shoved through a pipe.” In Haskell, you
call createPipe to access this interface.

Having a pipe is the first step to being able to pipe data between external programs.
We must also be able to redirect the output of a program to a pipe and the input of
another program from a pipe. The Haskell function dupTo accomplishes this. It takes
an FD and makes a copy of it at another FD number. POSIX FDs for standard input,
standard output, and standard error have the predefined FD numbers of 0, 1, and 2,
respectively. By renumbering an endpoint of a pipe to one of those numbers, we effec-
tively can cause programs to have their input or output redirected.

There is another piece of the puzzle, however. We can’t just use dupTo before a call 
such as rawSystem because that would mess up the standard input or output of our main
Haskell process. Moreover, rawSystem blocks until the invoked program executes, leav-
ing us no way to start multiple processes running in parallel. To make this happen, we
must use forkProcess. This is a very special function. It actually makes a copy of the
program currently running and we wind up with two copies of the program running at
the same time. Haskell’s forkProcess function takes a function to execute in the new
process (known as the child). We have that function call dupTo. After it has done that,
it calls executeFile to actually invoke the command. This is also a special function: if
all goes well, it never returns. That’s because executeFile replaces the running process
with a different program. Eventually, the original Haskell process will call getProcess
Status to wait for the child processes to terminate and learn of their exit codes.

Whenever you run a command on POSIX systems, whether you’ve just typed ls on the
command line or used rawSystem in Haskell, under the hood, forkProcess,
executeFile, and getProcessStatus (or their C equivalents) are always being used. To
set up pipes, we duplicate the process that the system uses to start up programs, and
add a few steps involving piping and redirection along the way.

There are a few other housekeeping things we must be careful about. When you call
forkProcess, just about everything about your program is cloned.§ That includes the
set of open file descriptors (handles). Programs detect when they’re done receiving

§ The main exception is threads, which are not cloned.
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input from a pipe by checking the end-of-file indicator. When the process at the writing
end of a pipe closes the pipe, the process at the reading end will receive an end-of-file
indication. However, if the writing file descriptor exists in more than one process, the
end-of-file indicator won’t be sent until all processes have closed that particular FD.
Therefore, we must keep track of which FDs are opened so that we can close them all
in the child processes. We must also close the child ends of the pipes in the parent
process as soon as possible.

Here is an initial implementation of a system of piping in Haskell:

-- file: ch20/RunProcessSimple.hs
{-# OPTIONS_GHC -fglasgow-exts #-}
-- RunProcessSimple.hs

module RunProcessSimple where

import System.Process
import Control.Concurrent
import Control.Concurrent.MVar
import System.IO
import System.Exit
import Text.Regex
import System.Posix.Process
import System.Posix.IO
import System.Posix.Types

{- | The type for running external commands.  The first part
of the tuple is the program name.  The list represents the
command-line parameters to pass to the command. -}
type SysCommand = (String, [String])

{- | The result of running any command -}
data CommandResult = CommandResult {
    cmdOutput :: IO String,              -- ^ IO action that yields the output
    getExitStatus :: IO ProcessStatus    -- ^ IO action that yields exit result
    }

{- | The type for handling global lists of FDs to always close in the clients
-}
type CloseFDs = MVar [Fd]

{- | Class representing anything that is a runnable command -}
class CommandLike a where
    {- | Given the command and a String representing input,
         invokes the command.  Returns a String
         representing the output of the command. -}
    invoke :: a -> CloseFDs -> String -> IO CommandResult

-- Support for running system commands
instance CommandLike SysCommand where
    invoke (cmd, args) closefds input =
        do -- Create two pipes: one to handle stdin and the other
           -- to handle stdout.  We do not redirect stderr in this program.
           (stdinread, stdinwrite) <- createPipe
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           (stdoutread, stdoutwrite) <- createPipe

           -- We add the parent FDs to this list because we always need
           -- to close them in the clients.
           addCloseFDs closefds [stdinwrite, stdoutread]

           -- Now, grab the closed FDs list and fork the child.
           childPID <- withMVar closefds (\fds ->
                          forkProcess (child fds stdinread stdoutwrite))

           -- Now, on the parent, close the client-side FDs.
           closeFd stdinread
           closeFd stdoutwrite

           -- Write the input to the command.
           stdinhdl <- fdToHandle stdinwrite
           forkIO $ do hPutStr stdinhdl input
                       hClose stdinhdl

           -- Prepare to receive output from the command
           stdouthdl <- fdToHandle stdoutread

           -- Set up the function to call when ready to wait for the
           -- child to exit.
           let waitfunc = 
                do status <- getProcessStatus True False childPID
                   case status of
                       Nothing -> fail $ "Error: Nothing from getProcessStatus"
                       Just ps -> do removeCloseFDs closefds 
                                          [stdinwrite, stdoutread]
                                     return ps
           return $ CommandResult {cmdOutput = hGetContents stdouthdl,
                                   getExitStatus = waitfunc}

        -- Define what happens in the child process
        where child closefds stdinread stdoutwrite = 
                do -- Copy our pipes over the regular stdin/stdout FDs
                   dupTo stdinread stdInput
                   dupTo stdoutwrite stdOutput

                   -- Now close the original pipe FDs
                   closeFd stdinread
                   closeFd stdoutwrite

                   -- Close all the open FDs we inherited from the parent
                   mapM_ (\fd -> catch (closeFd fd) (\_ -> return ())) closefds

                   -- Start the program
                   executeFile cmd True args Nothing

-- Add FDs to the list of FDs that must be closed post-fork in a child
addCloseFDs :: CloseFDs -> [Fd] -> IO ()
addCloseFDs closefds newfds =
    modifyMVar_ closefds (\oldfds -> return $ oldfds ++ newfds)
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-- Remove FDs from the list
removeCloseFDs :: CloseFDs -> [Fd] -> IO ()
removeCloseFDs closefds removethem =
    modifyMVar_ closefds (\fdlist -> return $ procfdlist fdlist removethem)

    where
    procfdlist fdlist [] = fdlist
    procfdlist fdlist (x:xs) = procfdlist (removefd fdlist x) xs

    -- We want to remove only the first occurance ot any given fd
    removefd [] _ = []
    removefd (x:xs) fd 
        | fd == x = xs
        | otherwise = x : removefd xs fd

{- | Type representing a pipe.  A 'PipeCommand' consists of a source
and destination part, both of which must be instances of
'CommandLike'. -}
data (CommandLike src, CommandLike dest) => 
     PipeCommand src dest = PipeCommand src dest 

{- | A convenient function for creating a 'PipeCommand'. -}
(-|-) :: (CommandLike a, CommandLike b) => a -> b -> PipeCommand a b
(-|-) = PipeCommand

{- | Make 'PipeCommand' runnable as a command -}
instance (CommandLike a, CommandLike b) =>
         CommandLike (PipeCommand a b) where
    invoke (PipeCommand src dest) closefds input =
        do res1 <- invoke src closefds input
           output1 <- cmdOutput res1
           res2 <- invoke dest closefds output1
           return $ CommandResult (cmdOutput res2) (getEC res1 res2)

{- | Given two 'CommandResult' items, evaluate the exit codes for
both and then return a "combined" exit code.  This will be ExitSuccess
if both exited successfully.  Otherwise, it will reflect the first
error encountered. -}
getEC :: CommandResult -> CommandResult -> IO ProcessStatus 
getEC src dest =
    do sec <- getExitStatus src
       dec <- getExitStatus dest
       case sec of
            Exited ExitSuccess -> return dec
            x -> return x

{- | Execute a 'CommandLike'. -}
runIO :: CommandLike a => a -> IO ()
runIO cmd =
    do -- Initialize our closefds list
       closefds <- newMVar []

       -- Invoke the command
       res <- invoke cmd closefds []
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       -- Process its output
       output <- cmdOutput res
       putStr output

       -- Wait for termination and get exit status
       ec <- getExitStatus res
       case ec of
            Exited ExitSuccess -> return ()
            x -> fail $ "Exited: " ++ show x

Let’s experiment with this in ghci a bit before looking at how it works:

ghci> :load RunProcessSimple.hs
[1 of 1] Compiling RunProcessSimple ( RunProcessSimple.hs, interpreted )
Ok, modules loaded: RunProcessSimple.
ghci> runIO $ ("pwd", []::[String])
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
Loading package regex-compat-0.71.0.1 ... linking ... done.
/home/bos/src/darcs/book/examples/ch20
ghci> runIO $ ("ls", ["/usr"])
bin
etc
games
include
java
kerberos
lib
lib64
libexec
local
sbin
share
src
tmp
X11R6
ghci> runIO $ ("ls", ["/usr"]) -|- ("grep", ["^l"])
lib
lib64
libexec
local
ghci> runIO $ ("ls", ["/etc"]) -|- ("grep", ["m.*ap"]) -|- ("tr", ["a-z", "A-Z"])
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF

We start by running a simple command, pwd, which just prints the name of the current
working directory. We pass [] for the list of arguments, because pwd doesn’t need any
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arguments. Due to the typeclasses used, Haskell can’t infer the type of [], so we spe-
cifically mention that it’s a String.

Then we get into more complex commands. We run ls, sending it through grep. At the
end, we set up a pipe to run the exact same command that we ran via a shell-built pipe
at the start of this section. It’s not yet as pleasant as it was in the shell, but then again
our program is still relatively simple when compared to the shell.

Let’s look at the program. The very first line has a special OPTIONS_GHC clause. This is
the same as passing -fglasgow-exts to ghc or ghci. We are using a GHC extension that
permits us to use a (String, [String]) type as an instance of a typeclass.‖ Putting it in
the source file means we don’t have to remember to specify it every time we use this
module.

After the import lines, we define a few types. First, we define type SysCommand =
(String, [String]) as an alias. This is the type a command to be executed by the system
will take. We used data of this type for each command in the example execution above.
The CommandResult type represents the result from executing a given command, and the
CloseFDs type represents the list of FDs that we must close upon forking a new child
process.

Next, we define a class named CommandLike, which will be used to run “things,” where
a “thing” might be a standalone program, a pipe set up between two or more programs,
or in the future, even pure Haskell functions. To be a member of this class, only one
function—invoke—needs to be present for a given type. This will let us use runIO to
start either a standalone command or a pipeline. It will also be useful for defining a
pipeline, since we may have a whole stack of commands on one or both sides of a given
command.

Our piping infrastructure is going to use strings as the way of sending data from one
process to another. We can take advantage of Haskell’s support for lazy reading via
hGetContents while reading data, and use forkIO to let writing occur in the background.
This will work well, although not as fast as connecting the endpoints of two processes
directly together.# It makes implementation quite simple, however. We need only take
care to do nothing that would require the entire String to be buffered, and let Haskell’s
laziness do the rest.

Next, we define an instance of CommandLike for SysCommand. We create two pipes: one
to use for the new process’s standard input, and the other for its standard output. This
creates four endpoints, and thus four file descriptors. We add the parent file descriptors

‖ This extension is well-supported in the Haskell community; Hugs users can access the same thing with hugs
-98 +o.

# The Haskell library HSH provides a similar API to that presented here, but it uses a more efficient (and much
more complex) mechanism of connecting pipes directly between external processes without the data needing
to pass through Haskell. This is the same approach that the shell takes, and it reduces the CPU load of
handling piping.
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to the list of those that must be closed in all children. These would be the write end of
the child’s standard input, and the read end of the child’s standard output. Next, we
fork the child process. In the parent, we can then close the file descriptors that corre-
spond to the child. We can’t do that before the fork, because they wouldn’t be available
to the child. We obtain a handle for the stdinwrite file descriptor, and start a thread
via forkIO to write the input data to it. We then define waitfunc, which is the action
that the caller will invoke when it is ready to wait for the called process to terminate.
Meanwhile, the child uses dupTo, closes the file descriptors it doesn’t need, and executes
the command.

Next, we define some utility functions to manage the list of file descriptors. After that,
we define the tools that help set up pipelines. First, we define a new type PipeCommand
that has a source and destination. Both the source and destination must be members
of CommandLike. We also define the -|- convenience operator. Then, we make
PipeCommand an instance of CommandLike. Its invoke implementation starts the first com-
mand with the given input, obtains its output, and passes that output to the invocation
of the second command. It then returns the output of the second command and causes
the getExitStatus function to wait for and check the exit statuses from both commands.

We finish by defining runIO. This function establishes the list of FDs that must be closed
in the client, starts the command, displays its output, and checks its exit status.

Better Piping
Our previous example solved the basic need of letting us set up shell-like pipes. There
are some other features that it would be nice to have though:

• Support more shell-like syntax

• The ability to let people pipe data into external programs or regular Haskell func-
tions, freely mixing and matching the two

• The ability to return the final output and exit code in a way that Haskell programs
can readily use

Fortunately, we already have most of the pieces to support this in place. We need only
to add a few more instances of CommandLike to support this and a few more functions
similar to runIO. Here is a revised example that implements all of these features:

-- file: ch20/RunProcess.hs
{-# OPTIONS_GHC -fglasgow-exts #-}

module RunProcess where

import System.Process
import Control.Concurrent
import Control.Concurrent.MVar
import Control.Exception(evaluate)
import System.Posix.Directory
import System.Directory(setCurrentDirectory)

Extended Example: Piping | 483



import System.IO
import System.Exit
import Text.Regex
import System.Posix.Process
import System.Posix.IO
import System.Posix.Types
import Data.List
import System.Posix.Env(getEnv)

{- | The type for running external commands.  The first part
of the tuple is the program name.  The list represents the
command-line parameters to pass to the command. -}
type SysCommand = (String, [String])

{- | The result of running any command -}
data CommandResult = CommandResult {
    cmdOutput :: IO String,              -- ^ IO action that yields the output
    getExitStatus :: IO ProcessStatus    -- ^ IO action that yields exit result
    }

{- | The type for handling global lists of FDs to always close in the clients
-}
type CloseFDs = MVar [Fd]

{- | Class representing anything that is a runnable command -}
class CommandLike a where
    {- | Given the command and a String representing input,
         invokes the command.  Returns a String
         representing the output of the command. -}
    invoke :: a -> CloseFDs -> String -> IO CommandResult

-- Support for running system commands
instance CommandLike SysCommand where
    invoke (cmd, args) closefds input =
        do -- Create two pipes: one to handle stdin and the other
           -- to handle stdout.  We do not redirect stderr in this program.
           (stdinread, stdinwrite) <- createPipe
           (stdoutread, stdoutwrite) <- createPipe

           -- We add the parent FDs to this list because we always need
           -- to close them in the clients.
           addCloseFDs closefds [stdinwrite, stdoutread]

           -- Now, grab the closed FDs list and fork the child.
           childPID <- withMVar closefds (\fds ->
                          forkProcess (child fds stdinread stdoutwrite))

           -- Now, on the parent, close the client-side FDs.
           closeFd stdinread
           closeFd stdoutwrite

           -- Write the input to the command.
           stdinhdl <- fdToHandle stdinwrite
           forkIO $ do hPutStr stdinhdl input
                       hClose stdinhdl
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           -- Prepare to receive output from the command
           stdouthdl <- fdToHandle stdoutread

           -- Set up the function to call when ready to wait for the
           -- child to exit.
           let waitfunc = 
                do status <- getProcessStatus True False childPID
                   case status of
                       Nothing -> fail $ "Error: Nothing from getProcessStatus"
                       Just ps -> do removeCloseFDs closefds 
                                          [stdinwrite, stdoutread]
                                     return ps
           return $ CommandResult {cmdOutput = hGetContents stdouthdl,
                                   getExitStatus = waitfunc}

        -- Define what happens in the child process
        where child closefds stdinread stdoutwrite = 
                do -- Copy our pipes over the regular stdin/stdout FDs
                   dupTo stdinread stdInput
                   dupTo stdoutwrite stdOutput

                   -- Now close the original pipe FDs
                   closeFd stdinread
                   closeFd stdoutwrite

                   -- Close all the open FDs we inherited from the parent
                   mapM_ (\fd -> catch (closeFd fd) (\_ -> return ())) closefds

                   -- Start the program
                   executeFile cmd True args Nothing

{- | An instance of 'CommandLike' for an external command.  The String is
passed to a shell for evaluation and invocation. -}
instance CommandLike String where
    invoke cmd closefds input =
        do -- Use the shell given by the environment variable SHELL,
           -- if any.  Otherwise, use /bin/sh
           esh <- getEnv "SHELL"
           let sh = case esh of
                       Nothing -> "/bin/sh"
                       Just x -> x
           invoke (sh, ["-c", cmd]) closefds input

-- Add FDs to the list of FDs that must be closed post-fork in a child
addCloseFDs :: CloseFDs -> [Fd] -> IO ()
addCloseFDs closefds newfds =
    modifyMVar_ closefds (\oldfds -> return $ oldfds ++ newfds)

-- Remove FDs from the list
removeCloseFDs :: CloseFDs -> [Fd] -> IO ()
removeCloseFDs closefds removethem =
    modifyMVar_ closefds (\fdlist -> return $ procfdlist fdlist removethem)

    where
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    procfdlist fdlist [] = fdlist
    procfdlist fdlist (x:xs) = procfdlist (removefd fdlist x) xs

    -- We want to remove only the first occurance ot any given fd
    removefd [] _ = []
    removefd (x:xs) fd 
        | fd == x = xs
        | otherwise = x : removefd xs fd

-- Support for running Haskell commands
instance CommandLike (String -> IO String) where
    invoke func _ input =
       return $ CommandResult (func input) (return (Exited ExitSuccess))

-- Support pure Haskell functions by wrapping them in IO
instance CommandLike (String -> String) where
    invoke func = invoke iofunc
        where iofunc :: String -> IO String
              iofunc = return . func

-- It's also useful to operate on lines.  Define support for line-based
-- functions both within and without the IO monad.

instance CommandLike ([String] -> IO [String]) where
    invoke func _ input =
           return $ CommandResult linedfunc (return (Exited ExitSuccess))
       where linedfunc = func (lines input) >>= (return . unlines)

instance CommandLike ([String] -> [String]) where
    invoke func = invoke (unlines . func . lines)

{- | Type representing a pipe.  A 'PipeCommand' consists of a source
and destination part, both of which must be instances of
'CommandLike'. -}
data (CommandLike src, CommandLike dest) => 
     PipeCommand src dest = PipeCommand src dest 

{- | A convenient function for creating a 'PipeCommand'. -}
(-|-) :: (CommandLike a, CommandLike b) => a -> b -> PipeCommand a b
(-|-) = PipeCommand

{- | Make 'PipeCommand' runnable as a command -}
instance (CommandLike a, CommandLike b) =>
         CommandLike (PipeCommand a b) where
    invoke (PipeCommand src dest) closefds input =
        do res1 <- invoke src closefds input
           output1 <- cmdOutput res1
           res2 <- invoke dest closefds output1
           return $ CommandResult (cmdOutput res2) (getEC res1 res2)

{- | Given two 'CommandResult' items, evaluate the exit codes for
both and then return a "combined" exit code.  This will be ExitSuccess
if both exited successfully.  Otherwise, it will reflect the first
error encountered. -}
getEC :: CommandResult -> CommandResult -> IO ProcessStatus 
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getEC src dest =
    do sec <- getExitStatus src
       dec <- getExitStatus dest
       case sec of
            Exited ExitSuccess -> return dec
            x -> return x

{- | Different ways to get data from 'run'.

 * IO () runs, throws an exception on error, and sends stdout to stdout.

 * IO String runs, throws an exception on error, reads stdout into
   a buffer, and returns it as a string.

 * IO [String] is same as IO String, but returns the results as lines.

 * IO ProcessStatus runs and returns a ProcessStatus with the exit
   information.  stdout is sent to stdout.  Exceptions are not thrown.

 * IO (String, ProcessStatus) is like IO ProcessStatus, but also
   includes a description of the last command in the pipe to have
   an error (or the last command, if there was no error).

 * IO Int returns the exit code from a program directly.  If a signal
   caused the command to be reaped, returns 128 + SIGNUM.

 * IO Bool returns True if the program exited normally (exit code 0,
   not stopped by a signal) and False otherwise.

-}
class RunResult a where
    {- | Runs a command (or pipe of commands), with results presented
       in any number of different ways. -}
    run :: (CommandLike b) => b -> a

-- | Utility function for use by 'RunResult' instances
setUpCommand :: CommandLike a => a -> IO CommandResult
setUpCommand cmd = 
    do -- Initialize our closefds list
       closefds <- newMVar []

       -- Invoke the command
       invoke cmd closefds []

instance RunResult (IO ()) where
    run cmd = run cmd >>= checkResult

instance RunResult (IO ProcessStatus) where
    run cmd = 
        do res <- setUpCommand cmd

           -- Process its output
           output <- cmdOutput res
           putStr output
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           getExitStatus res
           
instance RunResult (IO Int) where
    run cmd = do rc <- run cmd
                 case rc of
                   Exited (ExitSuccess) -> return 0
                   Exited (ExitFailure x) -> return x
                   Terminated x -> return (128 + (fromIntegral x))
                   Stopped x -> return (128 + (fromIntegral x))

instance RunResult (IO Bool) where
    run cmd = do rc <- run cmd
                 return ((rc::Int) == 0)

instance RunResult (IO [String]) where
    run cmd = do r <- run cmd
                 return (lines r)

instance RunResult (IO String) where
    run cmd =
        do res <- setUpCommand cmd

           output <- cmdOutput res

           -- Force output to be buffered
           evaluate (length output)

           ec <- getExitStatus res
           checkResult ec
           return output

checkResult :: ProcessStatus -> IO ()
checkResult ps =
    case ps of
         Exited (ExitSuccess) -> return ()
         x -> fail (show x)

{- | A convenience function.  Refers only to the version of 'run'
that returns @IO ()@.  This prevents you from having to cast to it
all the time when you do not care about the result of 'run'.
-}
runIO :: CommandLike a => a -> IO ()
runIO = run

------------------------------------------------------------
-- Utility Functions
------------------------------------------------------------
cd :: FilePath -> IO ()
cd = setCurrentDirectory
 
{- | Takes a string and sends it on as standard output.
The input to this function is never read. -}
echo :: String -> String -> String
echo inp _ = inp
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-- | Search for the regexp in the lines.  Return those that match.
grep :: String -> [String] -> [String]
grep pat = filter (ismatch regex)
    where regex = mkRegex pat
          ismatch r inp = case matchRegex r inp of
                            Nothing -> False
                            Just _ -> True

{- | Creates the given directory.  A value of 0o755 for mode would be typical.
An alias for System.Posix.Directory.createDirectory. -}
mkdir :: FilePath -> FileMode -> IO ()
mkdir = createDirectory

{- | Remove duplicate lines from a file (like Unix uniq).
Takes a String representing a file or output and plugs it through 
lines and then nub to uniqify on a line basis. -}
uniq :: String -> String
uniq = unlines . nub . lines

-- | Count number of lines.  wc -l
wcL, wcW :: [String] -> [String]
wcL inp = [show (genericLength inp :: Integer)]

-- | Count number of words in a file (like wc -w)
wcW inp = [show ((genericLength $ words $ unlines inp) :: Integer)]

sortLines :: [String] -> [String]
sortLines = sort

-- | Count the lines in the input
countLines :: String -> IO String
countLines = return . (++) "\n" . show . length . lines

Here’s what has changed:

• A new CommandLike instance for String that uses the shell to evaluate and invoke
the string.

• New CommandLike instances for String -> IO String and various other types that
are implemented in terms of this one. These process Haskell functions as
commands.

• A new RunResult typeclass that defines a function run that returns information
about the command in many different ways. See the comments in the source for
more information. runIO is now just an alias for one particular RunResult instance.

• A few utility functions providing Haskell implementations of familiar Unix shell
commands.

Let’s try out the new shell features. First, let’s make sure that the command we used in
the previous example still works. Then, let’s try it using a more shell-like syntax.
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ghci> :load RunProcess.hs
[1 of 1] Compiling RunProcess       ( RunProcess.hs, interpreted )
Ok, modules loaded: RunProcess.
ghci> runIO $ ("ls", ["/etc"]) -|- ("grep", ["m.*ap"]) -|- ("tr", ["a-z", "A-Z"])
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package filepath-1.1.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
Loading package unix-2.3.0.1 ... linking ... done.
Loading package process-1.0.0.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
Loading package regex-compat-0.71.0.1 ... linking ... done.
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
ghci> runIO $ "ls /etc" -|- "grep 'm.*ap'" -|- "tr a-z A-Z"
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF

That was a lot easier to type. Let’s try substituting our native Haskell implementation
of grep and try out some other new features as well:

ghci> runIO $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z"
IDMAPD.CONF
MAILCAP
PM-UTILS-HD-APM-RESTORE.CONF
ghci> run $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z" :: IO String
"IDMAPD.CONF\nMAILCAP\nPM-UTILS-HD-APM-RESTORE.CONF\n"
ghci> run $ "ls /etc" -|- grep "m.*ap" -|- "tr a-z A-Z" :: IO [String]
["IDMAPD.CONF","MAILCAP","PM-UTILS-HD-APM-RESTORE.CONF"]
ghci> run $ "ls /nonexistant" :: IO String
ls: cannot access /nonexistant: No such file or directory
*** Exception: user error (Exited (ExitFailure 2))
ghci> run $ "ls /nonexistant" :: IO ProcessStatus
ls: cannot access /nonexistant: No such file or directory
Exited (ExitFailure 2)
ghci> run $ "ls /nonexistant" :: IO Int
ls: cannot access /nonexistant: No such file or directory
2
ghci> runIO $ echo "Line1\nHi, test\n" -|- "tr a-z A-Z" -|- sortLines
HI, TEST
LINE1
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Final Words on Pipes
We have developed a sophisticated system here. We warned you earlier that POSIX
can be complex. One other thing we need to highlight: you must always make sure to
evaluate the String returned by these functions before you attempt to evaluate the exit
code of the child process. The child process will often not exit until it can write all of
its data, and if you do this in the wrong order, your program will hang.

In this chapter, we developed, from the ground up, a simplified version of HSH. If you
wish to use these shell-like capabilities in your own programs, we recommend HSH
instead of the example developed here due to optimizations present in HSH. HSH also
comes with a larger set of utility functions and more capabilities, but the source code
behind the library is much more complex and large. Some of the utility functions pre-
sented here, in fact, were copied verbatim from HSH. HSH is available at http://software
.complete.org/hsh.
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CHAPTER 21

Using Databases

Everything from web forums to podcatchers or even backup programs frequently use
databases for persistent storage. SQL-based databases are often quite convenient: they
are fast, can scale from tiny to massive sizes, can operate over the network, often help
handle locking and transactions, and can even provide failover and redundancy
improvements for applications. Databases come in many different shapes: the large
commercial databases such as Oracle, open source engines such as PostgreSQL or
MySQL, and even embeddable engines such as Sqlite.

Because databases are so important, Haskell support for them is important as well. In
this chapter, we will introduce you to one of the Haskell frameworks for working with
databases. We will also use this framework to begin building a podcast downloader,
which we will further develop in Chapter 22.

Overview of HDBC
At the bottom of the database stack is the database engine, which is responsible for
actually storing data on disk. Well-known database engines include PostgreSQL,
MySQL, and Oracle.

Most modern database engines support the Structured Query Language (SQL) as a
standard way of getting data into and out of relational databases. This book will not
provide a tutorial on SQL or relational database management.*

Once you have a database engine that supports SQL, you need a way to communicate
with it. Each database has its own protocol. Since SQL is reasonably constant across
databases, it is possible to make a generic interface that uses drivers for each individual
protocol.

* Alan Beaulieu’s Learning SQL and Kevin Kline et al.’s SQL in a Nutshell (both O’Reilly) may be useful if you
don’t have experience with SQL.
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Haskell has several different database frameworks available, some providing high-level
layers atop others. For this chapter, we will concentrate on the Haskell DataBase Con-
nectivity system (HDBC). HDBC is a database abstraction library. That is, you can
write code that uses HDBC and can access data stored in almost any SQL database
with little or no modification.† Even if you never need to switch underlying database
engines, the HDBC system of drivers makes a large number of choices available to you
with a single interface.

Another database abstraction library for Haskell is HSQL, which shares a similar pur-
pose with HDBC. There is also a higher-level framework called HaskellDB, which sits
atop either HDBC or HSQL and is designed to help insulate the programmer from the
details of working with SQL. However, it does not have as broad appeal because its
design limits it to certain—albeit quite common—database access patterns. Finally,
Takusen is a framework that uses a “left fold” approach to reading data from the
database.

Installing HDBC and Drivers
To connect to a given database with HDBC, you need at least two packages: the generic
interface and a driver for your specific database. You can obtain the generic HDBC
package, and all of the other drivers, from Hackage (http://hackage.haskell.org/).‡ For
this chapter, we will use HDBC version 1.1.3.

You’ll also need a database backend and a backend driver. For this chapter, we’ll use
Sqlite version 3. Sqlite is an embedded database, so it doesn’t require a separate server
and is easy to set up. Many operating systems already ship with Sqlite version 3. If yours
doesn’t, you can download it from http://www.sqlite.org/. The HDBC home page has
a link to known HDBC backend drivers. The specific driver for Sqlite version 3 can be
obtained from Hackage.

If you want to use HDBC with other databases, check out the HDBC Known Drivers
page at http://software.complete.org/hdbc/wiki/KnownDrivers. There you will find a link
to the ODBC binding, which lets you connect to virtually any database on virtually any
platform (Windows, POSIX, and others). You will also find a PostgreSQL binding.
MySQL is supported via the ODBC binding, and specific information for MySQL users
can be found in the HDBC-ODBC API documentation (http://software.complete.org/
static/hdbc-odbc/doc/HDBC-odbc/).

† This assumes that you restrict yourself to using standard SQL.

‡ For more information on installing Haskell software, please refer to “Installing Haskell Software” on page
646.
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Connecting to Databases
To connect to a database, you will use a connection function from a database backend
driver. Each database has its own unique method of connecting. The initial connection
is generally the only time you will call anything from a backend driver module directly.

The database connection function will return a database handle. The precise type of
this handle may vary from one driver to the next, but it will always be an instance of
the IConnection typeclass. All of the functions you will use to operate on databases will
work with any type that is an instance of IConnection. When you’re done talking to the
database, call the disconnect function to disconnect from it. Here’s an example of
making a connection to an Sqlite database:

ghci> :module Database.HDBC Database.HDBC.Sqlite3
ghci> conn <- connectSqlite3 "test1.db"
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package HDBC-1.1.4 ... linking ... done.
Loading package HDBC-sqlite3-1.1.4.0 ... linking ... done.
ghci> :type conn
conn :: Connectionghci> disconnect conn

Transactions
Most modern SQL databases have a notion of transactions. A transaction is designed
to ensure that all components of a modification get applied, or that none of them do.
Furthermore, transactions help prevent other processes accessing the same database
from seeing partial data from modifications that are in progress.

Many databases require you to either explicitly commit all your changes before they
appear on disk, or to run in an autocommit mode. Autocommit mode runs an implicit
commit after every statement. This may make the adjustment to transactional databases
easier for programmers not accustomed to them, but it is just a hindrance to people
who actually want to use multistatement transactions.

HDBC intentionally does not support autocommit mode. When you modify data in
your databases, you must explicitly cause it to be committed to disk. There are two
ways to do that in HDBC: you can call commit when you’re ready to write the data to
disk, or you can use the withTransaction function to wrap around your modification
code. withTransaction will cause data to be committed upon successful completion of
your function.

Sometimes a problem will occur while you are working on writing data to the database.
Perhaps you get an error from the database or discover a problem with the data. In
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these instances, you can “roll back” your changes. This will cause all changes you made
since your last commit or rollback to be forgotten. In HDBC, you can call the
rollback function to do this. If you are using withTransaction, any uncaught exception
will cause a rollback to be issued.

Note that a roll back operation rolls back only the changes since the last commit,
rollback, or withTransaction. A database does not maintain an extensive history like
a version-control system. You will see examples of commit later in this chapter.

One popular database, MySQL, does not support transactions with its
default table type. In its default configuration, MySQL will silently ig-
nore calls to commit or rollback and will commit all changes to disk
immediately. The HDBC ODBC driver has instructions for configuring
MySQL to indicate to HDBC that it does not support transactions,
which will cause commit and rollback to generate errors. Alternatively,
you can use InnoDB tables with MySQL, which do support transactions.
InnoDB tables are recommended for use with HDBC.

Simple Queries
Some of the simplest queries in SQL involve statements that don’t return any data.
These queries can be used to create tables, insert data, delete data, and set database
parameters.

The most basic function for sending queries to a database is run. This function takes 
an IConnection, a String representing the query itself, and a list of parameters. Let’s
use it to set up some things in our database:

ghci> :module Database.HDBC Database.HDBC.Sqlite3
ghci> conn <- connectSqlite3 "test1.db"
Loading package array-0.1.0.0 ... linking ... done.
Loading package containers-0.1.0.2 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package HDBC-1.1.4 ... linking ... done.
Loading package HDBC-sqlite3-1.1.4.0 ... linking ... done.
ghci> run conn "CREATE TABLE test (id INTEGER NOT NULL, desc VARCHAR(80))" []
0
ghci> run conn "INSERT INTO test (id) VALUES (0)" []
1
ghci> commit conn
ghci> disconnect conn

In this example, after connecting to the database, we first created a table called test.
Then we inserted one row of data into the table. Finally, we committed the changes
and disconnected from the database. Note that if we hadn’t called commit, no final
change would have been written to the database at all.
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The run function returns the number of rows that each query modified. For the first
query, which created a table, no rows were modified. The second query inserted a single
row, so run returned 1.

SqlValue
Before proceeding, we need to discuss a data type introduced in HDBC: SqlValue. Since
both Haskell and SQL are strongly typed systems, HDBC tries to preserve type infor-
mation as much as possible. At the same time, Haskell and SQL types don’t exactly
mirror each other. Furthermore, different databases have different ways of representing
things such as dates or special characters in strings.

SqlValue is a data type that has a number of constructors such as SqlString, SqlBool,
SqlNull, SqlInteger, and more. This lets you represent various types of data in argu-
ment lists to the database and see various types of data in the results coming back, and
still store it all in a list. There are convenience functions, toSql and fromSql, that you
will normally use. If you care about the precise representation of data, you can still
manually construct SqlValue data if you need to.

Query Parameters
HDBC, like most databases, supports a notion of replaceable parameters in queries.
There are three primary benefits of using replaceable parameters: they prevent SQL
injection attacks or trouble when the input contains quote characters, they improve
performance when executing similar queries repeatedly, and they permit easy and
portable insertion of data into queries.

Let’s say you want to add thousands of rows into our new table test. You could issue
queries that look like INSERT INTO test VALUES (0, 'zero') and INSERT INTO test
VALUES (1, 'one'). This forces the database server to parse each SQL statement indi-
vidually. If you could replace the two values with a placeholder, the server could parse
the SQL query once and just execute it multiple times with the different data.

A second problem involves escaping characters. What if you want to insert the string
"I don't like 1"? SQL uses the single quote character to show the end of the field.
Most SQL databases would require you to write this as 'I don''t like 1'. But rules
for other special characters such as backslashes differ between databases. Rather than
trying to code this yourself, HDBC can handle it all for you. Let’s look at an example:

ghci> conn <- connectSqlite3 "test1.db"
ghci> run conn "INSERT INTO test VALUES (?, ?)" [toSql 0, toSql "zero"]
1
ghci> commit conn
ghci> disconnect conn

The question marks in the INSERT query in this example are the placeholders. We
then pass the parameters that are going to go there. run takes a list of SqlValue, so we
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use toSql to convert each item into an SqlValue. HDBC automatically handles conver-
sion of the String "zero" into the appropriate representation for the database in use.

This approach won’t actually achieve any performance benefits when inserting large
amounts of data. For that, we need more control over the process of creating the SQL
query. We’ll discuss that in the next section.

Using replaceable parameters
Replaceable parameters work only for parts of the queries where the
server is expecting a value, such as a WHERE clause in a SELECT state-
ment or a value for an INSERT statement. You cannot say run "SELECT
* from ?" [toSql "tablename"] and expect it to work. A table name is
not a value, and most databases will not accept this syntax. That’s not
a big problem in practice, because there is rarely a call for replacing
things in this way that aren’t values.

Prepared Statements
HDBC defines a function prepare that will prepare a SQL query, but it does not yet
bind the parameters to the query. prepare returns a Statement representing the compiled
query.

Once you have a Statement, you can do a number of things with it. You can call
execute on it one or more times. After calling execute on a query that returns data, you
can use one of the fetch functions to retrieve that data. Functions such as run and
quickQuery' use statements and execute internally; they are simply shortcuts to let you
perform common tasks quickly. When you need more control over what’s happening,
you can use a Statement instead of a function such as run.

Let’s look at using statements to insert multiple values with a single query. Here’s an
example:

ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "INSERT INTO test VALUES (?, ?)"
ghci> execute stmt [toSql 1, toSql "one"]
1
ghci> execute stmt [toSql 2, toSql "two"]
1
ghci> execute stmt [toSql 3, toSql "three"]
1
ghci> execute stmt [toSql 4, SqlNull]
1
ghci> commit conn
ghci> disconnect conn

Here, we create a prepared statement and call it stmt. We then execute that statement
four times and pass different parameters each time. These parameters are used, in order,

498 | Chapter 21: Using Databases



to replace the question marks in the original query string. Finally, we commit the
changes and disconnect the database.

HDBC also provides a function, executeMany, that can be useful in situations such as
this. executeMany simply takes a list of rows of data to call the statement with. Here’s
an example:

ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "INSERT INTO test VALUES (?, ?)"
ghci> executeMany stmt [[toSql 5, toSql "five's nice"], [toSql 6, SqlNull]]
ghci> commit conn
ghci> disconnect conn

More efficient execution
On the server, most databases will have an optimization that they can
apply to executeMany so that they only have to compile this query string
once, rather than twice.§ This can lead to a dramatic performance gain
when inserting large amounts of data at one time. Some databases can
also apply this optimization to execute, but not all.

Reading Results
So far, we have discussed queries that insert or change data. Let’s now go over getting
data back out of the database. The type of the function quickQuery' looks very similar
to run, but it returns a list of results instead of a count of changed rows. quickQuery' is
normally used with SELECT statements. Let’s see an example:

ghci> conn <- connectSqlite3 "test1.db"
ghci> quickQuery' conn "SELECT * from test where id < 2" []
[[SqlString "0",SqlNull],[SqlString "0",SqlString "zero"],
[SqlString "1",SqlString "one"],[SqlString "0",SqlNull],
[SqlString "0",SqlString "zero"],[SqlString "1",SqlString "one"]]
ghci> disconnect conn

quickQuery' works with replaceable parameters, as we just discussed. In this case, we
aren’t using any, so the set of values to replace is the empty list at the end of the
quickQuery' call. quickQuery' returns a list of rows, where each row is itself represented
as [SqlValue]. The values in the row are listed in the order returned by the database.
You can use fromSql to convert them into regular Haskell types as needed.

It’s a bit hard to read that output. Let’s extend this example to format the results nicely.
Here’s some code to do that:

-- file: ch21/query.hs
import Database.HDBC.Sqlite3 (connectSqlite3)
import Database.HDBC

§ HDBC emulates this behavior for databases that do not provide it, offering programmers a
unified API for running queries repeatedly.
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{- | Define a function that takes an integer representing the maximum
id value to look up.  Will fetch all matching rows from the test database
and print them to the screen in a friendly format. -}
query :: Int -> IO ()
query maxId = 
    do -- Connect to the database
       conn <- connectSqlite3 "test1.db"

       -- Run the query and store the results in r
       r <- quickQuery' conn
            "SELECT id, desc from test where id <= ? ORDER BY id, desc"
            [toSql maxId]

       -- Convert each row into a String
       let stringRows = map convRow r
                        
       -- Print the rows out
       mapM_ putStrLn stringRows

       -- And disconnect from the database
       disconnect conn

    where convRow :: [SqlValue] -> String
          convRow [sqlId, sqlDesc] = 
              show intid ++ ": " ++ desc
              where intid = (fromSql sqlId)::Integer
                    desc = case fromSql sqlDesc of
                             Just x -> x
                             Nothing -> "NULL"
          convRow x = fail $ "Unexpected result: " ++ show x

This program does mostly the same thing as our example with ghci but with a new
addition: the convRow function. This function takes a row of data from the database and
converts it to a String. This string can then be easily printed out.

Notice how we took intid from fromSql directly but processed fromSql sqlDesc as a
Maybe String type. If you recall, we declared that the first column in this table can never
contain a NULL value but that the second column could. Therefore, we can safely
ignore the potential for a NULL in the first column but not in the second. It is possible
to use fromSql to convert the second column to a String directly, and it would even
work—until a row with a NULL in that position is encountered. This would cause a
runtime exception. So, we convert a SQL NULL value into the string "NULL". When
printed, this will be indistinguishable from a SQL string 'NULL', but that’s acceptable
for this example. Let’s try calling this function in ghci:

ghci> :load query.hs
[1 of 1] Compiling Main             ( query.hs, interpreted )
Ok, modules loaded: Main.
ghci> query 2
0: NULL
0: NULL
0: zero
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0: zero
1: one
1: one
2: two
2: two

Reading with Statements
As we discussed in “Prepared Statements” on page 498, you can use statements for
reading. There are a number of ways of reading data from statements that can be useful
in certain situations. Like run, quickQuery' is a convenience function that in fact uses
statements to accomplish its task.

To create a statement for reading, we use prepare just as we would for a statement that
will be used to write data. You also use execute to execute it on the database server.
Then, we can use various functions to read data from the Statement. The fetchAll
Rows' function returns [[SqlValue]], just like quickQuery'. There is also a function
called sFetchAllRows', which converts every column’s data to Maybe String before re-
turning it. Finally, there is fetchAllRowsAL', which returns (String, SqlValue) pairs
for each column. The String is the column name as returned by the database; see
“Database Metadata” on page 502 for other ways to obtain column names.

You can also read data one row at a time by calling fetchRow, which returns IO (Maybe
[SqlValue]). It will be Nothing if all the results have already been read, or one row
otherwise.

Lazy Reading
Back in “Lazy I/O” on page 178, we talked about lazy I/O from files. It is also possible
to read data lazily from databases. This can be particularly useful when dealing with
queries that return an exceptionally large amount of data. By reading data lazily, you
can still use convenient functions such as fetchAllRows instead of having to manually
read each row as it comes in. If we are careful in our use of the data, we can avoid having
to buffer all of the results in memory.

Lazy reading from a database, however, is more complex than reading from a file. When
we’re done reading data lazily from a file, the file is closed—which is generally fine.
When we’re done reading data lazily from a database, the database connection is still
open—you may be submitting other queries with it, for instance. Some databases can
even support multiple simultaneous queries, so HDBC can’t just close the connection
when we’re done.

When using lazy reading, it is critically important that we finish reading the entire data
set before we attempt to close the connection or execute a new query. We encourage
you to use the strict functions, or row-by-row processing, wherever possible to mini-
mize complex interactions with lazy reading.
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If you are new to HDBC or the concept of lazy reading but have lots of
data to read, repeated calls to fetchRow may be easier to understand.
Lazy reading is a powerful and useful tool, but must be used correctly.

To read lazily from a database, we use the same functions we used before, without the
apostrophe. For instance, use fetchAllRows instead of fetchAllRows'. The types of the
lazy functions are the same as their strict cousins. Here’s an example of lazy reading:

ghci> conn <- connectSqlite3 "test1.db"
ghci> stmt <- prepare conn "SELECT * from test where id < 2"
ghci> execute stmt []
0
ghci> results <- fetchAllRowsAL stmt
[[("id",SqlString "0"),("desc",SqlNull)],[("id",SqlString "0"),
("desc",SqlString "zero")],[("id",SqlString "1"),("desc",SqlString "one")]
,[("id",SqlString "0"),("desc",SqlNull)],[("id",SqlString "0"),
("desc",SqlString "zero")],[("id",SqlString "1"),("desc",SqlString "one")]]
ghci> mapM_ print results
[("id",SqlString "0"),("desc",SqlNull)]
[("id",SqlString "0"),("desc",SqlString "zero")]
[("id",SqlString "1"),("desc",SqlString "one")]
[("id",SqlString "0"),("desc",SqlNull)]
[("id",SqlString "0"),("desc",SqlString "zero")]
[("id",SqlString "1"),("desc",SqlString "one")]ghci> disconnect conn

Note that you could have used fetchAllRowsAL' here as well. However, if you had a
large data set to read, it would consume a lot of memory. By reading the data lazily, we
can print out extremely large result sets using a constant amount of memory. With the
lazy version, results will be evaluated in chunks; with the strict version, all results are
read up front, stored in RAM, and then printed.

Database Metadata
Sometimes it can be useful for a program to learn information about the database itself.
For instance, a program may want to see what tables exist so that it can automatically
create missing tables or upgrade the database schema. In some cases, a program may
need to alter its behavior depending on the database backend in use.

First, there is a getTables function that will obtain a list of defined tables in a database.
You can also use the describeTable function, which will provide information about the
defined columns in a given table.

You can learn about the database server in use by calling dbServerVer and
proxiedClientName, for instance. The dbTransactionSupport function can be used to
determine whether or not a given database supports transactions. Let’s look at an ex-
ample of some of these items:

ghci> conn <- connectSqlite3 "test1.db"
ghci> getTables conn
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["test"]
ghci> proxiedClientName conn
"sqlite3"
ghci> dbServerVer conn
"3.5.6"
ghci> dbTransactionSupport conn
Trueghci> disconnect conn

You can also learn about the results of a specific query by obtaining information from
its statement. The describeResult function returns [(String, SqlColDesc)], a list of
pairs. The first item gives the column name, and the second provides information about
the column: the type, the size, and whether it may be NULL. The full specification is
given in the HDBC API reference.

Some databases may not be able to provide all this metadata. In these
circumstances, an exception will be raised. Sqlite3, for instance, does
not support describeResult or describeTable as of this writing.

Error Handling
HDBC will raise exceptions when errors occur. The exceptions have type SqlError.
They convey information from the underlying SQL engine, such as the database’s state,
the error message, and the database’s numeric error code, if any.

ghci does not know how to display an SqlError on the screen when it occurs. While
the exception will cause the program to terminate, it will not display a useful message.
Here’s an example:

ghci> conn <- connectSqlite3 "test1.db"
ghci> quickQuery' conn "SELECT * from test2" []
*** Exception: (unknown)
ghci> disconnect conn

Here we tried to SELECT data from a table that didn’t exist. The error message we got
wasn’t helpful. There’s a utility function, handleSqlError, that will catch an SqlError
and re-raise it as an IOError. In this form, it will be printable onscreen, but it will be
more difficult to extract specific pieces of information programmatically. Let’s look at
its usage:

ghci> conn <- connectSqlite3 "test1.db"
ghci> handleSqlError $ quickQuery' conn "SELECT * from test2" []
*** Exception: user error (SQL error: SqlError {seState = "", seNativeError = 1, 
seErrorMsg = "prepare 20: SELECT * from test2: no such table: test2"})
ghci> disconnect conn
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Here we got more information, including a message saying that there is no such table
as test2. This is much more helpful. Many HDBC programmers make it a standard
practice to start their programs with main = handleSqlError $ do, which will ensure
that every uncaught SqlError will be printed in a helpful manner.

There are also catchSql and handleSql—similar to the standard catch and handle func-
tions. catchSql and handleSql will intercept HDBC errors only. For more information
on error handling, refer to Chapter 19.
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CHAPTER 22

Extended Example: Web Client
Programming

By this point, you’ve seen how to interact with a database, parse things, and handle
errors. Let’s now take this a step farther and introduce a web client library to the mix.

We’ll develop a real application in this chapter: a podcast downloader, or podcatcher.
The idea of a podcatcher is simple. It is given a list of URLs to process. Downloading
each of these URLs results in an XML file in the RSS format. Inside this XML file, we’ll
find references to URLs for audio files to download.

Podcatchers usually let the user subscribe to podcasts by adding RSS URLs to their
configuration. Then, the user can periodically run an update operation. The podcatcher
will download the RSS documents, examine them for audio file references, and down-
load any audio files that haven’t already been downloaded on behalf of this user.

Users often call the RSS document a podcast or the podcast feed, and
call each individual audio file an episode.

To make this happen, we need to have several things:

• An HTTP client library to download files

• An XML parser

• A way to specify and persistently store which podcasts we’re interested in

• A way to persistently store which podcast episodes we’ve already downloaded

The last two items can be accommodated via a database that we’ll set up using HDBC.
The first two can be accommodated via other library modules we’ll introduce in this
chapter.
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The code in this chapter was written specifically for this book, but is
based on code written for hpodder, an existing podcatcher written in
Haskell. hpodder has many more features than the examples presented
here, which make it too long and complex to cover in this book. If you
are interested in studying hpodder, its source code is freely available at
http://software.complete.org/hpodder.

We’ll write the code for this chapter in pieces. Each piece will be its own Haskell mod-
ule. You’ll be able to play with each piece by itself in ghci. At the end, we’ll write the
final code that ties everything together into a finished application. We’ll start with the
basic types that we’ll need to use.

Basic Types
The first thing to do is have some idea of the basic information that will be important
to the application. This will generally be information about the podcasts the user is
interested in, plus information about episodes that we have seen and processed. It’s
easy enough to change this later if needed, but since we’ll be importing it just about
everywhere, we’ll define it first:

-- file: ch22/PodTypes.hs
module PodTypes where

data Podcast =
    Podcast {castId :: Integer, -- ^ Numeric ID for this podcast
             castURL :: String  -- ^ Its feed URL
            }
    deriving (Eq, Show, Read)

data Episode = 
    Episode {epId :: Integer,     -- ^ Numeric ID for this episode
             epCast :: Podcast,   -- ^ The ID of the podcast it came from
             epURL :: String,     -- ^ The download URL for this episode
             epDone :: Bool       -- ^ Whether or not we are done with this ep
            }
    deriving (Eq, Show, Read)

We’ll be storing this information in a database. Having a unique identifier for both a
podcast and an episode makes it easy to find which episodes belong to a particular
podcast, load information for a particular podcast or episode, or handle future cases
such as changing URLs for podcasts.

The Database
Next, we’ll write the code to make possible persistent storage in a database. We’ll
primarily be interested in moving data between the Haskell structures that we defined
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in PodTypes.hs and the database on disk. Also, the first time the user runs the program,
the user will need to create the database tables that he will use to store our data.

We’ll use HDBC (see Chapter 21) to interact with a Sqlite database. Sqlite is lightweight
and self-contained, which makes it perfect for this project. For information on installing
HDBC and Sqlite, consult “Installing HDBC and Drivers” on page 494:

-- file: ch22/PodDB.hs
module PodDB where

import Database.HDBC
import Database.HDBC.Sqlite3
import PodTypes
import Control.Monad(when)
import Data.List(sort)

-- | Initialize DB and return database Connection
connect :: FilePath -> IO Connection
connect fp =
    do dbh <- connectSqlite3 fp
       prepDB dbh
       return dbh

{- | Prepare the database for our data.

We create two tables and ask the database engine to verify some pieces
of data consistency for us:

* castid and epid both are unique primary keys and must never be duplicated
* castURL also is unique
* In the episodes table, for a given podcast (epcast), there must be only
  one instance of each given URL or episode ID
-}
prepDB :: IConnection conn => conn -> IO ()
prepDB dbh =
    do tables <- getTables dbh
       when (not ("podcasts" `elem` tables)) $
           do run dbh "CREATE TABLE podcasts (\
                       \castid INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,\
                       \castURL TEXT NOT NULL UNIQUE)" []
              return ()
       when (not ("episodes" `elem` tables)) $
           do run dbh "CREATE TABLE episodes (\
                       \epid INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,\
                       \epcastid INTEGER NOT NULL,\
                       \epurl TEXT NOT NULL,\
                       \epdone INTEGER NOT NULL,\
                       \UNIQUE(epcastid, epurl),\
                       \UNIQUE(epcastid, epid))" []
              return ()
       commit dbh

{- | Adds a new podcast to the database.  Ignores the castid on the
incoming podcast, and returns a new object with the castid populated.
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An attempt to add a podcast that already exists is an error. -}
addPodcast :: IConnection conn => conn -> Podcast -> IO Podcast
addPodcast dbh podcast = 
    handleSql errorHandler $
      do -- Insert the castURL into the table.  The database
         -- will automatically assign a cast ID.
         run dbh "INSERT INTO podcasts (castURL) VALUES (?)"
             [toSql (castURL podcast)]
         -- Find out the castID for the URL we just added.
         r <- quickQuery' dbh "SELECT castid FROM podcasts WHERE castURL = ?"
              [toSql (castURL podcast)]
         case r of
           [[x]] -> return $ podcast {castId = fromSql x}
           y -> fail $ "addPodcast: unexpected result: " ++ show y
    where errorHandler e = 
              do fail $ "Error adding podcast; does this URL already exist?\n"
                     ++ show e

{- | Adds a new episode to the database. 

Since this is done by automation instead of by user request, we will
simply ignore requests to add duplicate episodes.  This way, when we are
processing a feed, each URL encountered can be fed to this function,
without having to first look it up in the DB.

Also, we generally won't care about the new ID here, so don't bother
fetching it. -}
addEpisode :: IConnection conn => conn -> Episode -> IO ()
addEpisode dbh ep =
    run dbh "INSERT OR IGNORE INTO episodes (epCastId, epURL, epDone) \
                \VALUES (?, ?, ?)"
                [toSql (castId . epCast $ ep), toSql (epURL ep),
                 toSql (epDone ep)]
    >> return ()
       
{- | Modifies an existing podcast.  Looks up the given podcast by
ID and modifies the database record to match the passed Podcast. -}
updatePodcast :: IConnection conn => conn -> Podcast -> IO ()
updatePodcast dbh podcast =
    run dbh "UPDATE podcasts SET castURL = ? WHERE castId = ?" 
            [toSql (castURL podcast), toSql (castId podcast)]
    >> return ()

{- | Modifies an existing episode.  Looks it up by ID and modifies the
database record to match the given episode. -}
updateEpisode :: IConnection conn => conn -> Episode -> IO ()
updateEpisode dbh episode =
    run dbh "UPDATE episodes SET epCastId = ?, epURL = ?, epDone = ? \
             \WHERE epId = ?"
             [toSql (castId . epCast $ episode),
              toSql (epURL episode),
              toSql (epDone episode),
              toSql (epId episode)]
    >> return ()
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{- | Remove a podcast.  First removes any episodes that may exist
for this podcast. -}
removePodcast :: IConnection conn => conn -> Podcast -> IO ()
removePodcast dbh podcast =
    do run dbh "DELETE FROM episodes WHERE epcastid = ?" 
         [toSql (castId podcast)]
       run dbh "DELETE FROM podcasts WHERE castid = ?"
         [toSql (castId podcast)]
       return ()

{- | Gets a list of all podcasts. -}
getPodcasts :: IConnection conn => conn -> IO [Podcast]
getPodcasts dbh =
    do res <- quickQuery' dbh 
              "SELECT castid, casturl FROM podcasts ORDER BY castid" []
       return (map convPodcastRow res)

{- | Get a particular podcast.  Nothing if the ID doesn't match, or
Just Podcast if it does. -}
getPodcast :: IConnection conn => conn -> Integer -> IO (Maybe Podcast)
getPodcast dbh wantedId =
    do res <- quickQuery' dbh 
              "SELECT castid, casturl FROM podcasts WHERE castid = ?"
              [toSql wantedId]
       case res of
         [x] -> return (Just (convPodcastRow x))
         [] -> return Nothing
         x -> fail $ "Really bad error; more than one podcast with ID"

{- | Convert the result of a SELECT into a Podcast record -}
convPodcastRow :: [SqlValue] -> Podcast
convPodcastRow [svId, svURL] =
    Podcast {castId = fromSql svId,
             castURL = fromSql svURL}
convPodcastRow x = error $ "Can't convert podcast row " ++ show x

{- | Get all episodes for a particular podcast. -}
getPodcastEpisodes :: IConnection conn => conn -> Podcast -> IO [Episode]
getPodcastEpisodes dbh pc =
    do r <- quickQuery' dbh
            "SELECT epId, epURL, epDone FROM episodes WHERE epCastId = ?"
            [toSql (castId pc)]
       return (map convEpisodeRow r)
    where convEpisodeRow [svId, svURL, svDone] =
              Episode {epId = fromSql svId, epURL = fromSql svURL,
                       epDone = fromSql svDone, epCast = pc}

In the PodDB module, we have defined functions to connect to the database, create the
needed tables for it, add data to it, query it, and remove data from it. Here is an example
ghci session demonstrating interacting with the database. It will create a database file
named poddbtest.db in the current working directory and add a podcast and an episode
to it:
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ghci> :load PodDB.hs
[1 of 2] Compiling PodTypes         ( PodTypes.hs, interpreted )
[2 of 2] Compiling PodDB            ( PodDB.hs, interpreted )
Ok, modules loaded: PodDB, PodTypes.
ghci> dbh <- connect "poddbtest.db"
ghci> :type dbh
dbh :: Connection
ghci> getTables dbh
["episodes","podcasts","sqlite_sequence"]
ghci> let url = "http://feeds.thisamericanlife.org/talpodcast"
ghci> pc <- addPodcast dbh (Podcast {castId=0, castURL=url})
Podcast {castId = 1, castURL = "http://feeds.thisamericanlife.org/talpodcast"}
ghci> getPodcasts dbh
[Podcast {castId = 1, castURL = "http://feeds.thisamericanlife.org/talpodcast"}]
ghci> addEpisode dbh (Episode {epId = 0, epCast = pc, epURL = 
"http://www.example.com/foo.mp3", epDone = False})
ghci> getPodcastEpisodes dbh pc
[Episode {epId = 1, epCast = Podcast {castId = 1, castURL = 
"http://feeds.thisamericanlife.org/talpodcast"}, epURL = "http://www.example.com/foo.mp3", 
epDone = False}]
ghci> commit dbh
ghci> disconnect dbh

The Parser
Now that we have the database component, we need to have code to parse the podcast
feeds. These are XML files that contain various information. Here’s an example XML
file to show you what they look like:

<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:itunes="http://www.itunes.com/DTDs/Podcast-1.0.dtd" version="2.0">
  <channel>
    <title>Haskell Radio</title>
    <link>http://www.example.com/radio/</link>
    <description>Description of this podcast</description>
    <item>
      <title>Episode 2: Lambdas</title>
      <link>http://www.example.com/radio/lambdas</link>
      <enclosure url="http://www.example.com/radio/lambdas.mp3"
       type="audio/mpeg" length="10485760"/>
    </item>
    <item>
      <title>Episode 1: Parsec</title>
      <link>http://www.example.com/radio/parsec</link>
      <enclosure url="http://www.example.com/radio/parsec.mp3"
       type="audio/mpeg" length="10485150"/>
    </item>
  </channel>
</rss>

Out of these files, we are mainly interested in two things: the podcast title and the
enclosure URLs. We use the HaXml toolkit (http://www.cs.york.ac.uk/fp/HaXml/) to
parse the XML file. Here’s the source code for this component:
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-- file: ch22/PodParser.hs
module PodParser where

import PodTypes
import Text.XML.HaXml
import Text.XML.HaXml.Parse
import Text.XML.HaXml.Html.Generate(showattr)
import Data.Char
import Data.List

data PodItem = PodItem {itemtitle :: String,
                  enclosureurl :: String
                  }
          deriving (Eq, Show, Read)

data Feed = Feed {channeltitle :: String,
                  items :: [PodItem]}
            deriving (Eq, Show, Read)

{- | Given a podcast and an PodItem, produce an Episode -}
item2ep :: Podcast -> PodItem -> Episode
item2ep pc item =
    Episode {epId = 0,
             epCast = pc,
             epURL = enclosureurl item,
             epDone = False}

{- | Parse the data from a given string, with the given name to use
in error messages. -}
parse :: String -> String -> Feed
parse content name = 
    Feed {channeltitle = getTitle doc,
          items = getEnclosures doc}

    where parseResult = xmlParse name (stripUnicodeBOM content)
          doc = getContent parseResult

          getContent :: Document -> Content
          getContent (Document _ _ e _) = CElem e
          
          {- | Some Unicode documents begin with a binary sequence;
             strip it off before processing. -}
          stripUnicodeBOM :: String -> String
          stripUnicodeBOM ('\xef':'\xbb':'\xbf':x) = x
          stripUnicodeBOM x = x

{- | Pull out the channel part of the document.

Note that HaXml defines CFilter as:

> type CFilter = Content -> [Content]
-}
channel :: CFilter
channel = tag "rss" /> tag "channel"
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getTitle :: Content -> String
getTitle doc =
    contentToStringDefault "Untitled Podcast" 
        (channel /> tag "title" /> txt $ doc)

getEnclosures :: Content -> [PodItem]
getEnclosures doc =
    concatMap procPodItem $ getPodItems doc
    where procPodItem :: Content -> [PodItem]
          procPodItem item = concatMap (procEnclosure title) enclosure
              where title = contentToStringDefault "Untitled Episode"
                               (keep /> tag "title" /> txt $ item)
                    enclosure = (keep /> tag "enclosure") item

          getPodItems :: CFilter
          getPodItems = channel /> tag "item"

          procEnclosure :: String -> Content -> [PodItem]
          procEnclosure title enclosure =
              map makePodItem (showattr "url" enclosure)
              where makePodItem :: Content -> PodItem
                    makePodItem x = PodItem {itemtitle = title,
                                       enclosureurl = contentToString [x]}

{- | Convert [Content] to a printable String, with a default if the 
passed-in [Content] is [], signifying a lack of a match. -}
contentToStringDefault :: String -> [Content] -> String
contentToStringDefault msg [] = msg
contentToStringDefault _ x = contentToString x

{- | Convert [Content] to a printable string, taking care to unescape it.

An implementation without unescaping would simply be:

> contentToString = concatMap (show . content)

Because HaXml's unescaping works only on Elements, we must make sure that
whatever Content we have is wrapped in an Element, then use txt to
pull the insides back out. -}
contentToString :: [Content] -> String
contentToString = 
    concatMap procContent
    where procContent x = 
              verbatim $ keep /> txt $ CElem (unesc (fakeElem x))

          fakeElem :: Content -> Element
          fakeElem x = Elem "fake" [] [x]

          unesc :: Element -> Element
          unesc = xmlUnEscape stdXmlEscaper

Let’s look at this code. First, we declare two types: PodItem and Feed. We will be trans-
forming the XML document into a Feed, which then contains items. We also provide
a function to convert an PodItem into an Episode as defined in PodTypes.hs.
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Next, it is on to parsing. The parse function takes a String representing the XML con-
tent as well as a String representing a name to use in error messages, and then returns
a Feed.

HaXml is designed as a “filter” converting data of one type to another. It can be a simple
straightforward conversion of XML to XML, or of XML to Haskell data, or of Haskell
data to XML. HaXml has a data type called CFilter, which is defined like this:

type CFilter = Content -> [Content]

That is, a CFilter takes a fragment of an XML document and returns 0 or more frag-
ments. A CFilter might be asked to find all children of a specified tag, all tags with a
certain name, the literal text contained within a part of an XML document, or any of a
number of other things. There is also an operator (/>) that chains CFilter functions
together. All of the data that we’re interested in occurs within the <channel> tag, so first
we want to get at that. We define a simple CFilter:

channel = tag "rss" /> tag "channel"

When we pass a document to channel, it will search the top level for the tag named
rss. Then, within that, it will look for the channel tag.

The rest of the program follows this basic approach. txt extracts the literal text from a
tag, and by using CFilter functions, we can get at any part of the document.

Downloading
The next part of our program is a module to download data. We’ll need to download
two different types of data: the content of a podcast and the audio for each episode. In
the former case, we’ll parse the data and update our database. For the latter, we’ll write
the data out to a file on disk.

We’ll be downloading from HTTP servers, so we’ll use a Haskell see HTTP library
(http://www.haskell.org/http/). For downloading podcast feeds, we’ll download the
document, parse it, and update the database. For episode audio, we’ll download the
file, write it to disk, and mark it downloaded in the database. Here’s the code:

-- file: ch22/PodDownload.hs
module PodDownload where
import PodTypes
import PodDB
import PodParser
import Network.HTTP
import System.IO
import Database.HDBC
import Data.Maybe
import Network.URI

{- | Download a URL.  (Left errorMessage) if an error,
(Right doc) if success. -}
downloadURL :: String -> IO (Either String String)
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downloadURL url =
    do resp <- simpleHTTP request
       case resp of
         Left x -> return $ Left ("Error connecting: " ++ show x)
         Right r -> 
             case rspCode r of
               (2,_,_) -> return $ Right (rspBody r)
               (3,_,_) -> -- A HTTP redirect
                 case findHeader HdrLocation r of
                   Nothing -> return $ Left (show r)
                   Just url -> downloadURL url
               _ -> return $ Left (show r)
    where request = Request {rqURI = uri,
                             rqMethod = GET,
                             rqHeaders = [],
                             rqBody = ""}
          uri = fromJust $ parseURI url

{- | Update the podcast in the database. -}
updatePodcastFromFeed :: IConnection conn => conn -> Podcast -> IO ()
updatePodcastFromFeed dbh pc =
    do resp <- downloadURL (castURL pc)
       case resp of
         Left x -> putStrLn x
         Right doc -> updateDB doc

    where updateDB doc = 
              do mapM_ (addEpisode dbh) episodes
                 commit dbh
              where feed = parse doc (castURL pc)
                    episodes = map (item2ep pc) (items feed)

{- | Downloads an episode, returning a String representing
the filename it was placed into, or Nothing on error. -}
getEpisode :: IConnection conn => conn -> Episode -> IO (Maybe String)
getEpisode dbh ep =
    do resp <- downloadURL (epURL ep)
       case resp of
         Left x -> do putStrLn x
                      return Nothing
         Right doc -> 
             do file <- openBinaryFile filename WriteMode
                hPutStr file doc
                hClose file
                updateEpisode dbh (ep {epDone = True})
                commit dbh
                return (Just filename)
          -- This function ought to apply an extension based on the file type
    where filename = "pod." ++ (show . castId . epCast $ ep) ++ "." ++ 
                     (show (epId ep)) ++ ".mp3"

This module defines three functions: downloadURL, which simply downloads a URL and
returns it as a String; updatePodcastFromFeed, which downloads an XML feed file, par-
ses it, and updates the database; and getEpisode, which downloads a given episode and
marks it done in the database.
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The HTTP library used here does not read the HTTP result lazily. As a
result, it can result in the consumption of a large amount of RAM when
downloading large files such as podcasts. Other libraries are available
that do not have this limitation. We used this one because it is stable,
easy to install, and reasonably easy to use. We suggest mini-http, avail-
able from Hackage, for serious HTTP needs.

Main Program
Finally, we need a main program to tie it all together. Here’s our main module:

-- file: ch22/PodMain.hs
module Main where

import PodDownload
import PodDB
import PodTypes
import System.Environment
import Database.HDBC
import Network.Socket(withSocketsDo)

main = withSocketsDo $ handleSqlError $
    do args <- getArgs
       dbh <- connect "pod.db"
       case args of
         ["add", url] -> add dbh url
         ["update"] -> update dbh
         ["download"] -> download dbh
         ["fetch"] -> do update dbh
                         download dbh
         _ -> syntaxError
       disconnect dbh

add dbh url = 
    do addPodcast dbh pc
       commit dbh
    where pc = Podcast {castId = 0, castURL = url}

update dbh = 
    do pclist <- getPodcasts dbh
       mapM_ procPodcast pclist
    where procPodcast pc =
              do putStrLn $ "Updating from " ++ (castURL pc)
                 updatePodcastFromFeed dbh pc

download dbh =
    do pclist <- getPodcasts dbh
       mapM_ procPodcast pclist
    where procPodcast pc =
              do putStrLn $ "Considering " ++ (castURL pc)
                 episodelist <- getPodcastEpisodes dbh pc
                 let dleps = filter (\ep -> epDone ep == False)
                             episodelist
                 mapM_ procEpisode dleps
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          procEpisode ep =
              do putStrLn $ "Downloading " ++ (epURL ep)
                 getEpisode dbh ep

syntaxError = putStrLn 
  "Usage: pod command [args]\n\
  \\n\
  \pod add url      Adds a new podcast with the given URL\n\
  \pod download     Downloads all pending episodes\n\
  \pod fetch        Updates, then downloads\n\
  \pod update       Downloads podcast feeds, looks for new episodes\n"

We have a very simple command-line parser with a function to indicate a command-
line syntax error, plus small functions to handle the different command-line arguments.

You can compile this program with a command like this:

ghc --make -O2 -o pod -package HTTP -package HaXml -package network \
    -package HDBC -package HDBC-sqlite3 PodMain.hs

Alternatively, you could use a Cabal file as documented in “Creating a Package” on
page 131 to build this project:

-- ch23/pod.cabal
Name: pod
Version: 1.0.0
Build-type: Simple
Build-Depends: HTTP, HaXml, network, HDBC, HDBC-sqlite3, base

Executable: pod
Main-Is: PodMain.hs
GHC-Options: -O2

Also, you’ll want a simple Setup.hs file:

import Distribution.Simple
main = defaultMain

Now, to build with Cabal, you just run the following:

runghc Setup.hs configure
runghc Setup.hs build

And you’ll find a dist directory containing your output. To install the program system-
wide, run runghc Setup.hs install.
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CHAPTER 23

GUI Programming with gtk2hs

Throughout this book, we have been developing simple text-based tools. While these
are often ideal interfaces, sometimes a graphical user interface (GUI) is required. There
are several GUI toolkits available for Haskell. In this chapter, we will look at one of
them, gtk2hs.*

Installing gtk2hs
Before we dive in to working with gtk2hs, you’ll need to get it installed. On most Linux,
BSD, or other POSIX platforms, you will find ready-made gtk2hs packages. You will
generally need to install the GTK+ development environment, Glade, and gtk2hs. The
specifics of doing so vary by distribution.

Windows and Mac developers should consult the gtk2hs downloads site at http://www
.haskell.org/gtk2hs/download/. Begin by downloading gtk2hs from there. Then you will
also need Glade version 3. Mac developers can find this at http://www.macports.org/,
while Windows developers should consult http://sourceforge.net/projects/gladewin32.

Overview of the GTK+ Stack
Before examining the code, let’s pause a brief moment and consider the architecture of
the system we are going to use. First off, we have GTK+. GTK+ is a cross-platform
GUI-building toolkit, implemented in C. It runs on Windows, Mac, Linux, BSDs, and
more. It is also the toolkit beneath the GNOME desktop environment.

Next, we have Glade. Glade is a user-interface designer, which lets you graphically lay
out your application’s windows and dialogs. Glade saves the interface in XML files,
which your application will load at runtime.

* Several alternatives also exist. Alongside gtk2hs, wxHaskell is also a prominent cross-platform GUI toolkit.
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The last piece of this puzzle is gtk2hs. This is the Haskell binding for GTK+, Glade,
and several related libraries. It is one of many language bindings available for GTK+.

User Interface Design with Glade
In this chapter, we are going to develop a GUI for the podcast downloader we first
developed in Chapter 22. Our first task is to design the user interface in Glade. Once
we have accomplished that, we will write the Haskell code to integrate it with the
application.

Because this is a Haskell book, rather than a GUI design book, we will move fast through
some of these early parts. For more information on interface design with Glade, you
may wish to refer to one of these resources:

The Glade homepage
Contains documentation for Glade; see http://glade.gnome.org/.

The GTK+ homepage
Contains information about the different widgets. Refer to the documentation
section, and then the stable GTK documentation area; see http://www.gtk.org/.

The gtk2hs homepage
Also has a useful documentation section, which contains an API reference to gtk2hs
as well as a glade tutorial; see http://www.haskell.org/gtk2hs/documentation/.

Glade Concepts
Glade is a user-interface design tool. It lets us use a graphical interface to design our
graphical interface. We could build up the window components using a bunch of calls
to GTK+ functions, but it is usually easier to do this with Glade.

The fundamental “thing” we work with in GTK+ is the widget. A widget represents any
part of the GUI, and may contain other widgets. Some examples of widgets include a
window, dialog box, button, and text within the button.

Glade, then, is a widget layout tool. We set up a whole tree of widgets, with top-level
windows at the top of the tree. You can think of Glade and widgets in somewhat the
same terms as HTML: you can arrange widgets in a table-like layout, set up padding
rules, and structure the entire description in a hierarchical way.

Glade saves the widget descriptions into an XML file. Our program loads this XML file
at runtime. We load the widgets by asking the Glade runtime library to load a widget
with a specific name.

Figure 23-1 shows a screenshot of an example working with Glade to design our ap-
plication’s main screen.

In the downloadable material available for this book, you can find the full Glade XML
file as podresources.glade. You can load this file in Glade and edit it if you wish.
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Event-Driven Programming
GTK+, like many GUI toolkits, is an event-driven toolkit. That means that instead of,
say, displaying a dialog box and waiting for the user to click on a button, we instead
tell gtk2hs what function to call if a certain button is clicked, but don’t sit there waiting
for a click in the dialog box.

This is different from the model traditionally used for console programs. When you
think about it, though, it almost has to be. A GUI program could have multiple windows
open, and writing code to sit there waiting for input in the particular combination of
open windows could be a complicated proposition.

Event-driven programming complements Haskell nicely. As we’ve discussed over and
over in this book, functional languages thrive on passing around functions. So we’ll be
passing functions to gtk2hs that get called when certain events occur. These are known 
as callback functions.

At the core of a GTK+ program is the main loop. This is the part of the program that
waits for actions from the user or commands from the program and carries them out.

Figure 23-1. Screenshot of Glade, showing components of the graphical user interface
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The GTK+ main loop is handled entirely by GTK+. To us, it looks like an I/O action
that we execute, which doesn’t return until the GUI has been disposed of.

Since the main loop is responsible for doing everything from handling clicks of a mouse
to redrawing a window when it has been uncovered, it must always be available. We
can’t just run a long-running task—such as downloading a podcast episode—from
within the main loop. This would make the GUI unresponsive, and actions such as
clicking a Cancel button wouldn’t be processed in a timely manner.

Therefore, we will be using multithreading to handle these long-running tasks. More
information on multithreading can be found in Chapter 24. For now, just know that
we will use forkIO to create new threads for long-running tasks such as downloading
podcast feeds and episodes. For very quick tasks, such as adding a new podcast to the
database, we will not bother with a separate thread since it will be executed so fast that
the user will never notice.

Initializing the GUI
Our first steps are going to involve initializing the GUI for our program. For reasons
that we’ll explain later in this chapter in “Using Cabal” on page 528, we’re going to
have a small file called PodLocalMain.hs that loads PodMain and passes to it the path to
podresources.glade, which is the XML file saved by Glade that gives the information
about our GUI widgets:

-- file: ch23/PodLocalMain.hs
module Main where

import qualified PodMainGUI

main = PodMainGUI.main "podresources.glade"

Now, let’s consider PodMainGUI.hs. This file is the only Haskell source file that we
had to modify from the example in Chapter 22 to make it work as a GUI. Let’s begin
by looking at the start of our new PodMainGUI.hs file—we’ve renamed it from
PodMain.hs for clarity:

-- file: ch23/PodMainGUI.hs
module PodMainGUI where

import PodDownload
import PodDB
import PodTypes
import System.Environment
import Database.HDBC
import Network.Socket(withSocketsDo)

-- GUI libraries

import Graphics.UI.Gtk hiding (disconnect)
import Graphics.UI.Gtk.Glade
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-- Threading

import Control.Concurrent

This first part of PodMainGUI.hs is similar to our non-GUI version. We import three
additional components, however. First, we have Graphics.UI.Gtk, which provides most
of the GTK+ functions we will be using. Both this module and Database.HDBC provide 
a function named disconnect. Since we’ll be using the HDBC version, but not the
GTK+ version, we don’t import that function from Graphics.UI.Gtk.
Graphics.UI.Gtk.Glade contains functions needed for loading and working with our
Glade file.

We also import Control.Concurrent, which has the basics needed for multithreaded
programming. We’ll use a few functions from here as just described once we get into
the guts of the program. Next, let’s define a type to store information about our GUI:

-- file: ch23/PodMainGUI.hs
-- | Our main GUI type
data GUI = GUI {
      mainWin :: Window,
      mwAddBt :: Button,
      mwUpdateBt :: Button,
      mwDownloadBt :: Button,
      mwFetchBt :: Button,
      mwExitBt :: Button,
      statusWin :: Dialog,
      swOKBt :: Button,
      swCancelBt :: Button,
      swLabel :: Label,
      addWin :: Dialog,
      awOKBt :: Button,
      awCancelBt :: Button,
      awEntry :: Entry}

Our new GUI type stores all the widgets we will care about in the entire program. Large
programs may not wish to have a monolithic type like this. For this small example, it
makes sense because it can be easily passed around to different functions, and we’ll
know that we always have the information we need available.

Within this record, we have fields for a Window (a top-level window), Dialog (dialog
window), Button (clickable button), Label (piece of text), and Entry (place for the user
to enter text). Let’s now look at our main function:

-- file: ch23/PodMainGUI.hs
main :: FilePath -> IO ()
main gladepath = withSocketsDo $ handleSqlError $
    do initGUI                  -- Initialize GTK+ engine

       -- Every so often, we try to run other threads.
       timeoutAddFull (yield >> return True)
                      priorityDefaultIdle 100
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       -- Load the GUI from the Glade file
       gui <- loadGlade gladepath

       -- Connect to the database
       dbh <- connect "pod.db"

       -- Set up our events 
       connectGui gui dbh

       -- Run the GTK+ main loop; exits after GUI is done
       mainGUI
       
       -- Disconnect from the database at the end
       disconnect dbh

Remember that the type of this main function is a little different than usual because it
is being called by main in PodLocalMain.hs. We start by calling initGUI, which initializes
the GTK+ system. Next, we have a call to timeoutAddFull. This call is only needed for
multithreaded GTK+ programs. It tells the GTK+ main loop to pause to give other
threads a chance to run every so often.

After that, we call our loadGlade function (see the following code) to load the widgets
from our Glade XML file. Next, we connect to our database and call our connectGui
function to set up our callback functions. Then, we fire up the GTK+ main loop. We
expect it could be minutes, hours, or even days before mainGUI returns. When it does,
it means the user has closed the main window or clicked the Exit button. After that,
we disconnect from the database and close the program. Now, let’s look at our
loadGlade function:

-- file: ch23/PodMainGUI.hs
loadGlade gladepath =
    do -- Load XML from glade path.
       -- Note: crashes with a runtime error on console if fails!
       Just xml <- xmlNew gladepath

       -- Load main window
       mw <- xmlGetWidget xml castToWindow "mainWindow"

       -- Load all buttons

       [mwAdd, mwUpdate, mwDownload, mwFetch, mwExit, swOK, swCancel,
        auOK, auCancel] <-
           mapM (xmlGetWidget xml castToButton)
           ["addButton", "updateButton", "downloadButton",
            "fetchButton", "exitButton", "okButton", "cancelButton",
            "auOK", "auCancel"]
       
       sw <- xmlGetWidget xml castToDialog "statusDialog"
       swl <- xmlGetWidget xml castToLabel "statusLabel"

       au <- xmlGetWidget xml castToDialog "addDialog"
       aue <- xmlGetWidget xml castToEntry "auEntry"
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       return $ GUI mw mwAdd mwUpdate mwDownload mwFetch mwExit
              sw swOK swCancel swl au auOK auCancel aue

This function starts by calling xmlNew, which loads the Glade XML file. It returns
Nothing on error. Here we are using pattern matching to extract the result value on
success. If it fails, there will be a console (not graphical) exception displayed; one of
the exercises at the end of this chapter addresses this.

Now that we have Glade’s XML file loaded, you will see a bunch of calls to
xmlGetWidget. This Glade function is used to load the XML definition of a widget and
return a GTK+ widget type for that widget. We have to pass along to that function a
value indicating what GTK+ type we expect—we’ll get a runtime error if these don’t
match.

We start by creating a widget for the main window. It is loaded from the XML widget
defined with name "mainWindow" and stored in the mw variable. We then use pattern
matching and mapM to load up all the buttons. Then, we have two dialogs, a label, and
an entry to load. Finally, we use all of these to build up the GUI type and return it.
Next, we need to set up our callback functions as event handlers:

-- file: ch23/PodMainGUI.hs
connectGui gui dbh =
    do -- When the close button is clicked, terminate the GUI loop
       -- by calling GTK mainQuit function
       onDestroy (mainWin gui) mainQuit
       
       -- Main window buttons
       onClicked (mwAddBt gui) (guiAdd gui dbh)
       onClicked (mwUpdateBt gui) (guiUpdate gui dbh)
       onClicked (mwDownloadBt gui) (guiDownload gui dbh)
       onClicked (mwFetchBt gui) (guiFetch gui dbh)
       onClicked (mwExitBt gui) mainQuit

       -- We leave the status window buttons for later

We start out the connectGui function by calling onDestroy. This means that when
somebody clicks on the operating system’s close button (typically an X in the titlebar
on Windows or Linux, or a red circle on Mac OS X), we call the mainQuit function on
the main window. mainQuit closes all GUI windows and terminates the GTK+ main
loop.

Next, we call onClicked to register event handlers for clicking on our five different
buttons. For buttons, these handlers are also called if the user selects the button via the
keyboard. Clicking on these buttons will call our functions such as guiAdd, passing
along the GUI record as well as a database handle.

At this point, we have completely defined the main window for the GUI podcatcher.
It looks like the screenshot in Figure 23-2.
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The Add Podcast Window
Now that we’ve covered the main window, let’s talk about the other windows that our
application presents, starting with the Add Podcast window. When the user clicks the
button to add a new podcast, we need to pop up a dialog box to prompt for the URL
of the podcast. We have defined this dialog box in Glade, so all we need to do is set it
up:

-- file: ch23/PodMainGUI.hs
guiAdd gui dbh = 
    do -- Initialize the add URL window
       entrySetText (awEntry gui) ""
       onClicked (awCancelBt gui) (widgetHide (addWin gui))
       onClicked (awOKBt gui) procOK
       
       -- Show the add URL window
       windowPresent (addWin gui)
    where procOK =
              do url <- entryGetText (awEntry gui)
                 widgetHide (addWin gui) -- Remove the dialog
                 add dbh url             -- Add to the DB

We start by calling entrySetText to set the contents of the entry box (the place where
the user types in the URL) to the empty string. That’s because the same widget gets
reused over the lifetime of the program, and we don’t want the last URL the user entered
to remain there. Next, we set up actions for the two buttons in the dialog. If the user
clicks on the cancel button, we simply remove the dialog box from the screen by calling
widgetHide on it. If the user clicks the OK button, we call procOK.

procOK starts by retrieving the supplied URL from the entry widget. Next, it uses
widgetHide to get rid of the dialog box. Finally, it calls add to add the URL to the data-
base. This add is exactly the same function as we had in the non-GUI version of the
program.

The last thing we do in guiAdd is actually display the pop-up window. That’s done by
calling windowPresent, which is the opposite of widgetHide.

Figure 23-2. Screenshot of the main window of the podcatcher application
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Note that the guiAdd function returns almost immediately. It just sets up the widgets
and causes the box to be displayed; at no point does it block waiting for input. Fig-
ure 23-3 shows what the dialog box looks like.

Long-Running Tasks
As we think about the buttons available in the main window, three of them correspond
to tasks that could take a while to complete: update, download, and fetch. While these
operations take place, we’d like to do two things with our GUI: provide the user with
the status of the operation and the ability to cancel the operation as it is in progress.

Since all three of these things are very similar operations, it makes sense to provide a
generic way to handle this interaction. We have defined a single status window widget
in the Glade file that will be used by all three of these. In our Haskell source code, we’ll
define a generic statusWindow function that will be used by all three of these operations
as well.

statusWindow takes four parameters: the GUI information, the database information, a
String giving the title of the window, and a function that will perform the operation.
This function will itself be passed a function that it can call to report its progress. Here’s
the code:

-- file: ch23/PodMainGUI.hs
statusWindow :: IConnection conn =>
                GUI 
             -> conn 
             -> String 
             -> ((String -> IO ()) -> IO ())
             -> IO ()
statusWindow gui dbh title func =
    do -- Clear the status text
       labelSetText (swLabel gui) ""
       
       -- Disable the OK button, enable Cancel button
       widgetSetSensitivity (swOKBt gui) False
       widgetSetSensitivity (swCancelBt gui) True

       -- Set the title
       windowSetTitle (statusWin gui) title

Figure 23-3. Screenshot of the add-a-podcast window
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       -- Start the operation
       childThread <- forkIO childTasks

       -- Define what happens when clicking on Cancel
       onClicked (swCancelBt gui) (cancelChild childThread)
       
       -- Show the window
       windowPresent (statusWin gui)
    where childTasks =
              do updateLabel "Starting thread..."
                 func updateLabel
                 -- After the child task finishes, enable OK
                 -- and disable Cancel
                 enableOK
                 
          enableOK = 
              do widgetSetSensitivity (swCancelBt gui) False
                 widgetSetSensitivity (swOKBt gui) True
                 onClicked (swOKBt gui) (widgetHide (statusWin gui))
                 return ()

          updateLabel text =
              labelSetText (swLabel gui) text
          cancelChild childThread =
              do killThread childThread
                 yield
                 updateLabel "Action has been cancelled."
                 enableOK

This function starts by clearing the label text from the last run. Next, we disable (gray
out) the OK button and enable the Cancel button. While the operation is in progress,
clicking OK doesn’t make much sense. And when it’s done, clicking Cancel also doesn’t
make much sense.

Next, we set the title of the window. The title is the part that is displayed by the system
in the title bar of the window. Finally, we start off the new thread (represented by
childTasks) and save off its thread ID. Then, we define what to do if the user clicks
Cancel—we call cancelChild, passing along the thread ID. Finally, we call
windowPresent to show the status window.

In childTasks, we display a message saying that we’re starting the thread. Then we call
the actual worker function, passing updateLabel as the function to use for displaying
status messages. Note that a command-line version of the program could pass
putStrLn here.

Finally, after the worker function exits, we call enableOK. This function disables the
Cancel button, enables the OK button, and defines that a click on the OK button causes
the status window to go away.
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updateLabel simply calls labelSetText on the label widget to update it with the dis-
played text. Finally, cancelChild kills the thread that is processing the task, updates the
label, and enables the OK button.

We now have the infrastructure in place to define our three GUI functions. They look
like this:

-- file: ch23/PodMainGUI.hs
guiUpdate :: IConnection conn => GUI -> conn -> IO ()
guiUpdate gui dbh = 
    statusWindow gui dbh "Pod: Update" (update dbh)

guiDownload gui dbh =
    statusWindow gui dbh "Pod: Download" (download dbh)

guiFetch gui dbh =
    statusWindow gui dbh "Pod: Fetch" 
                     (\logf -> update dbh logf >> download dbh logf)

For brevity, we have given the type for only the first one, but all three have the same
type, and Haskell can work them out via type inference. Notice our implementation of
guiFetch. We don’t call statusWindow twice, but rather combine functions in its action.

The final piece of the puzzle consists of the three functions that do our work. add is
unmodified from the command-line chapter. update and download are modified only to
take a logging function instead of calling putStrLn for status updates.

-- file: ch23/PodMainGUI.hs
add dbh url = 
    do addPodcast dbh pc
       commit dbh
    where pc = Podcast {castId = 0, castURL = url}

update :: IConnection conn => conn -> (String -> IO ()) -> IO ()
update dbh logf = 
    do pclist <- getPodcasts dbh
       mapM_ procPodcast pclist
       logf "Update complete."
    where procPodcast pc =
              do logf $ "Updating from " ++ (castURL pc)
                 updatePodcastFromFeed dbh pc

download dbh logf =
    do pclist <- getPodcasts dbh
       mapM_ procPodcast pclist
       logf "Download complete."
    where procPodcast pc =
              do logf $ "Considering " ++ (castURL pc)
                 episodelist <- getPodcastEpisodes dbh pc
                 let dleps = filter (\ep -> epDone ep == False)
                             episodelist
                 mapM_ procEpisode dleps
          procEpisode ep =
              do logf $ "Downloading " ++ (epURL ep)
                 getEpisode dbh ep
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Figure 23-4 shows what the final result looks like after running an update.

Figure 23-4. Screenshot of a dialog box displaying the words “Update complete”

Using Cabal
We presented a Cabal file to build this project for the command-line version in “Main
Program” on page 515. We need to make a few tweaks for it to work with our GUI
version. First, there’s the obvious need to add the gtk2hs packages to the list of build
dependencies. There is also the matter of the Glade XML file.

Earlier, we wrote a PodLocalMain.hs file that simply assumed this file is named
podresources.glade and stored in the current working directory. For a real, system-wide
installation, we can’t make that assumption. Moreover, different systems may place
the file in different locations.

Cabal provides a way around this problem. It automatically generates a module that
exports functions that can interrogate the environment. We must add a Data-files line
to our Cabal description file. This file names all data files that will be part of a system-
wide installation. Then, Cabal will export a Paths_pod module (the “pod” part comes
from the Name line in the Cabal file) that we can interrogate for the location at runtime.
Here’s our new Cabal description file:

-- ch24/pod.cabal
Name: pod
Version: 1.0.0
Build-type: Simple
Build-Depends: HTTP, HaXml, network, HDBC, HDBC-sqlite3, base, 
               gtk, glade
Data-files: podresources.glade

Executable: pod
Main-Is: PodCabalMain.hs
GHC-Options: -O2
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And, to go with it, here’s PodCabalMain.hs:

-- file: ch23/PodCabalMain.hs
module Main where

import qualified PodMainGUI
import Paths_pod(getDataFileName)

main = 
    do gladefn <- getDataFileName "podresources.glade"
       PodMainGUI.main gladefn

E X E R C I S E S

1. Present a helpful GUI error message if the call to xmlNew returns Nothing.

2. Modify the podcatcher to be able to run with either the GUI or the command-line
interface from a single code base. Hint: move common code out of PodMain
GUI.hs, then have two different Main modules—one for the GUI, and one for the
command line.

3. Why does guiFetch combine worker functions instead of calling statusWindow
twice?
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CHAPTER 24

Concurrent and Multicore
Programming

As we write this book, the landscape of CPU architecture is changing more rapidly than
it has in decades.

Defining Concurrency and Parallelism
A concurrent program needs to perform several possibly unrelated tasks at the same
time. Consider the example of a game server: it is typically composed of dozens of
components, each of which has complicated interactions with the outside world. One
component might handle multiuser chat; several more will process players’ inputs and
also feed state updates back to them; while yet another performs physics calculations.

The correct operation of a concurrent program does not require multiple cores, though
they may improve performance and responsiveness.

In contrast, a parallel program solves a single problem. Consider a financial model that
attempts to predict the next minute of fluctuations in the price of a single stock. If we
want to apply this model to every stock listed on an exchange—for example, to estimate
which ones we should buy and sell—we hope to get an answer more quickly if we run
the model on 500 cores than if we use just 1. As this suggests, a parallel program does
not usually depend on the presence of multiple cores to work correctly.

Another useful distinction between concurrent and parallel programs lies in their
interaction with the outside world. By definition, a concurrent program deals contin-
uously with networking protocols, databases, and the like. A typical parallel program
is likely to be more focused: it streams in data, crunches it for a while (with little further
I/O), and then streams data back out.
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Many traditional languages further blur the already indistinct boundary between con-
current and parallel programming, because they force programmers to use the same
primitives to construct both kinds of programs.

In this chapter, we will concern ourselves with concurrent and parallel programs that
operate within the boundaries of a single operating system process.

Concurrent Programming with Threads
As a building block for concurrent programs, most programming languages provide a
way of creating multiple independent threads of control. Haskell is no exception, though
programming with threads in Haskell looks somewhat different than in other
languages.

In Haskell, a thread is an IO action that executes independently from other threads. To
create a thread, we import the Control.Concurrent module and use the forkIO
function:

ghci> :m +Control.Concurrent
ghci> :t forkIO
forkIO :: IO () -> IO ThreadId
ghci> :m +System.Directory
ghci> forkIO (writeFile "xyzzy" "seo craic nua!") >> doesFileExist "xyzzy"
False

The new thread starts to execute almost immediately, and the thread that created it
continues to execute concurrently. The thread will stop executing when it reaches the
end of its IO action.

Threads Are Nondeterministic
The runtime component of GHC does not specify an order in which it executes threads.
As a result, in the preceding example, the file xyzzy created by the new thread may or
may not have been created by the time the original thread checks for its existence. If
we try this example once, and then remove xyzzy and try again, we may get a different
result the second time.

Hiding Latency
Suppose we have a large file to compress and write to disk, but we want to handle a
user’s input quickly enough that she will perceive our program as responding imme-
diately. If we use forkIO to write the file out in a separate thread, we can do both
simultaneously:

-- file: ch24/Compressor.hs
import Control.Concurrent (forkIO)
import Control.Exception (handle)
import Control.Monad (forever)
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import qualified Data.ByteString.Lazy as L
import System.Console.Readline (readline)

-- Provided by the 'zlib' package on http://hackage.haskell.org/
import Codec.Compression.GZip (compress)

main = do
    maybeLine <- readline "Enter a file to compress> "
    case maybeLine of
      Nothing -> return ()      -- user entered EOF
      Just "" -> return ()      -- treat no name as "want to quit"
      Just name -> do
           handle print $ do
             content <- L.readFile name
             forkIO (compressFile name content)
             return ()
           main
  where compressFile path = L.writeFile (path ++ ".gz") . compress

Because we’re using lazy ByteString I/O here, all we really do in the main thread is
open the file. The actual reading occurs on demand in the other thread.

The use of handle print gives us a cheap way to print an error message if the user enters
the name of a file that does not exist.

Simple Communication Between Threads
The simplest way to share information between two threads is to let them both use a
variable. In our file compression example, the main thread shares both the name of a
file and its contents with the other thread. Because Haskell data is immutable by default,
this poses no risks: neither thread can modify the other’s view of the file’s name or
contents.

We often need to have threads actively communicate with each other. For example,
GHC does not provide a way for one thread to find out whether another is still exe-
cuting, has completed, or has crashed.* However, it provides a synchronizing variable
type, the MVar, which we can use to create this capability for ourselves.

An MVar acts like a single-element box: it can be either full or empty. We can put some-
thing into the box, making it full, or take something out, making it empty:

ghci> :t putMVar
putMVar :: MVar a -> a -> IO ()
ghci> :t takeMVar
takeMVar :: MVar a -> IO a

* As we will show later, GHC threads are extraordinarily lightweight. If the runtime were to provide a way to
check the status of every thread, the overhead of every thread would increase, even if this information were
never used.

Simple Communication Between Threads | 533



If we try to put a value into an MVar that is already full, our thread is put to sleep until
another thread takes the value out. Similarly, if we try to take a value from an empty
MVar, our thread is put to sleep until some other thread puts a value in:

-- file: ch24/MVarExample.hs
import Control.Concurrent

communicate = do
  m <- newEmptyMVar
  forkIO $ do
    v <- takeMVar m
    putStrLn ("received " ++ show v)
  putStrLn "sending"
  putMVar m "wake up!"

The newEmptyMVar function has a descriptive name. To create an MVar that starts out
nonempty, we’d use newMVar:

ghci> :t newEmptyMVar
newEmptyMVar :: IO (MVar a)
ghci> :t newMVar
newMVar :: a -> IO (MVar a)

Let’s run our example in ghci:

ghci> :load MVarExample
[1 of 1] Compiling Main             ( MVarExample.hs, interpreted )
Ok, modules loaded: Main.
ghci> communicate
sending
received "wake up!"

If you’re coming from a background of concurrent programming in a traditional lan-
guage, you can think of an MVar as being useful for two familiar purposes:

• Sending a message from one thread to another, for example, a notification.

• Providing mutual exclusion for a piece of mutable data that is shared among
threads. We put the data into the MVar when it is not being used by any thread.
One thread then takes it out temporarily to read or modify it.

The Main Thread and Waiting for Other Threads
GHC’s runtime system treats the program’s original thread of control differently from
other threads. When this thread finishes executing, the runtime system considers the
program as a whole to have completed. If any other threads are executing at the time,
they are terminated.

As a result, when we have long-running threads that must not be killed, we need to
make special arrangements to ensure that the main thread doesn’t complete until the
others do. Let’s develop a small library that makes this easy to do:
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-- file: ch24/NiceFork.hs
import Control.Concurrent
import Control.Exception (Exception, try)
import qualified Data.Map as M

data ThreadStatus = Running
                  | Finished         -- terminated normally
                  | Threw Exception  -- killed by uncaught exception
                    deriving (Eq, Show)

-- | Create a new thread manager.
newManager :: IO ThreadManager

-- | Create a new managed thread.
forkManaged :: ThreadManager -> IO () -> IO ThreadId

-- | Immediately return the status of a managed thread.
getStatus :: ThreadManager -> ThreadId -> IO (Maybe ThreadStatus)

-- | Block until a specific managed thread terminates.
waitFor :: ThreadManager -> ThreadId -> IO (Maybe ThreadStatus)

-- | Block until all managed threads terminate.
waitAll :: ThreadManager -> IO ()

We keep our ThreadManager type abstract using the usual recipe: we wrap it in a
newtype and prevent clients from creating values of this type. Among our module’s
exports, we list the type constructor and the IO action that constructs a manager, but
we do not export the data constructor:

-- file: ch24/NiceFork.hs
module NiceFork
    (
      ThreadManager
    , newManager
    , forkManaged
    , getStatus
    , waitFor
    , waitAll
    ) where

For the implementation of ThreadManager, we maintain a map from thread ID to thread
state. We’ll refer to this as the thread map:

-- file: ch24/NiceFork.hs
newtype ThreadManager =
    Mgr (MVar (M.Map ThreadId (MVar ThreadStatus)))
    deriving (Eq)

newManager = Mgr `fmap` newMVar M.empty

We have two levels of MVar at use here. We keep the Map in an MVar. This lets us
“modify” the Map by replacing it with a new version. We also ensure that any thread
that uses the Map will see a consistent view of it.
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For each thread that we manage, we maintain an MVar. A per-thread MVar starts off
empty, which indicates that the thread is executing. When the thread finishes or is
killed by an uncaught exception, we put this information into the MVar.

To create a thread and watch its status, we must perform a little bit of bookkeeping:

-- file: ch24/NiceFork.hs
forkManaged (Mgr mgr) body =
    modifyMVar mgr $ \m -> do
      state <- newEmptyMVar
      tid <- forkIO $ do
        result <- try body
        putMVar state (either Threw (const Finished) result)
      return (M.insert tid state m, tid)

Safely Modifying an MVar
The modifyMVar function that we used in forkManaged in the preceding code is very
useful. It’s a safe combination of takeMVar and putMVar:

ghci> :t modifyMVar
modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b

It takes the value from an MVar and passes it to a function. This function can both
generate a new value and return a result. If the function throws an exception,
modifyMVar puts the original value back into the MVar; otherwise, it puts in the new
value. It returns the other element of the function as its own result.

When we use modifyMVar instead of manually managing an MVar with takeMVar and
putMVar, we avoid two common kinds of concurrency bugs:

• Forgetting to put a value back into an MVar. This can result in deadlock, in which
some thread waits forever on an MVar that will never have a value put into it.

• Failure to account for the possibility that an exception might be thrown, disrupting
the flow of a piece of code. This can result in a call to putMVar that should occur,
but doesn’t actually happen, again leading to deadlock.

Because of these nice safety properties, it’s wise to use modifyMVar whenever possible.

Safe Resource Management: A Good Idea, and Easy Besides
We can the take the pattern that modifyMVar follows and apply it to many other resource
management situations. Here are the steps of the pattern:

1. Acquire a resource.

2. Pass the resource to a function that will do something with it.

3. Always release the resource, even if the function throws an exception. If that occurs,
rethrow the exception so application code can catch it.
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Safety aside, this approach has another benefit: it can make our code shorter and easier
to follow. As we can see from looking at forkManaged in the previous code listing, Has-
kell’s lightweight syntax for anonymous functions makes this style of coding visually
unobtrusive.

Here’s the definition of modifyMVar so that you can see a specific form of this pattern:

-- file: ch24/ModifyMVar.hs
import Control.Concurrent (MVar, putMVar, takeMVar)
import Control.Exception (block, catch, throw, unblock)
import Prelude hiding (catch) -- use Control.Exception's version

modifyMVar :: MVar a -> (a -> IO (a,b)) -> IO b
modifyMVar m io = 
  block $ do
    a <- takeMVar m
    (b,r) <- unblock (io a) `catch` \e ->
             putMVar m a >> throw e
    putMVar m b
    return r

You should easily be able to adapt this to your particular needs, whether you’re working
with network connections, database handles, or data managed by a C library.

Finding the Status of a Thread
Our getStatus function tells us the current state of a thread. If the thread is no longer
managed (or was never managed in the first place), it returns Nothing:

-- file: ch24/NiceFork.hs
getStatus (Mgr mgr) tid =
  modifyMVar mgr $ \m ->
    case M.lookup tid m of
      Nothing -> return (m, Nothing)
      Just st -> tryTakeMVar st >>= \mst -> case mst of
                   Nothing -> return (m, Just Running)
                   Just sth -> return (M.delete tid m, Just sth)

If the thread is still running, it returns Just Running. Otherwise, it indicates why the
thread terminated and stops managing the thread.

If the tryTakeMVar function finds that the MVar is empty, it returns Nothing immediately
instead of blocking:

ghci> :t tryTakeMVar
tryTakeMVar :: MVar a -> IO (Maybe a)

Otherwise, it extracts the value from the MVar as usual.

The waitFor function behaves similarly, but instead of returning immediately, it blocks
until the given thread terminates before returning:

-- file: ch24/NiceFork.hs
waitFor (Mgr mgr) tid = do
  maybeDone <- modifyMVar mgr $ \m ->
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    return $ case M.updateLookupWithKey (\_ _ -> Nothing) tid m of
      (Nothing, _) -> (m, Nothing)
      (done, m') -> (m', done)
  case maybeDone of
    Nothing -> return Nothing
    Just st -> Just `fmap` takeMVar st

It first extracts the MVar that holds the thread’s state, if it exists. The Map type’s
updateLookupWithKey function is useful—it combines looking up a key with modifying
or removing the value:

ghci> :m +Data.Map
ghci> :t updateLookupWithKey
updateLookupWithKey :: (Ord k) =>
                       (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map k a)

In this case, we want to always remove the MVar holding the thread’s state if it is present
so that our thread manager will no longer be managing the thread. If there is a value to
extract, we take the thread’s exit status from the MVar and return it.

Our final useful function simply waits for all currently managed threads to complete
and ignores their exit statuses:

-- file: ch24/NiceFork.hs
waitAll (Mgr mgr) = modifyMVar mgr elems >>= mapM_ takeMVar
    where elems m = return (M.empty, M.elems m)

Writing Tighter Code
Our definition of waitFor is a little unsatisfactory, because we’re performing more or
less the same case analysis in two places: inside the function called by modifyMVar, and
again on its return value.

Sure enough, we can apply a function that we came across earlier to eliminate this
duplication. The function in question is join, from the Control.Monad module:

ghci> :m +Control.Monad
ghci> :t join
join :: (Monad m) => m (m a) -> m a

The trick here is to see that we can get rid of the second case expression by having the
first one return the IO action that we should perform once we return from modifyMVar.
We’ll use join to execute the action:

-- file: ch24/NiceFork.hs
waitFor2 (Mgr mgr) tid =
  join . modifyMVar mgr $ \m ->
    return $ case M.updateLookupWithKey (\_ _ -> Nothing) tid m of
      (Nothing, _) -> (m, return Nothing)
      (Just st, m') -> (m', Just `fmap` takeMVar st)

This is an interesting idea: we can create a monadic function or action in pure code,
and then pass it around until we end up in a monad where we can use it. This can be
a nimble way to write code, once you develop an eye for when it makes sense.
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Communicating over Channels
For one-shot communications between threads, an MVar is perfectly good. Another type,
Chan, provides a one-way communication channel. Here is a simple example of its use:

-- file: ch24/Chan.hs
import Control.Concurrent
import Control.Concurrent.Chan

chanExample = do
  ch <- newChan
  forkIO $ do
    writeChan ch "hello world"
    writeChan ch "now i quit"
  readChan ch >>= print
  readChan ch >>= print

If a Chan is empty, readChan blocks until there is a value to read. The writeChan function
never blocks; it writes a new value into a Chan immediately.

Useful Things to Know About

MVar and Chan Are Nonstrict
Like most Haskell container types, both MVar and Chan are nonstrict: neither evaluates
its contents. We mention this not because it’s a problem but because it’s a common
blind spot. People tend to assume that these types are strict, perhaps because they’re
used in the IO monad.

As for other container types, the upshot of a mistaken guess about the strictness of an
MVar or Chan type is often a space or performance leak. Here’s a plausible scenario to
consider.

We fork off a thread to perform some expensive computation on another core:

-- file: ch24/Expensive.hs
import Control.Concurrent

notQuiteRight = do
  mv <- newEmptyMVar
  forkIO $ expensiveComputation_stricter mv
  someOtherActivity
  result <- takeMVar mv
  print result

It seems to do something and puts its result back into the MVar:

-- file: ch24/Expensive.hs
expensiveComputation mv = do
  let a = "this is "
      b = "not really "
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      c = "all that expensive"
  putMVar mv (a ++ b ++ c)

When we take the result from the MVar in the parent thread and attempt to do something
with it, our thread starts computing furiously, because we never forced the computation
to actually occur in the other thread!

As usual, the solution is straightforward, once we know there’s a potential for a prob-
lem: we add strictness to the forked thread, in order to ensure that the computation
occurs there. This strictness is best added in one place, in order to avoid the possibility
that we might forget to add it:

-- file: ch24/ModifyMVarStrict.hs
{-# LANGUAGE BangPatterns #-}

import Control.Concurrent (MVar, putMVar, takeMVar)
import Control.Exception (block, catch, throw, unblock)
import Prelude hiding (catch) -- use Control.Exception's version

modifyMVar_strict :: MVar a -> (a -> IO a) -> IO ()
modifyMVar_strict m io = block $ do
  a <- takeMVar m
  !b <- unblock (io a) `catch` \e ->
        putMVar m a >> throw e
  putMVar m b

It’s always worth checking Hackage
In the Hackage package database, you will find a library,
strict-concurrency, that provides strict versions of the MVar and Chan
types.

The ! pattern in the preceding code is simple to use, but it is not always sufficient to
ensure that our data is evaluated. For a more complete approach, see “Separating Al-
gorithm from Evaluation” on page 552.

Chan Is Unbounded
Because writeChan always succeeds immediately, there is a potential risk to using a
Chan. If one thread writes to a Chan more often than another thread reads from it, the
Chan will grow in an unchecked manner: unread messages will pile up as the reader falls
further and further behind.

Shared-State Concurrency Is Still Hard
Although Haskell has different primitives for sharing data between threads than other
languages, it still suffers from the same fundamental problem: writing correct
concurrent programs is fiendishly difficult. Indeed, several pitfalls of concurrent
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programming in other languages apply equally to Haskell. Two of the better-known
problems are deadlock and starvation.

Deadlock
In a deadlock situation, two or more threads get stuck forever in a clash over access to
shared resources. One classic way to make a multithreaded program deadlock is to
forget the order in which we must acquire locks. This kind of bug is so common, it has
a name: lock order inversion. While Haskell doesn’t provide locks, the MVar type is prone
to the order inversion problem. Here’s a simple example:

-- file: ch24/LockHierarchy.hs
import Control.Concurrent

nestedModification outer inner = do
  modifyMVar_ outer $ \x -> do
    yield  -- force this thread to temporarily yield the CPU
    modifyMVar_ inner $ \y -> return (y + 1)
    return (x + 1)
  putStrLn "done"

main = do
  a <- newMVar 1
  b <- newMVar 2
  forkIO $ nestedModification a b
  forkIO $ nestedModification b a

If we run this in ghci, it will usually—but not always—print nothing, indicating that
both threads have gotten stuck.

The problem with the nestedModification function is easy to spot. In the first thread,
we take the MVar a, then b. In the second, we take b, then a. If the first thread succeeds
in taking a and the second takes b, both threads will block; each tries to take an MVar
that the other has already emptied, so neither can make progress.

Across languages, the usual way to solve an order inversion problem is to always follow
a consistent order when acquiring resources. Since this approach requires manual ad-
herence to a coding convention, it is easy to miss in practice.

To make matters more complicated, these kinds of inversion problems can be difficult
to spot in real code. The taking of MVars is often spread across several functions in
different files, making visual inspection more tricky. Worse, these problems are often
intermittent, which makes them tough to even reproduce, never mind isolate and fix.

Starvation
Concurrent software is also prone to starvation, in which one thread “hogs” a shared
resource, preventing another from using it. It’s easy to imagine how this might occur:
one thread calls modifyMVar with a body that executes for 100 milliseconds, while an-
other calls modifyMVar on the same MVar with a body that executes for 1 millisecond.
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The second thread cannot make progress until the first puts a value back into the
MVar.

The nonstrict nature of the MVar type can either cause or exacerbate a starvation prob-
lem. If we put a thunk into an MVar that will be expensive to evaluate, and then take it
out of the MVar in a thread that otherwise looks like it ought to be cheap, that thread
could suddenly become computationally expensive if it has to evaluate the thunk. This
makes the advice we gave in “MVar and Chan Are Nonstrict” on page 539 particularly
relevant.

Is There Any Hope?
Fortunately, the APIs for concurrency that we have covered here are by no means the
end of the story. A more recent addition to Haskell, software transactional memory
(STM), is both easier and safer to work with. We will discuss it in Chapter 28.

E X E R C I S E S

1. The Chan type is implemented using MVars. Use MVars to develop a BoundedChan
library.

Your newBoundedChan function should accept an Int parameter, limiting the num-
ber of unread items that can be present in a BoundedChan at once.

If this limit is hit, a call to your writeBoundedChan function must block until a reader
uses readBoundedChan to consume a value.

2. Although we’ve already mentioned the existence of the strict-concurrency pack-
age in the Hackage repository, try developing your own, as a wrapper around the
built-in MVar type. Following classic Haskell practice, make your library type safe,
so that users cannot accidentally mix uses of strict and nonstrict MVars.

Using Multiple Cores with GHC
By default, GHC generates programs that use just one core, even when we write ex-
plicitly concurrent code. To use multiple cores, we must explicitly choose to do so. We
make this choice at link time, when we are generating an executable program:

• The nonthreaded runtime library runs all Haskell threads in a single operating sys-
tem thread. This runtime is highly efficient for creating threads and passing data
around in MVars.

• The threaded runtime library uses multiple operating system threads to run Haskell
threads. It has somewhat more overhead for creating threads and using MVars.

If we pass the -threaded option to the compiler, it will link our program against the
threaded runtime library. We do not need to use -threaded when we are compiling
libraries or source files—only when we are finally generating an executable.
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Even when we select the threaded runtime for our program, it will still default to using
only one core when we run it. We must explicitly tell the runtime how many cores to
use.

Runtime Options
We can pass options to GHC’s runtime system on the command line of our program.
Before handing control to our code, the runtime scans the program’s arguments for the
special command-line option +RTS. It interprets everything that follows (until the special
option -RTS) as an option for the runtime system, not our program. It hides all of these
options from our code. When we use the System.Environment module’s getArgs func-
tion to obtain our command-line arguments, we will not find any runtime options in
the list.

The threaded runtime accepts an option -N.† This takes one argument, which specifies
the number of cores that GHC’s runtime system should use. The option parser is picky:
there cannot be any spaces between -N and the number that follows it. The option
-N4 is acceptable, but -N 4 is not.

Finding the Number of Available Cores from Haskell
The module GHC.Conc exports a variable, numCapabilities, that tells us how many cores
the runtime system has been given with the -N RTS option:

-- file: ch24/NumCapabilities.hs
import GHC.Conc (numCapabilities)
import System.Environment (getArgs)

main = do
  args <- getArgs
  putStrLn $ "command line arguments: " ++ show args
  putStrLn $ "number of cores: " ++ show numCapabilities

If we compile and run this program, we can see that the options to the runtime system
are not visible to the program, but we can see how many cores it can run on:

$ ghc -c NumCapabilities.hs
$ ghc -threaded -o NumCapabilities NumCapabilities.o
$ ./NumCapabilities +RTS -N4 -RTS foo
command line arguments: ["foo"]
number of cores: 4

† The nonthreaded runtime does not understand this option and will reject it with an error message.
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Choosing the Right Runtime
The decision of which runtime to use is not completely clear cut. While the threaded
runtime can use multiple cores, it has a cost: threads and sharing data between them
are more expensive than with the nonthreaded runtime.

Furthermore, the garbage collector used by GHC as of version 6.8.3 is single-threaded:
it pauses all other threads while it runs and executes on one core. This limits the per-
formance improvement we can hope to see from using multiple cores.‡ In many real-
world concurrent programs, an individual thread will spend most of its time waiting
for a network request or response. In these cases, if a single Haskell program serves
tens of thousands of concurrent clients, the lower overhead of the nonthreaded runtime
may be helpful. For example, instead of having a single server program use the threaded
runtime on four cores, we might see better performance if we design our server so that
we can run four copies of it simultaneously and use the nonthreaded runtime.

Our purpose here is not to dissuade you from using the threaded runtime. It is not
much more expensive than the nonthreaded runtime—threads remain amazingly cheap
compared to the runtimes of most other programming languages. We merely want to
make it clear that switching to the threaded runtime will not necessarily result in an
automatic win.

Parallel Programming in Haskell
We will now switch our focus to parallel programming. For many computationally
expensive problems, we could calculate a result more quickly if we could divide the
solution and evaluate it on many cores at once. Computers with multiple cores are
already ubiquitous, but few programs can take advantage of the computing power of
even a modern laptop.

In large part, this is because parallel programming is traditionally seen as very difficult.
In a typical programming language, we would use the same libraries and constructs
that we apply to concurrent programs to develop a parallel program. This forces us to
contend with the familiar problems of deadlocks, race conditions, starvation, and sheer
complexity.

While we could certainly use Haskell’s concurrency features to develop parallel code,
there is a much simpler approach available to us. We can take a normal Haskell func-
tion, apply a few simple transformations to it, and have it evaluated in parallel.

‡ As of this writing, the garbage collector is being retooled to use multiple cores, but we cannot yet predict its
future effect.
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Normal Form and Head Normal Form
The familiar seq function evaluates an expression to what we call head normal form
(HNF). It stops once it reaches the outermost constructor (the head). This is distinct
from normal form (NF), in which an expression is completely evaluated.

You will also hear Haskell programmers refer to weak head normal form (WHNF). For
normal data, weak head normal form is the same as head normal form. The difference
arises only for functions and is too abstruse to concern us here.

Sequential Sorting
Here is a normal Haskell function that sorts a list using a divide-and-conquer approach:

-- file: ch24/Sorting.hs
sort :: (Ord a) => [a] -> [a]
sort (x:xs) = lesser ++ x:greater
    where lesser  = sort [y | y <- xs, y <  x]
          greater = sort [y | y <- xs, y >= x]
sort _ = []

This function is inspired by the well-known Quicksort algorithm, and it is a classic
among Haskell programmers. It is often presented as a one-liner early in a Haskell
tutorial to tease the reader with an example of Haskell’s expressiveness. Here, we’ve
split the code over a few lines, in order to make it easier to compare the serial and
parallel versions.

Here is a very brief description of how sort operates:

1. It chooses an element from the list. This is called the pivot. Any element would do
as the pivot; the first is merely the easiest to pattern match on.

2. It creates a sublist of all elements less than the pivot and recursively sorts them.

3. It creates a sublist of all elements greater than or equal to the pivot and recursively
sorts them.

4. It appends the two sorted sublists.

Transforming Our Code into Parallel Code
The parallel version of the function is only a little more complicated than the initial
version:

-- file: ch24/Sorting.hs
module Sorting where

import Control.Parallel (par, pseq)

parSort :: (Ord a) => [a] -> [a]
parSort (x:xs)    = force greater `par` (force lesser `pseq`
                                         (lesser ++ x:greater))
    where lesser  = parSort [y | y <- xs, y <  x]
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          greater = parSort [y | y <- xs, y >= x]
parSort _         = []

We have barely perturbed the code—all we have added are three functions: par, pseq,
and force.

The par function is provided by the Control.Parallel module. It serves a similar pur-
pose to seq. It evaluates its left argument to WHNF and returns its right. As its name
suggests, par can evaluate its left argument in parallel with whatever other evaluations
are occurring.

As for pseq, it is similar to seq: it evaluates the expression on the left to WHNF before
returning the expression on the right. The difference between the two is subtle but
important for parallel programs: the compiler does not promise to evaluate the left
argument of seq if it can see that evaluating the right argument first would improve
performance. This flexibility is fine for a program executing on one core, but it is not
strong enough for code running on multiple cores. In contrast, the compiler guaran-
tees that pseq will evaluate its left argument before its right.

These changes to our code are remarkable for all the things we have not needed to say:

• How many cores to use

• What threads do to communicate with each other

• How to divide up work among the available cores

• Which data are shared between threads, and which are private

• How to determine when all the participants are finished

Knowing What to Evaluate in Parallel
The key to getting decent performance out of parallel Haskell code is to find meaningful
chunks of work to perform in parallel. Nonstrict evaluation can get in the way of this,
which is why we use the force function in our parallel sort. To best explain what the
force function is for, we will first look at a mistaken example:

-- file: ch24/Sorting.hs
sillySort (x:xs) = greater `par` (lesser `pseq`
                                  (lesser ++ x:greater))
    where lesser   = sillySort [y | y <- xs, y <  x]
          greater  = sillySort [y | y <- xs, y >= x]
sillySort _        = []

Take a look at the small changes in each use of par. Instead of force lesser and force
greater, here we evaluate lesser and greater.

Remember that evaluation to WHNF computes only enough of an expression to see
its outermost constructor. In this mistaken example, we evaluate each sorted sublist to
WHNF. Since the outermost constructor in each case is just a single list constructor,
we are in fact forcing only the evaluation of the first element of each sorted sublist!
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Every other element of each list remains unevaluated. In other words, we do almost no
useful work in parallel: our sillySort is nearly completely sequential.

We avoid this with our force function by forcing the entire spine of a list to be evaluated
before we give back a constructor:

-- file: ch24/Sorting.hs
force :: [a] -> ()
force xs = go xs `pseq` ()
    where go (_:xs) = go xs
          go [] = 1

Notice that we don’t care what’s in the list; we walk down its spine to the end, and
then use pseq once. There is clearly no magic involved here—we are just using our usual
understanding of Haskell’s evaluation model. And because we will be using force on
the lefthand side of par or pseq, we don’t need to return a meaningful value.

Of course, in many cases, we will need to force the evaluation of individual elements
of the list, too. Below, we will discuss a typeclass-based solution to this problem.

What Promises Does par Make?
The par function does not actually promise to evaluate an expression in parallel with
another. Instead, it undertakes to do so if it “makes sense.” This wishy-washy non-
promise is actually more useful than a guarantee to always evaluate an expression in
parallel. It gives the runtime system the freedom to act intelligently when it encounters
par.

For instance, the runtime could decide that an expression is too cheap to be worth
evaluating in parallel. Or it might notice that all cores are currently busy so that
“sparking” a new parallel evaluation would lead to more runnable threads than there
are cores available to execute them.

This lax specification in turn affects how we write parallel code. Since par may be
somewhat intelligent at runtime, we can use it almost wherever we like, on the as-
sumption that performance will not be bogged down by threads contending for busy
cores.

Running Our Code and Measuring Performance
To try our code out, let’s save sort, parSort, and parSort2 to a module named Sort
ing.hs. We create a small driver program that we can use to time the performance of
one of those sorting functions:

-- file: ch24/SortMain.hs

module Main where

import Data.Time.Clock (diffUTCTime, getCurrentTime)
import System.Environment (getArgs)
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import System.Random (StdGen, getStdGen, randoms)

import Sorting

-- testFunction = sort
-- testFunction = seqSort
testFunction = parSort
-- testFunction = parSort2 2

randomInts :: Int -> StdGen -> [Int]
randomInts k g = let result = take k (randoms g)
                 in force result `seq` result

main = do
  args <- getArgs
  let count | null args = 500000
            | otherwise = read (head args)
  input <- randomInts count `fmap` getStdGen
  putStrLn $ "We have " ++ show (length input) ++ " elements to sort."
  start <- getCurrentTime
  let sorted = testFunction input
  putStrLn $ "Sorted all " ++ show (length sorted) ++ " elements."
  end <- getCurrentTime
  putStrLn $ show (end `diffUTCTime` start) ++ " elapsed."

For simplicity, we choose the sorting function to benchmark at compilation time, via
the testFunction variable.

Our program accepts a single, optional command-line argument, the length of the ran-
dom list to generate.

Nonstrict evaluation can turn performance measurement and analysis into something
of a minefield. Here are some potential problems that we specifically work to avoid in
our driver program:

Measuring several things when we think we are looking at just one
Haskell’s default pseudorandom number generator (PRNG) is slow, and the
randoms function generates random numbers on demand.

Before we record our starting time, we force every element of the input list to be
evaluated, and we print the length of the list. This ensures that we create all of the
random numbers that we will need in advance.

If we were to omit this step, we would interleave the generation of random numbers
with attempts to work with them in parallel. We would thus be measuring both
the cost of sorting the numbers and, less obviously, the cost of generating them.

Invisible data dependencies
When we generate the list of random numbers, simply printing the length of the
list would not perform enough evaluation. This would evaluate the spine of the list,
but not its elements. The actual random numbers would not be evaluated until the
sort compares them.

548 | Chapter 24: Concurrent and Multicore Programming



This can have serious consequences for performance. The value of a random num-
ber depends on the value of the preceding random number in the list, but we have
scattered the list elements randomly among our processor cores. If we did not
evaluate the list elements prior to sorting, we would suffer a terrible “ping pong”
effect: not only would evaluation bounce from one core to another, performance
would suffer.

Try snipping out the application of force from the body of main. You should find
that the parallel code can easily end up three times slower than the nonparallel code.

Benchmarking a thunk when we believe that the code is performing meaningful work
To force the sort to take place, we print the length of the result list before we record
the ending time. Without putStrLn demanding the length of the list in order to
print it, the sort would not occur at all.

When we build the program, we enable optimization and ghc’s threaded runtime:

$ ghc -threaded -O2 --make SortMain
[1 of 2] Compiling Sorting          ( Sorting.hs, Sorting.o )
[2 of 2] Compiling Main             ( SortMain.hs, SortMain.o )
Linking SortMain ...

When we run the program, we must tell ghc’s runtime how many cores to use. Initially,
we try the original sort, in order to establish a performance baseline:

$ ./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.178941s elapsed.

Enabling a second core ought to have no effect on performance:

$ ./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.259869s elapsed.

If we recompile and test the performance of parSort, the results are less than stellar:

$ ./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.915818s elapsed.
$ ./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
4.029781s elapsed.

We have gained nothing in performance. It seems that this could be due to one of two
factors: either par is intrinsically expensive or we are using it too much. To help us to
distinguish between the two possibilities, here is a sort that is identical to parSort, but
it uses pseq instead of par:
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-- file: ch24/Sorting.hs
seqSort :: (Ord a) => [a] -> [a]
seqSort (x:xs) = lesser `pseq` (greater `pseq`
                                (lesser ++ x:greater))
    where lesser  = seqSort [y | y <- xs, y <  x]
          greater = seqSort [y | y <- xs, y >= x]
seqSort _ = []

We also drop the use of force, so compared to our original sort, we should only be
measuring the cost of using pseq. What effect does pseq alone have on performance?

$ ./Sorting +RTS -N1 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
3.848295s elapsed.

This suggests that par and pseq have similar costs. What can we do to improve
performance?

Tuning for Performance
In our parSort, we perform twice as many applications of par as there are elements to
sort. While par is cheap, as we have seen, it is not free. When we recursively apply
parSort, we eventually apply par to individual list elements. At this fine granularity, the
cost of using par outweighs any possible usefulness. To reduce this effect, we switch
to our nonparallel sort after passing some threshold:

-- file: ch24/Sorting.hs
parSort2 :: (Ord a) => Int -> [a] -> [a]
parSort2 d list@(x:xs)
  | d <= 0     = sort list
  | otherwise = force greater `par` (force lesser `pseq`
                                     (lesser ++ x:greater))
      where lesser      = parSort2 d' [y | y <- xs, y <  x]
            greater     = parSort2 d' [y | y <- xs, y >= x]
            d' = d - 1
parSort2 _ _              = []

Here, we stop recursing and sparking new parallel evaluations at a controllable depth.
If we knew the size of the data we were dealing with, we could stop subdividing and
switch to the nonparallel code once we reached a sufficiently small amount of remaining
work:

$ ./Sorting +RTS -N2 -RTS 700000
We have 700000 elements to sort.
Sorted all 700000 elements.
2.947872s elapsed.

On a dual core system, this gives us roughly a 25% speedup. This is not a huge number,
but consider that we had to change only a few annotations in return for this performance
improvement.
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This sorting function is particularly resistant to good parallel performance. The amount
of memory allocation it performs forces the garbage collector to run frequently. We
can see the effect by running our program with the -sstderr RTS option, which prints
garbage collection statistics to the screen. This indicates that our program spends
roughly 40% of its time collecting garbage. Since the garbage collector in GHC 6.8 stops
all threads and runs on a single core, it acts as a bottleneck.

You can expect more impressive performance improvements from less allocation-heavy
code when you use par annotations. We have seen some simple numerical benchmarks
run 1.8 times faster on a dual core system than with a single core. As of this writing, a
parallel garbage collector is under development for GHC, which should help consid-
erably with the performance of allocation-heavy code on multicore systems.

Beware a GC bug in GHC 6.8.2
The garbage collector in release 6.8.2 of GHC has a bug that can cause
programs using par to crash. If you want to use par and you are using
6.8.2, we suggest upgrading to at least 6.8.3.

E X E R C I S E S

1. It can be difficult to determine when to switch from parSort2 to sort. An alternative
approach to the one we outline previously would be to decide based on the length
of a sublist. Rewrite parList2 so that it switches to sort if the list contains more
than some number of elements.

2. Measure the performance of the length-based approach and compare it with the
depth approach. Which gives better performance results?

Parallel Strategies and MapReduce
Within the programming community, one of the most famous software systems to
credit functional programming for inspiration is Google’s MapReduce infrastructure
for parallel processing of bulk data.

We can easily construct a greatly simplified, but still useful, Haskell equivalent. To
focus our attention, we will look at processing web server logfiles, which tend to be
both huge and plentiful.§As an example, here is a log entry for a page visit recorded by
the Apache Web Server. The entry originally filled one line—we split it across several
lines to fit:

201.49.94.87 - - [08/Jun/2008:07:04:20 -0500] "GET / HTTP/1.1"
200 2097 "http://en.wikipedia.org/wiki/Mercurial_(software)"
"Mozilla/5.0 (Windows; U; Windows XP 5.1; en-GB; rv:1.8.1.12)
Gecko/20080201 Firefox/2.0.0.12" 0 hgbook.red-bean.com

§ The genesis of this idea came from Tim Bray.
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While we could create a straightforward implementation without much effort, we will
resist the temptation to dive in. If we think about solving a class of problems instead
of a single one, we may end up with more widely applicable code.

When we develop a parallel program, we always face a few “bad penny” problems,
which turn up regardless of the underlying programming language. A few are described
here:

• Our algorithm quickly becomes obscured by the details of partitioning and com-
munication. This makes it difficult to understand code, which in turn makes mod-
ifying it risky.

• Choosing a grain size—the smallest unit of work parceled out to a core—can be
difficult. If the grain size is too small, cores spend so much of their time on book-
keeping that a parallel program can easily become slower than a serial counterpart.
If the grain size is too large, some cores may lie idle due to poor load balancing.

Separating Algorithm from Evaluation
In parallel Haskell code, the clutter that would arise from communication code in a
traditional language is replaced with the clutter of par and pseq annotations. As an
example, this function operates similarly to map, but evaluates each element to WHNF
in parallel as it goes:

-- file: ch24/ParMap.hs
import Control.Parallel (par)

parallelMap :: (a -> b) -> [a] -> [b]
parallelMap f (x:xs) = let r = f x
                       in r `par` r : parallelMap f xs
parallelMap _ _      = []

The type b might be a list or some other type for which evaluation to WHNF doesn’t
do a useful amount of work. We’d prefer not to have to write a special parallelMap for
lists and every other type that needs special handling.

To address this problem, we will begin by considering a simpler problem: how to force
a value to be evaluated. Here is a function that forces every element of a list to be
evaluated to WHNF:

-- file: ch24/ParMap.hs
forceList :: [a] -> ()
forceList (x:xs) = x `pseq` forceList xs
forceList _      = ()

Our function performs no computation on the list. (In fact, from examining its type
signature, we can tell that it cannot perform any computation, since it knows nothing
about the elements of the list.) Its only purpose is to ensure that the spine of the list is
evaluated to head normal form. The only place that it makes any sense to apply this
function is in the first argument of seq or par, as follows:
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-- file: ch24/ParMap.hs
stricterMap :: (a -> b) -> [a] -> [b]
stricterMap f xs = forceList xs `seq` map f xs

This still leaves us with the elements of the list evaluated only to WHNF. We address
this by adding a function as parameter that can force an element to be evaluated more
deeply:

-- file: ch24/ParMap.hs
forceListAndElts :: (a -> ()) -> [a] -> ()
forceListAndElts forceElt (x:xs) =
    forceElt x `seq` forceListAndElts forceElt xs
forceListAndElts _        _      = ()

The Control.Parallel.Strategies module generalizes this idea into something we can
use as a library. It introduces the idea of an evaluation strategy:

-- file: ch24/Strat.hs
type Done = ()

type Strategy a = a -> Done

An evaluation strategy performs no computation; it simply ensures that a value is eval-
uated to some extent. The simplest strategy is named r0, and does nothing at all:

-- file: ch24/Strat.hs
r0 :: Strategy a 
r0 _ = ()

Next is rwhnf, which evaluates a value to WHNF:

-- file: ch24/Strat.hs
rwhnf :: Strategy a 
rwhnf x = x `seq` ()

To evaluate a value to normal form, the module provides a typeclass with a method
named rnf:

-- file: ch24/Strat.hs
class NFData a where
  rnf :: Strategy a
  rnf = rwhnf

Remembering those names
If the names of these functions and types are not sticking in your head,
look at them as acronyms. The name rwhnf expands to reduce to weak
head normal form; NFData becomes normal form data; and so on.

For the basic types, such as Int, weak head normal form and normal form are the same
thing, which is why the NFData typeclass uses rwhnf as the default implementation of
rnf. For many common types, the Control.Parallel.Strategies module provides in-
stances of NFData:
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-- file: ch24/Strat.hs
instance NFData Char
instance NFData Int

instance NFData a => NFData (Maybe a) where
    rnf Nothing  = ()
    rnf (Just x) = rnf x

{- ... and so on ... -}

From these examples, it should be clear how you might write an NFData instance for a
type of your own. Your implementation of rnf must handle every constructor and apply
rnf to every field of a constructor.

Separating Algorithm from Strategy
From these strategy building blocks, we can construct more elaborate strategies. Many
are already provided by Control.Parallel.Strategies. For instance, parList applies an
evaluation strategy in parallel to every element of a list:

-- file: ch24/Strat.hs
parList :: Strategy a -> Strategy [a]
parList strat []     = ()
parList strat (x:xs) = strat x `par` (parList strat xs)

The module uses this to define a parallel map function:

-- file: ch24/Strat.hs
parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs `using` parList strat

This is where the code becomes interesting. On the left of using, we have a normal
application of map. On the right, we have an evaluation strategy. The using combinator
tells us how to apply a strategy to a value, allowing us to keep the code separate from
how we plan to evaluate it:

-- file: ch24/Strat.hs
using :: a -> Strategy a -> a
using x s = s x `seq` x

The Control.Parallel.Strategies module provides many other functions that enable
fine control over evaluation. For instance, parZipWith that applies zipWith in parallel,
using an evaluation strategy:

-- file: ch24/Strat.hs
vectorSum' :: (NFData a, Num a) => [a] -> [a] -> [a]
vectorSum' = parZipWith rnf (+)

Writing a Simple MapReduce Definition
We can quickly suggest a type for a mapReduce function by considering what it must do.
We need a map component, to which we will give the usual type a -> b. And we need
a reduce; this term is a synonym for fold. Rather than commit ourselves to using a
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specific kind of fold, we’ll use a more general type, [b] -> c. This type lets us use a left
or right fold, so we can choose the one that suits our data and processing needs.

If we plug these types together, the complete type looks like this:

-- file: ch24/MapReduce.hs
simpleMapReduce
    :: (a -> b)      -- map function
    -> ([b] -> c)    -- reduce function
    -> [a]           -- list to map over
    -> c

The code that goes with the type is extremely simple:

-- file: ch24/MapReduce.hs
simpleMapReduce mapFunc reduceFunc = reduceFunc . map mapFunc

MapReduce and Strategies
Our definition of simpleMapReduce is too simple to really be interesting. To make it
useful, we want to be able to specify that some of the work should occur in parallel.
We’ll achieve this using strategies, passing in a strategy for the map phase and one for
the reduction phase:

-- file: ch24/MapReduce.hs
mapReduce
    :: Strategy b    -- evaluation strategy for mapping
    -> (a -> b)      -- map function
    -> Strategy c    -- evaluation strategy for reduction
    -> ([b] -> c)    -- reduce function
    -> [a]           -- list to map over
    -> c

Both the type and the body of the function must grow a little in size to accommodate
the strategy parameters.

-- file: ch24/MapReduce.hs
mapReduce mapStrat mapFunc reduceStrat reduceFunc input =
    mapResult `pseq` reduceResult
  where mapResult    = parMap mapStrat mapFunc input
        reduceResult = reduceFunc mapResult `using` reduceStrat

Sizing Work Appropriately
To achieve decent performance, we must ensure that the work that we do per appli-
cation of par substantially outweighs its bookkeeping costs. If we are processing a huge
file, splitting it on line boundaries gives us far too little work compared to overhead.

We will develop a way to process a file in larger chunks in a later section. What should
those chunks consist of? Because a web server logfile ought to contain only ASCII text,
we will see excellent performance with a lazy ByteString. This type is highly efficient
and consumes little memory when we stream it from a file:
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-- file: ch24/LineChunks.hs
module LineChunks
    (
      chunkedReadWith
    ) where

import Control.Exception (bracket, finally)
import Control.Monad (forM, liftM)
import Control.Parallel.Strategies (NFData, rnf)
import Data.Int (Int64)
import qualified Data.ByteString.Lazy.Char8 as LB
import GHC.Conc (numCapabilities)
import System.IO

data ChunkSpec = CS {
      chunkOffset :: !Int64
    , chunkLength :: !Int64
    } deriving (Eq, Show)

withChunks :: (NFData a) =>
              (FilePath -> IO [ChunkSpec])
           -> ([LB.ByteString] -> a)
           -> FilePath
           -> IO a
withChunks chunkFunc process path = do
  (chunks, handles) <- chunkedRead chunkFunc path
  let r = process chunks
  (rnf r `seq` return r) `finally` mapM_ hClose handles
  
chunkedReadWith :: (NFData a) =>
                   ([LB.ByteString] -> a) -> FilePath -> IO a
chunkedReadWith func path =
    withChunks (lineChunks (numCapabilities * 4)) func path

We consume each chunk in parallel, taking careful advantage of lazy I/O to ensure that
we can stream these chunks safely.

Mitigating the risks of lazy I/O

Lazy I/O poses a few well-known hazards that we would like to avoid:

• We may invisibly keep a file handle open for longer than necessary by not forcing
the computation that pulls data from it to be evaluated. Since an operating system
will typically place a small, fixed limit on the number of files we can have open at
once, if we do not address this risk, we can accidentally starve some other part of
our program of file handles.

• If we do not explicitly close a file handle, the garbage collector will automatically
close it for us, but it may take a long time to notice that it should close the file
handle. This poses the same starvation risk mentioned earlier.
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• We can avoid starvation by explicitly closing a file handle. If we do so too early,
though, we can cause a lazy computation to fail if it expects to be able to pull more
data from a closed file handle.

On top of these well-known risks, we cannot use a single file handle to supply data to
multiple threads. A file handle has a single seek pointer that tracks the position from
which it should be reading, but when we want to read multiple chunks, each needs to
consume data from a different position in the file.

With these ideas in mind, let’s fill out the lazy I/O picture:

-- file: ch24/LineChunks.hs
chunkedRead :: (FilePath -> IO [ChunkSpec])
            -> FilePath
            -> IO ([LB.ByteString], [Handle])
chunkedRead chunkFunc path = do
  chunks <- chunkFunc path
  liftM unzip . forM chunks $ \spec -> do
    h <- openFile path ReadMode
    hSeek h AbsoluteSeek (fromIntegral (chunkOffset spec))
    chunk <- LB.take (chunkLength spec) `liftM` LB.hGetContents h
    return (chunk, h)

We avoid the starvation problem by explicitly closing file handles. We allow multiple
threads to read different chunks at once by supplying each one with a distinct file
handle, all reading the same file.

The final problem that we try to mitigate is that of a lazy computation having a file
handle closed behind its back. We use rnf to force all of our processing to complete
before we return from withChunks. We can then close our file handles explicitly, as they
should no longer be read from. If you must use lazy I/O in a program, it is often best
to “firewall” it like this so that it cannot cause problems in unexpected parts of your
code.

Processing chunks via a fold
We can adapt the fold-with-early-termination technique from “Another
Way of Looking at Traversal” on page 229 to stream-based file process-
ing. While this requires more work than the lazy I/O approach, it nicely
avoids the problems just discussed.

Efficiently Finding Line-Aligned Chunks
Since a server logfile is line-oriented, we need an efficient way to break a file into large
chunks, while making sure that each chunk ends on a line boundary. Since a chunk
might be tens of megabytes in size, we don’t want to scan all of the data in a chunk to
determine where its final boundary should be.

Our approach works whether we choose a fixed chunk size or a fixed number of chunks.
Here, we opt for the latter. We begin by seeking to the approximate position of the end
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of a chunk, and then scan forwards until we reach a newline character. We next start
the following chunk after the newline, and repeat the procedure:

-- file: ch24/LineChunks.hs
lineChunks :: Int -> FilePath -> IO [ChunkSpec]
lineChunks numChunks path = do
  bracket (openFile path ReadMode) hClose $ \h -> do
    totalSize <- fromIntegral `liftM` hFileSize h
    let chunkSize = totalSize `div` fromIntegral numChunks
        findChunks offset = do
          let newOffset = offset + chunkSize
          hSeek h AbsoluteSeek (fromIntegral newOffset)
          let findNewline off = do
                eof <- hIsEOF h
                if eof
                  then return [CS offset (totalSize - offset)]
                  else do
                    bytes <- LB.hGet h 4096
                    case LB.elemIndex '\n' bytes of
                      Just n -> do
                        chunks@(c:_) <- findChunks (off + n + 1)
                        let coff = chunkOffset c
                        return (CS offset (coff - offset):chunks)
                      Nothing -> findNewline (off + LB.length bytes)
          findNewline newOffset
    findChunks 0

The last chunk will end up a little shorter than its predecessors, but this difference will
be insignificant in practice.

Counting Lines
This simple example illustrates how to use the scaffolding we built:

-- file: ch24/LineCount.hs
module Main where

import Control.Monad (forM_)
import Data.Int (Int64)
import qualified Data.ByteString.Lazy.Char8 as LB
import System.Environment (getArgs)

import LineChunks (chunkedReadWith)
import MapReduce (mapReduce, rnf)

lineCount :: [LB.ByteString] -> Int64
lineCount = mapReduce rnf (LB.count '\n')
                      rnf sum

main :: IO ()
main = do
  args <- getArgs
  forM_ args $ \path -> do
    numLines <- chunkedReadWith lineCount path
    putStrLn $ path ++ ": " ++ show numLines
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If we compile this program with ghc -O2 --make -threaded, it should perform well after
an initial run to “warm” the filesystem cache. On a dual-core laptop processing a logfile
248 megabytes (1.1 million lines) in size, this program runs in 0.576 seconds using a
single core, and in 0.361 using two (using +RTS -N2).

Finding the Most Popular URLs
In this example, we count the number of times each URL is accessed. This example
comes from “MapReduce: simplified data processing on large clusters” by Jeffrey Dean
and Sanjay Ghemawat (http://labs.google.com/papers/mapreduce.html), Google’s orig-
inal paper discussing MapReduce. In the map phase, for each chunk, we create a Map
from a URL using the number of times it was accessed. In the reduce phase, we union-
merge these maps into one:

-- file: ch24/CommonURLs.hs
module Main where

import Control.Parallel.Strategies (NFData(..), rwhnf)
import Control.Monad (forM_)
import Data.List (foldl', sortBy)
import qualified Data.ByteString.Lazy.Char8 as L
import qualified Data.ByteString.Char8 as S
import qualified Data.Map as M
import Text.Regex.PCRE.Light (compile, match)

import System.Environment (getArgs)
import LineChunks (chunkedReadWith)
import MapReduce (mapReduce)

countURLs :: [L.ByteString] -> M.Map S.ByteString Int
countURLs = mapReduce rwhnf (foldl' augment M.empty . L.lines)
                      rwhnf (M.unionsWith (+))
  where augment map line =
            case match (compile pattern []) (strict line) [] of
              Just (_:url:_) -> M.insertWith' (+) url 1 map
              _ -> map
        strict  = S.concat . L.toChunks
        pattern = S.pack "\"(?:GET|POST|HEAD) ([^ ]+) HTTP/"

To pick a URL out of a line of the logfile, we use the bindings to the PCRE regular
expression library that we developed in Chapter 17.

Our driver function prints the 10 most popular URLs. As with the line-counting ex-
ample, this program runs about 1.8 times faster with two cores than with one, taking
1.7 seconds to process the a logfile containing 1.1 million entries.
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Conclusions
Given a problem that fits its model well, the MapReduce programming model lets us
write “casual” parallel programs in Haskell with good performance and minimal
additional effort. We can easily extend the idea to use other data sources, such as
collections of files or data sourced over the network.

In many cases, the performance bottleneck will be streaming data at a rate high enough
to keep up with a core’s processing capacity. For instance, if we try to use either of the
sample programs just shown on a file that is not cached in memory or streamed from
a high-bandwidth storage array, we will spend most of our time waiting for disk I/O,
gaining no benefit from multiple cores.
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CHAPTER 25

Profiling and Optimization

Haskell is a high-level language. A really high-level language. We can spend our days
programming entirely in abstractions, in monoids, functors, and hylomorphisms, far
removed from any specific hardware model of computation. The language specification
goes to great lengths to avoid prescribing any particular evaluation model. These layers
of abstraction let us treat Haskell as a notation for computation itself, letting us con-
centrate on the essence of the problem without getting bogged down in low-level
implementation decisions. We get to program in pure thought.

However, this is a book about real-world programming, and in the real world, code
runs on stock hardware with limited resources. Our programs will have time and space
requirements that we may need to enforce. As such, we need a good knowledge of how
our program data is represented, the precise consequences of using lazy or strict eval-
uation strategies, and techniques for analyzing and controlling space and time behavior.

In this chapter, we’ll look at typical space and time problems a Haskell programmer
might encounter and how to methodically analyze, understand, and address them. To
do this, we’ll use a range of techniques: time and space profiling, runtime statistics,
and reasoning about strict and lazy evaluation. We’ll also look at the impact of compiler
optimizations on performance and the use of advanced optimization techniques that
become feasible in a purely functional language. So let’s begin with a challenge: squash-
ing unexpected memory usage in some inocuous-looking code.

Profiling Haskell Programs
Let’s consider the following list manipulating program, which naively computes the
mean of some large list of values. While only a program fragment (and we’ll stress that
the particular algorithm we’re implementing is irrelevant here), it is representative of
real code that we might find in any Haskell program: typically concise list manipulation
code and heavy use of standard library functions. It also illustrates several common
performance trouble spots that can catch the unwary:
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-- file: ch25/A.hs
import System.Environment
import Text.Printf

main = do
    [d] <- map read `fmap` getArgs
    printf "%f\n" (mean [1..d])

mean :: [Double] -> Double
mean xs = sum xs / fromIntegral (length xs)

This program is very simple. We import functions for accessing the system’s environ-
ment (in particular, getArgs), and the Haskell version of printf, for formatted text
output. The program then reads a numeric literal from the command line, using that
to build a list of floating-point values, whose mean value we compute by dividing the
list sum by its length. The result is printed as a string. Let’s compile this source to native
code (with optimizations on) and run it with the time command to see how it performs:

$ ghc --make -O2 A.hs
[1 of 1] Compiling Main             ( A.hs, A.o )
Linking A ...
$ time ./A 1e5
50000.5
./A 1e5  0.05s user 0.01s system 102% cpu 0.059 total
$ time ./A 1e6
500000.5
./A 1e6  0.26s user 0.04s system 99% cpu 0.298 total
$ time ./A 1e7
5000000.5
./A 1e7  63.80s user 0.62s system 99% cpu 1:04.53 total

It worked well for small numbers, but the program really started to struggle with a list
size of 10 million. From this alone, we know something’s not quite right, but it’s unclear
what resources are being used. Let’s investigate.

Collecting Runtime Statistics
To get access to that kind of information, GHC lets us pass flags directly to the Haskell
runtime, using the special +RTS and -RTS flags to delimit arguments reserved for the
runtime system. The application itself won’t see those flags, as they’re immediately
consumed by the Haskell runtime system.

In particular, we can ask the runtime system to gather memory and garbage collector
performance numbers with the -s flag (as well as control the number of OS threads
with -N or tweak the stack and heap sizes). We’ll also use runtime flags to enable dif-
ferent varieties of profiling. The complete set of flags the Haskell runtime accepts is
documented in the GHC User’s Guide (http://www.haskell.org/ghc/docs/latest/html/
users_guide/).

So let’s run the program with statistic reporting enabled, via +RTS -sstderr, yielding
this result:
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$ ./A 1e7 +RTS -sstderr
./A 1e7 +RTS -sstderr 
5000000.5
1,689,133,824 bytes allocated in the heap
697,882,192 bytes copied during GC (scavenged)
465,051,008 bytes copied during GC (not scavenged)
382,705,664 bytes maximum residency (10 sample(s))

       3222 collections in generation 0 (  0.91s)
         10 collections in generation 1 ( 18.69s)

        742 Mb total memory in use

  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    0.63s  (  0.71s elapsed)
  GC    time   19.60s  ( 20.73s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
  Total time   20.23s  ( 21.44s elapsed)

  %GC time      96.9%  (96.7% elapsed)

  Alloc rate    2,681,318,018 bytes per MUT second

  Productivity   3.1% of total user, 2.9% of total elapsed

When using -sstderr, our program’s performance numbers are printed to the standard
error stream, giving us a lot of information about what our program is doing. In par-
ticular, it tells us how much time was spent in garbage collection and what the maxi-
mum live memory usage was. It turns out that to compute the mean of a list of 10
million elements, our program used a maximum of 742 megabytes on the heap, and
spent 96.9% of its time doing garbage collection! In total, only 3.1% of the program’s
running time was spent doing productive work.

So why is our program behaving so badly, and what can we do to improve it? After all,
Haskell is a lazy language—shouldn’t it be able to process the list in constant space?

Time Profiling
Thankfully, GHC comes with several tools to analyze a program’s time and space usage.
In particular, we can compile a program with profiling enabled, which, when run yields
useful information about what resources each function is using. Profiling proceeds in
three steps: compile the program for profiling, run it with particular profiling modes
enabled, and inspect the resulting statistics.

To compile our program for basic time and allocation profiling, we use the -prof flag.
We also need to tell the profiling code which functions we’re interested in profiling, by
adding cost centers to them. A cost center is a location in the program we’d like to collect
statistics about. GHC will generate code to compute the cost of evaluating the expres-
sion at each location. Cost centers can be added manually to instrument any expression,
using the SCC pragma:
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-- file: ch25/SCC.hs
mean :: [Double] -> Double
mean xs = {-# SCC "mean" #-} sum xs / fromIntegral (length xs)

Alternatively, we can have the compiler insert the cost centers on all top-level functions
for us by compiling with the -auto-all flag. Manual cost centers are a useful addition
to automated cost-center profiling, as once a hot spot is been identified, we can precisely
pin down the expensive subexpressions of a function.

One complication to be aware of is that in a lazy, pure language such as Haskell, values
with no arguments need only be computed once (for example, the large list in our
example program), and the result shared for later uses. Such values are not really part
of the call graph of a program, as they’re not evaluated on each call, but we would of
course still like to know how expensive their one-off cost of evaluation was. To get
accurate numbers for these values, known as constant applicative forms (CAFs), we use
the -caf-all flag.

Compiling our example program for profiling then (using the -fforce-recomp flag to
force full recompilation):

$ ghc -O2 --make A.hs -prof -auto-all -caf-all -fforce-recomp
[1 of 1] Compiling Main             ( A.hs, A.o )
Linking A ...

We can now run this annotated program with time profiling enabled (and we’ll use a
smaller input size for the time being, as the program now has additional profiling
overhead):

$ time ./A  1e6 +RTS -p
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./A 1e6 +RTS -p  1.11s user 0.15s system 95% cpu 1.319 total

The program ran out of stack space! This is the main complication to be aware of when
using profiling: adding cost centers to a program modifies how it is optimized, possibly
changing its runtime behavior, as each expression now has additional code associated
with it to track the evaluation steps. In a sense, observing the program that is executing
modifies how it executes. In this case, it is simple to proceed—we use the GHC runtime
flag, -K, to set a larger stack limit for our program (with the usual suffixes to indicate
magnitude):

$ time ./A 1e6 +RTS -p -K100M
500000.5
./A 1e6 +RTS -p -K100M  4.27s user 0.20s system 99% cpu 4.489 total

The runtime will dump its profiling information into a file, A.prof (named after the
binary that was executed), which contains the following information:

Time and Allocation Profiling Report  (Final)

       A +RTS -p -K100M -RTS 1e6

    total time  =        0.28 secs   (14 ticks @ 20 ms)
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    total alloc = 224,041,656 bytes  (excludes profiling overheads)

COST CENTRE  MODULE               %time %alloc

CAF:sum      Main                  78.6   25.0
CAF          GHC.Float             21.4   75.0

                                            individual    inherited
COST CENTRE MODULE         no.    entries  %time %alloc   %time %alloc

MAIN        MAIN            1           0   0.0    0.0   100.0  100.0
 main       Main          166           2   0.0    0.0     0.0    0.0
  mean      Main          168           1   0.0    0.0     0.0    0.0
 CAF:sum    Main          160           1  78.6   25.0    78.6   25.0
 CAF:lvl    Main          158           1   0.0    0.0     0.0    0.0
  main      Main          167           0   0.0    0.0     0.0    0.0
 CAF        Numeric       136           1   0.0    0.0     0.0    0.0
 CAF        Text.Read.Lex 135           9   0.0    0.0     0.0    0.0
 CAF        GHC.Read      130           1   0.0    0.0     0.0    0.0
 CAF        GHC.Float     129           1  21.4   75.0    21.4   75.0
 CAF        GHC.Handle    110           4   0.0    0.0     0.0    0.0

This gives us a view into the program’s runtime behavior. We can see the program’s
name and the flags we ran it with. The total time is time actually spent executing code
from the runtime system’s point of view, and the total allocation is the number of bytes
allocated during the entire program run (not the maximum live memory, which is
around 700 MB).

The second section of the profiling report is the proportion of time and space each
function was responsible for. The third section is the cost center report, structured as
a call graph (for example, we can see that mean was called from main). The “individual”
and “inherited” columns give us the resources a cost center was responsible for on its
own, and what it and its children were responsible for. Additionally, we see the one-
off costs of evaluating constants (such as the floating-point values in the large list and
the list itself) assigned to top-level CAFs.

What conclusions can we draw from this information? We can see that the majority of
time is spent in two CAFs, one related to computing the sum and another for floating-
point numbers. These alone account for nearly all allocations that occurred during the
program run. Combined with our earlier observation about garbage collector stress, it
begins to look like the list node allocations, containing floating-point values, are caus-
ing a problem.

For simple performance hot spot identification, particularly in large programs where
we might have little idea where time is being spent, the initial time profile can highlight
a particular problematic module and top-level function, which is often enough to reveal
the trouble spot. Once we’ve narrowed down the code to a problematic section, such
as our example here, we can use more sophisticated profiling tools to extract more
information.
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Space Profiling
Beyond basic time and allocation statistics, GHC is able to generate graphs of memory
usage of the heap, over the program’s lifetime. This is perfect for revealing space
leaks, where memory is retained unnecessarily, leading to the kind of heavy garbage
collector activity we see in our example.

Constructing a heap profile follows the same procedure as constructing a normal time
profile—namely, compile with -prof -auto-all -caf-all. But, when we execute the
program, we’ll ask the runtime system to gather more detailed heap use statistics. We
can break down the heap use information in several ways: via cost center, via module,
by constructor, or by data type. Each has its own insights. Heap profiling A.hs logs to
a file A.hp, with raw data that is in turn processed by the tool hp2ps, which generates
a PostScript-based, graphical visualization of the heap over time.

To extract a standard heap profile from our program, we run it with the -hc runtime flag:

$ time ./A 1e6 +RTS -hc -p -K100M
500000.5
./A 1e6 +RTS -hc -p -K100M  4.15s user 0.27s system 99% cpu 4.432 total

A heap profiling log, A.hp, was created, with the content in the following form:

JOB "A 1e6 +RTS -hc -p -K100M"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 0.24
(167)main/CAF:lvl   48
(136)Numeric.CAF    112
(166)main   8384
(110)GHC.Handle.CAF 8480
(160)CAF:sum    10562000
(129)GHC.Float.CAF  10562080
END_SAMPLE 0.24

Samples are taken at regular intervals during the program run. We can increase the
heap sampling frequency using -iN, where N is the number of seconds (e.g., 0.01) be-
tween heap size samples. Obviously, the more we sample, the more accurate the results,
but the slower our program will run. We can now render the heap profile as a graph,
using the hp2ps tool:

$ hp2ps -e8in -c A.hp

This produces the graph, in the file A.ps shown in Figure 25-1.
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Figure 25-1. The heap profile graph rises in a gently decreasing curve in the first half of the program’s
run, drops abruptly, then trails off during the remaining third.

What does this graph tell us? For one, the program runs in two phases, spending its
first half allocating increasingly large amounts of memory while summing values, and
the second half cleaning up those values. The initial allocation also coincides with
sum, doing some work, allocating a lot of data. We get a slightly different presentation
if we break down the allocation by type, using -hy profiling:

$ time ./A 1e6 +RTS -hy -p -K100M
500000.5
./A 1e6 +RTS -i0.001 -hy -p -K100M  34.96s user 0.22s system 99% cpu 35.237 total
$ hp2ps -e8in -c A.hp

This yields the graph shown in Figure 25-2.
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Figure 25-2. Heap profiling curve, broken down by data type. Values of unknown type account for
half of the first phase, with Double and lists split. The second phase is one third black holes, the rest
split between Double and lists.

The most interesting things to notice here are large parts of the heap devoted to values
of list type (the [] band) and heap-allocated Double values. There’s also some heap-
allocated data of unknown type (represented as data of type *). Finally, let’s break it
down by what constructors are being allocated, using the -hd flag:

$ time ./A 1e6 +RTS -hd -p -K100M
$ time ./A 1e6 +RTS -i0.001 -hd -p -K100M 
500000.5
./A 1e6 +RTS -i0.001 -hd -p -K100M  27.85s user 0.31s system 99% cpu 28.222 total

Our final graphic reveals the full story of what is going on. See Figure 25-3.
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Figure 25-3. The graph is similar in shape but reveals the unknown values to be lists.

A lot of work is going into allocating list nodes containing double-precision floating-
point values. Haskell lists are lazy, so the full million element list is built up over time.
Crucially, though, it is not being deallocated as it is traversed, leading to increasingly
large resident memory use. Finally, a bit over halfway through the program run, the
program finally finishes summing the list and starts calculating the length. If we look
at the original fragment for mean, we can see exactly why that memory is being retained:

-- file: ch25/Fragment.hs
mean :: [Double] -> Double
mean xs = sum xs / fromIntegral (length xs)

At first we sum our list, which triggers the allocation of list nodes, but we’re unable to
release the list nodes once we’re done, as the entire list is still needed by length. As
soon as sum is done though, and length starts consuming the list, the garbage collector
can chase it along, deallocating the list nodes, until we’re done. These two phases of
evaluation give two strikingly different phases of allocation and deallocation, and point
at exactly what we need to do: traverse the list once only, summing and averaging it as
we go.
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Controlling Evaluation
We have a number of options if we want to write our loop to traverse the list only once.
For example, we can write the loop as a fold over the list or via explicit recursion on
the list structure. Sticking to the high-level approaches, we’ll try a fold first:

-- file: ch25/B.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)     = foldl k (0, 0) xs
    k (n, s) x = (n+1, s+x)

Now, instead of taking the sum of the list and retaining the list until we can take its
length, we left-fold over the list, accumulating the intermediate sum and length values
in a pair (and we must left-fold, since a right-fold would take us to the end of the list
and work backwards, which is exactly what we’re trying to avoid).

The body of our loop is the k function, which takes the intermediate loop state and the
current element and returns a new state with the length increased by one and the sum
increased by the current element. When we run this, however, we get a stack overflow:

$ ghc -O2 --make B.hs -fforce-recomp
$ time ./B 1e6
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./B 1e6  0.44s user 0.10s system 96% cpu 0.565 total

We traded wasted heap for wasted stack! In fact, if we increase the stack size to the size
of the heap in our previous implementation, using the -K runtime flag, the program
runs to completion and has similar allocation figures:

$ ghc -O2 --make B.hs -prof -auto-all -caf-all -fforce-recomp
[1 of 1] Compiling Main             ( B.hs, B.o )
Linking B ...
$ time ./B 1e6 +RTS -i0.001 -hc -p -K100M
500000.5
./B 1e6 +RTS -i0.001 -hc -p -K100M  38.70s user 0.27s system 99% cpu 39.241 total

Generating the heap profile, we see all the allocation is now in mean. See Figure 25-4.
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Figure 25-4. Graph of stack usage. The curve is shaped like a hump, with mean representing 80%,
and GHC.Real.CAF the other 20%.

The question is: why are we building up more and more allocated state, when all we
are doing is folding over the list? This, it turns out, is a classic space leak due to excessive
laziness.

Strictness and Tail Recursion
The problem is that our left-fold, foldl, is too lazy. What we want is a tail-recursive
loop, which can be implemented effectively as a goto, with no state left on the stack.
In this case though, rather than fully reducing the tuple state at each step, a long chain
of thunks is being created, which is evaluated only towards the end of the program. At
no point do we demand reduction of the loop state, so the compiler is unable to infer
any strictness and must reduce the value purely lazily.

What we need to do is tune the evaluation strategy slightly—lazily unfolding the list,
but strictly accumulating the fold state. The standard approach here is to replace
foldl with foldl', from the Data.List module:

-- file: ch25/C.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)     = foldl' k (0, 0) xs
    k (n, s) x = (n+1, s+x)
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However, if we run this implementation, we see that we still haven’t quite got it right:

$ ghc -O2 --make C.hs
[1 of 1] Compiling Main             ( C.hs, C.o )
Linking C ...
$ time ./C 1e6
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize' to increase it.
./C 1e6  0.44s user 0.13s system 94% cpu 0.601 total

Still not strict enough! Our loop is continuing to accumulate unevaluated state on the
stack. The problem here is that foldl' is only outermost strict:

-- file: ch25/Foldl.hs
foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f z xs = lgo z xs
    where lgo z []     = z
          lgo z (x:xs) = let z' = f z x in z' `seq` lgo z' xs

This loop uses `seq` to reduce the accumulated state at each step, but only to the
outermost constructor on the loop state. That is, seq reduces an expression to weak
head normal form (WHNF). Evaluation stops on the loop state once the first construc-
tor is reached. In this case, the outermost constructor is the tuple wrapper, (,), which
isn’t deep enough. The problem is still the unevaluated numeric state inside the tuple.

Adding Strictness
There are a number of ways to make this function fully strict. We can, for example,
add our own strictness hints to the internal state of the tuple, yielding a truly tail-
recursive loop:

-- file: ch25/D.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)     = foldl' k (0, 0) xs
    k (n, s) x = n `seq` s `seq` (n+1, s+x)

In this variant, we step inside the tuple state and explicitly tell the compiler that each
state component should be reduced on each step. This gives us a version that does, at
last, run in constant space:

$ ghc -O2 D.hs --make
[1 of 1] Compiling Main             ( D.hs, D.o )
Linking D ...

If we run this, with allocation statistics enabled, we get the satisfying result:

$ time ./D 1e6 +RTS -sstderr
./D 1e6 +RTS -sstderr 
500000.5
256,060,848 bytes allocated in the heap
     43,928 bytes copied during GC (scavenged)
     23,456 bytes copied during GC (not scavenged)
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     45,056 bytes maximum residency (1 sample(s))

        489 collections in generation 0 (  0.00s)
          1 collections in generation 1 (  0.00s)

          1 Mb total memory in use

  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    0.12s  (  0.13s elapsed)
  GC    time    0.00s  (  0.00s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
  Total time    0.13s  (  0.13s elapsed)

  %GC time       2.6%  (2.6% elapsed)

  Alloc rate    2,076,309,329 bytes per MUT second

  Productivity  97.4% of total user, 94.8% of total elapsed

./D 1e6 +RTS -sstderr  0.13s user 0.00s system 95% cpu 0.133 total

Unlike our first version, this program is 97.4% efficient, spending only 2.6% of its time
doing garbage collection, and it runs in a constant 1 megabyte of space. It illustrates a
nice balance between mixed strict and lazy evaluation, with the large list unfolded lazily,
while we walk over it strictly. The result is a program that runs in constant space, and
does so quickly.

Normal form reduction

There are a number of other ways we could have addressed the strictness issue here.
For deep strictness, we can use the rnf function, part of the parallel strategies library
(along with using), which unlike seq reduces to the fully evaluated “normal form”
(hence its name). We can write as such a deep seq fold:

-- file: ch25/E.hs
import System.Environment
import Text.Printf
import Control.Parallel.Strategies

main = do
    [d] <- map read `fmap` getArgs
    printf "%f\n" (mean [1..d])

foldl'rnf :: NFData a => (a -> b -> a) -> a -> [b] -> a
foldl'rnf f z xs = lgo z xs
    where
        lgo z []     = z
        lgo z (x:xs) = lgo z' xs
            where
                z' = f z x `using` rnf

mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
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    (n, s)     = foldl'rnf k (0, 0) xs
    k (n, s) x = (n+1, s+x) :: (Int, Double)

We change the implementation of foldl' to reduce the state to normal form, using the
rnf strategy. This also raises an issue that we avoided earlier: the type inferred for the
loop accumulator state. Previously, we relied on type defaulting to infer a numeric,
integral type for the length of the list in the accumulator, but switching to rnf introduces
the NFData class constraint, and we can no longer rely on defaulting to set the length
type.

Bang patterns

Perhaps the cheapest way, syntactically, to add required strictness to code that’s ex-
cessively lazy is via bang patterns (whose name comes from pronunciation of the “!”
character as “bang”), a language extension introduced with the following pragma:

-- file: ch25/F.hs
{-# LANGUAGE BangPatterns #-}

With bang patterns, we can hint at strictness on any binding form, making the function
strict in that variable. Much as explicit type annotations can guide type inference, bang
patterns can help guide strictness inference. Bang patterns are a language extension and
are enabled with the BangPatterns language pragma. We can now rewrite the loop state
to be simply:

-- file: ch25/F.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    (n, s)       = foldl' k (0, 0) xs
    k (!n, !s) x = (n+1, s+x)

The intermediate values in the loop state are now strict, and the loop runs in constant
space:

$ ghc -O2 F.hs --make
$ time ./F 1e6 +RTS -sstderr
./F 1e6 +RTS -sstderr 
500000.5
256,060,848 bytes allocated in the heap
     43,928 bytes copied during GC (scavenged)
     23,456 bytes copied during GC (not scavenged)
     45,056 bytes maximum residency (1 sample(s))

        489 collections in generation 0 (  0.00s)
          1 collections in generation 1 (  0.00s)

          1 Mb total memory in use

  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    0.14s  (  0.15s elapsed)
  GC    time    0.00s  (  0.00s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
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  Total time    0.14s  (  0.15s elapsed)

  %GC time       0.0%  (2.3% elapsed)

  Alloc rate    1,786,599,833 bytes per MUT second

  Productivity 100.0% of total user, 94.6% of total elapsed

./F 1e6 +RTS -sstderr  0.14s user 0.01s system 96% cpu 0.155 total

In large projects, when we are investigating memory allocation hot spots, bang patterns
are the cheapest way to speculatively modify the strictness properties of some code, as
they’re syntactically less invasive than other methods.

Strict data types

Strict data types are another effective way to provide strictness information to the com-
piler. By default, Haskell data types are lazy, but it is easy enough to add strictness
information to the fields of a data type that then propagate through the program. We
can declare a new strict pair type, for example:

-- file: ch25/G.hs
data Pair a b = Pair !a !b

This creates a pair type whose fields will always be kept in WHNF. We can now rewrite
our loop as:

-- file: ch25/G.hs
mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    Pair n s       = foldl' k (Pair 0 0) xs
    k (Pair n s) x = Pair (n+1) (s+x)

This implementation again has the same efficient, constant space behavior. At this
point, to squeeze the last drops of performance out of this code, though, we have to
dive a bit deeper.

Understanding Core
Besides looking at runtime profiling data, one sure way to determine exactly what your
program is doing is to look at the final program source after the compiler is done
optimizing it, particularly in the case of Haskell compilers, which can perform very
aggressive transformations on the code. GHC uses what is humorously referred to as
“a simple functional language”—known as Core—as the compiler intermediate rep-
resentation. It is essentially a subset of Haskell, augmented with unboxed data types
(raw machine types, directly corresponding to primitive data types in languages such
as C), suitable for code generation. GHC optimizes Haskell by transformation, repeat-
edly rewriting the source into more and more efficient forms. The Core representation
is the final functional version of your program, before translation to low-level
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imperative code. In other words, Core has the final say, and if all-out performance is
your goal, it is worth understanding.

To view the Core version of our Haskell program, we compile with the -ddump-simpl
flag, or use the ghc-core tool, a third-party utility that lets us view Core in a pager. So
let’s look at the representation of our final fold using strict data types, in Core form:

$ ghc -O2 -ddump-simpl G.hs

A screenful of text is generated. If we look carefully at it, we’ll see a loop (here, cleaned
up slightly for clarity):

lgo :: Integer -> [Double] -> Double# -> (# Integer, Double #)

lgo = \ n xs s ->
    case xs of
      []       -> (# n, D# s #);
      (:) x ys ->
        case plusInteger n 1 of
            n' -> case x of
                D# y -> lgo n' ys (+## s y)

This is the final version of our foldl', and it tells us a lot about the next steps for
optimization. The fold itself has been entirely inlined, yielding an explicit recursive loop
over the list. The loop state, our strict pair, has disappeared entirely, and the function
now takes its length and sum accumulators as direct arguments along with the list.

The sum of the list elements is represented with an unboxed Double# value, a raw ma-
chine double kept in a floating-point register. This is ideal, as there will be no memory
traffic involved in keeping the sum on the heap. However, the length of the list—since
we gave no explicit type annotation—has been inferred to be a heap-allocated
Integer, which requires a nonprimitive plusInteger to perform addition. If it is algo-
rithmically sound to use a Int instead, we can replace Integer with it, via a type anno-
tation, and GHC will then be able to use a raw machine Int# for the length. We can
hope for an improvement in time and space by ensuring that both loop components
are unboxed and kept in registers.

The base case of the loop, its end, yields an unboxed pair (a pair allocated only in
registers), storing the final length of the list and the accumulated sum. Notice that the
return type is a heap-allocated Double value, indicated by the D# constructor, which lifts
a raw double value onto the heap. Again this has implications for performance, as GHC
will need to check that there is sufficient heap space available before it can allocate and
return from the loop.

We can use a custom pair type in the loop to make ghc return an unboxed Double#
value, which avoids this final heap check. In addition, ghc provides an optimization
that unboxes the strict fields of a data type, ensuring that the fields of the new pair type
will be stored in registers. This optimization is turned on with -funbox-strict-fields.

We can make both representation changes by replacing the polymorphic strict pair type
with one whose fields are fixed as Int and Double:
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-- file: ch25/H.hs
data Pair = Pair !Int !Double

mean :: [Double] -> Double
mean xs = s / fromIntegral n
  where
    Pair n s       = foldl' k (Pair 0 0) xs
    k (Pair n s) x = Pair (n+1) (s+x)

Compiling this with optimizations on and -funbox-strict-fields -ddump-simpl, we
get a tighter inner loop in Core:

lgo :: Int# -> Double# -> [Double] -> (# Int#, Double# #)
lgo = \ n s xs ->
    case xs of
      []       -> (# n, s #)
      (:) x ys ->
        case x of 
            D# y -> lgo (+# n 1) (+## s y) ys

Now the pair we use to represent the loop state is represented and returned as unboxed
primitive types and will be kept in registers. The final version now allocates heap mem-
ory for the list nodes only, as the list is lazily demanded. If we compile and run this
tuned version, we can compare the allocation and time performance against our original
program:

$ time ./H 1e7 +RTS -sstderr
./H 1e7 +RTS -sstderr 
5000000.5
1,689,133,824 bytes allocated in the heap
    284,432 bytes copied during GC (scavenged)
         32 bytes copied during GC (not scavenged)
     45,056 bytes maximum residency (1 sample(s))

       3222 collections in generation 0 (  0.01s)
          1 collections in generation 1 (  0.00s)

          1 Mb total memory in use

  INIT  time    0.00s  (  0.00s elapsed)
  MUT   time    0.63s  (  0.63s elapsed)
  GC    time    0.01s  (  0.02s elapsed)
  EXIT  time    0.00s  (  0.00s elapsed)
  Total time    0.64s  (  0.64s elapsed)

  %GC time       1.0%  (2.4% elapsed)

  Alloc rate    2,667,227,478 bytes per MUT second

  Productivity  98.4% of total user, 98.2% of total elapsed

./H 1e7 +RTS -sstderr  0.64s user 0.00s system 99% cpu 0.644 total

Our original program, when operating on a list of 10 million elements, took more than
a minute to run and allocated more than 700 megabytes of memory. The final version,
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using a simple higher order fold and a strict data type, however runs in around half a
second and allocates a total of 1 megabyte. Quite an improvement!

The general rules we can learn from the profiling and optimization process are:

• Compile to native code, with optimizations on.

• When in doubt, use runtime statistics and time profiling.

• If you suspect allocation problems, use heap profiling.

• A careful mixture of strict and lazy evaluation can yield the best results.

• Prefer strict fields for atomic data types (Int, Double, and similar types).

• Use data types with simpler machine representations (prefer Int over Integer).

These simple strategies are enough to identify and squash untoward memory use issues,
and when used wisely, can keep them from occurring in the first place.

Advanced Techniques: Fusion
The final bottleneck in our program is the lazy list itself. While we can avoid allocating
it all at once, there is still memory traffic each time around the loop, as we demand the
next cons cell in the list, allocate it to the heap, operate on it, and continue. The list
type is also polymorphic, so the elements of the list will be represented as heap-allocated
Double values.

What we’d like to do is eliminate the list entirely, keeping just the next element we
need in a register. Perhaps surprisingly, GHC is able to transform the list program into
a listless version, using an optimization known as deforestation, which refers to a gen-
eral class of optimizations that involve eliminating intermediate data structures. Due
to the absence of side effects, a Haskell compiler can be extremely aggressive when
rearranging code, reordering and transforming wholesale at times. The specific defor-
estation optimization we will use here is stream fusion.

This optimization transforms recursive list generation and transformation functions
into nonrecursive unfolds. When an unfold appears next to a fold, the structure
between them is then eliminated entirely, yielding a single, tight loop with no heap
allocation. The optimization isn’t enabled by default, and it can radically change the
complexity of a piece of code, but it is enabled by a number of data structure libraries,
which provide rewrite rules, custom optimizations, that the compiler applies to func-
tions that the library exports.

We’ll use the uvector library, which provides a suite of list-like operations that use
stream fusion to remove intermediate data structures. Rewriting our program to use
streams is straightforward:

-- file: ch25/I.hs
import System.Environment
import Text.Printf
import Data.Array.Vector
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main = do
    [d] <- map read `fmap` getArgs
    printf "%f\n" (mean (enumFromToFracU 1 d))

data Pair = Pair !Int !Double

mean :: UArr Double -> Double
mean xs = s / fromIntegral n
  where
    Pair n s       = foldlU k (Pair 0 0) xs
    k (Pair n s) x = Pair (n+1) (s+x)

After installing the uvector library from Hackage, we can build our program, with -O2
-funbox-strict-fields, and then inspect the Core that results:

fold :: Int# -> Double# -> Double# -> (# Int#, Double# #)
fold = \ n s t ->
    case >## t limit of {
      False -> fold (+# n 1) (+## s t) (+## t 1.0)
      True  -> (# n, s #)

This is really the optimal result! Our lists have been entirely fused away, yielding a tight
loop where list generation is interleaved with accumulation, and all input and output
variables are kept in registers. Running this, we see another improvement bump in
performance, with runtime falling by another order of magnitude:

$ time ./I 1e7
5000000.5
./I 1e7  0.06s user 0.00s system 72% cpu 0.083 total

Tuning the Generated Assembly
Given that our Core is now optimal, the only step left to take this program further is
to look directly at the assembly. Of course, there are only small gains left to make at
this point. To view the generated assembly, we can use a tool such as ghc-core or
generate assembly to standard output with the -ddump-asm flag to GHC. We have few
levers available to adjust the generated assembly, but we may choose between the C
and native code backends to GHC. And, if we then choose the C backend, which op-
timization flags to pass to GCC. Particularly with floating-point code, it is sometimes
useful to compile via C, and enable specific high-performance C compiler
optimizations.

For example, we can squeeze out the last drops of performance from our final fused
loop code by using -funbox-strict-fields -fvia-C -optc-O2, which cuts the running
time in half again (as the C compiler is able to optimize away some redundant move
instructions in the program’s inner loop):

$ ghc -fforce-recomp --make -O2 -funbox-strict-fields -fvia-C -optc-O2 I.hs
[1 of 1] Compiling Main             ( I.hs, I.o )
Linking I ...
$ time ./I 1e7

Advanced Techniques: Fusion | 579



5000000.5
./I 1e7  0.04s user 0.00s system 98% cpu 0.047 total

Inspecting the final x86_64 assembly (via -keep-tmp-files), we see the generated loop
contains only six instructions:

go:
  ucomisd     5(%rbx), %xmm6
  ja  .L31
  addsd       %xmm6, %xmm5
  addq        $1, %rsi
  addsd       .LC0(%rip), %xmm6
  jmp go

We’ve effectively massaged the program through multiple source-level optimizations,
all the way to the final assembly. There’s nowhere else to go from here. Optimizing
code to this level is very rarely necessary, of course, and typically makes sense only
when writing low-level libraries or optimizing particularly important code, where all
algorithm choices have already been determined. For day-to-day code, choosing better
algorithms is always a more effective strategy, but it’s useful to know we can optimize
down to the metal if necessary.

Conclusions
In this chapter, we’ve looked at a suite of tools and techniques you can use to track
down and identify problematic areas of your code, along with a variety of conventions
that can go a long way towards keeping your code lean and efficient. The goal is really
to program in such a way that you have good knowledge of what your code is doing at
all levels from source through the compiler to the metal, and to be able to focus in on
particular levels when requirements demand.

By sticking to simple rules, choosing the right data structures, and avoiding the traps
of the unwary, it is perfectly possible to reliably achieve high performance from your
Haskell code, while being able to develop at a very high level. The result is a sweet
balance of productivity and ruthless efficiency.
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CHAPTER 26

Advanced Library Design:
Building a Bloom Filter

Introducing the Bloom Filter
A Bloom filter is a set-like data structure that is highly efficient in its use of space. It
supports two operations only: insertion and membership querying. Unlike a normal
set data structure, a Bloom filter can give incorrect answers. If we query it to see whether
an element that we have inserted is present, it will answer affirmatively. If we query for
an element that we have not inserted, it might incorrectly claim that the element is
present.

For many applications, a low rate of false positives is tolerable. For instance, the job of
a network traffic shaper is to throttle bulk transfers (e.g., BitTorrent) so that interactive
sessions (such as ssh sessions or games) see good response times. A traffic shaper might
use a Bloom filter to determine whether a packet belonging to a particular session is
bulk or interactive. If it misidentifies 1 in 10,000 bulk packets as interactive and fails
to throttle it, nobody will notice.

The attraction of a Bloom filter is its space efficiency. If we want to build a spell checker
and have a dictionary of 500,000 words, a set data structure might consume 20
megabytes of space. A Bloom filter, in contrast, would consume about half a megabyte,
at the cost of missing perhaps 1% of misspelled words.

Behind the scenes, a Bloom filter is remarkably simple. It consists of a bit array and a
handful of hash functions. We’ll use k for the number of hash functions. If we want to
insert a value into the Bloom filter, we compute k hashes of the value and turn on those
bits in the bit array. If we want to see whether a value is present, we compute k hashes
and check all of those bits in the array to see if they are turned on.
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To see how this works, let’s say we want to insert the strings "foo" and "bar" into a
Bloom filter that is 8 bits wide, and we have two hash functions:

1. Compute the two hashes of "foo", and get the values 1 and 6.

2. Set bits 1 and 6 in the bit array.

3. Compute the two hashes of "bar", and get the values 6 and 3.

4. Set bits 6 and 3 in the bit array.

This example should make it clear why we cannot remove an element from a Bloom
filter: both "foo" and "bar" resulted in bit 6 being set.

Suppose we now want to query the Bloom filter to see whether the values "quux" and
"baz" are present:

1. Compute the two hashes of "quux", and get the values 4 and 0.

2. Check bit 4 in the bit array. It is not set, so "quux" cannot be present. We do not
need to check bit 0.

3. Compute the two hashes of "baz" and get the values 1 and 3.

4. Check bit 1 in the bit array. It is set, as is bit 3, so we say that "baz" is present even
though it is not. We have reported a false positive.

For a survey of some of the uses of Bloom filters in networking, see “Network Appli-
cations of Bloom Filters: A Survey” by Andrei Broder and Michael Mitzenmacher (see
http://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf).

Use Cases and Package Layout
Not all users of Bloom filters have the same needs. In some cases, it suffices to create
a Bloom filter in one pass, and only query it afterwards. For other applications, we may
need to continue to update the Bloom filter after we create it. To accommodate these
needs, we will design our library with mutable and immutable APIs.

We will segregate the mutable and immutable APIs that we publish by placing them in
different modules: BloomFilter for the immutable code and BloomFilter.Mutable for
the mutable code.

In addition, we will create several “helper” modules that won’t provide parts of the
public API but will keep the internal code cleaner.

Finally, we will ask our API’s users to provide a function that can generate a number
of hashes of an element. This function will have the type a -> [Word32]. We will use
all of the hashes that this function returns, so the list must not be infinite!
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Basic Design
The data structure that we use for our Haskell Bloom filter is a direct translation of the
simple description we gave earlier—a bit array and a function that computes hashes:

-- file: BloomFilter/Internal.hs
module BloomFilter.Internal
    (
      Bloom(..)
    , MutBloom(..)
    ) where

import Data.Array.ST (STUArray)
import Data.Array.Unboxed (UArray)
import Data.Word (Word32)

data Bloom a = B {
      blmHash  :: (a -> [Word32])
    , blmArray :: UArray Word32 Bool
    }

When we create our Cabal package, we will not be exporting this
BloomFilter.Internal module. It exists purely to let us control the visibility of names.
We will import BloomFilter.Internal into both the mutable and immutable modules,
but we will re-export from each module only the type that is relevant to that module’s
API.

Unboxing, Lifting, and Bottom
Unlike other Haskell arrays, a UArray contains unboxed values.

For a normal Haskell type, a value can be either fully evaluated, an unevaluated thunk,
or the special value ⊥, pronounced (and sometimes written) bottom. The value ⊥ is a
placeholder for a computation that does not succeed. Such a computation could take
any of several forms. It could be an infinite loop, an application of error, or the special
value undefined.

A type that can contain ⊥ is referred to as lifted. All normal Haskell types are lifted. In
practice, this means that we can always write error "eek!" or undefined in place of a
normal expression.

This ability to store thunks or ⊥ comes with a performance cost: it adds an extra layer
of indirection. To see why we need this indirection, consider the Word32 type. A value
of this type is a full 32 bits wide, so on a 32-bit system, there is no way to directly encode
the value ⊥ within 32 bits. The runtime system has to maintain, and check, some extra
data to track whether the value is ⊥ or not.

An unboxed value does away with this indirection. In doing so, it gains performance
but sacrifices the ability to represent a thunk or ⊥. Since it can be denser than a normal
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Haskell array, an array of unboxed values is an excellent choice for numeric data and
bits.

GHC implements a UArray of Bool values by packing eight array elements into each
byte, so this type is perfect for our needs.

Boxing and lifting
The counterpart of an unboxed type is a boxed type, which uses
indirection. All lifted types are boxed, but a few low-level boxed types
are not lifted. For instance, GHC’s runtime system has a low-level array
type for which it uses boxing (i.e., it maintains a pointer to the array).
If it has a reference to such an array, it knows that the array must exist,
so it does not need to account for the possibility of ⊥. This array type is
thus boxed, but not lifted. Boxed but unlifted types show up only at the
lowest level of runtime hacking. We will never encounter them in nor-
mal use.

The ST Monad
Back in “Modifying Array Elements” on page 274, we mentioned that modifying an
immutable array is prohibitively expensive, as it requires copying the entire array. Using
a UArray does not change this, so what can we do to reduce the cost to bearable levels?

In an imperative language, we would simply modify the elements of the array in place
—this will be our approach in Haskell, too.

Haskell provides a special monad, named ST,* which lets us work safely with mutable
state. Compared to the State monad, it has some powerful added capabilities:

• We can thaw an immutable array to give a mutable array; modify the mutable array
in place; and freeze a new immutable array when we are done.

• We have the ability to use mutable references. This lets us implement data struc-
tures that we can modify after construction, as in an imperative language. This
ability is vital for some imperative data structures and algorithms, for which sim-
ilarly efficient, purely functional alternatives have not yet been discovered.

The IO monad also provides these capabilities. The major difference between the two
is that the ST monad is intentionally designed so that we can escape from it back into
pure Haskell code. We enter the ST monad via the execution function runST (in the
same way as most other Haskell monads do—except IO, of course), and we escape by
returning from runST.

When we apply a monad’s execution function, we expect it to behave repeatably: given
the same body and arguments, we must get the same results every time. This also applies

* The name ST is an acronym for state thread.
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to runST. To achieve this repeatability, the ST monad is more restrictive than the IO
monad. We cannot read or write files, create global variables, or fork threads. Indeed,
although we can create and work with mutable references and arrays, the type system
prevents them from escaping to the caller of runST. A mutable array must be frozen into
an immutable array before we can return it, and a mutable reference cannot escape at all.

Designing an API for Qualified Import
The public interfaces that we provide for working with Bloom filters are worth a little
discussion:

-- file: BloomFilter/Mutable.hs
module BloomFilter.Mutable
    (
      MutBloom
    , elem
    , notElem
    , insert
    , length
    , new
    ) where

import Control.Monad (liftM)
import Control.Monad.ST (ST)
import Data.Array.MArray (getBounds, newArray, readArray, writeArray)
import Data.Word (Word32)
import Prelude hiding (elem, length, notElem)

import BloomFilter.Internal (MutBloom(..))

We export several names that clash with names the Prelude exports. This is deliberate:
we expect users of our modules to import them with qualified names. This reduces the
burden on the memory of our users, as they should already be familiar with the Prelude’s
elem, notElem, and length functions.

When we use a module written in this style, we might often import it with a single-
letter prefix—for instance, as import qualified BloomFilter.Mutable as M. This would
allow us to write M.length, which stays compact and readable.

Alternatively, we could import the module unqualified and import the Prelude while
hiding the clashing names with import Prelude hiding (length). This is much less
useful, as it gives a reader skimming the code no local cue that she is not actually seeing
the Prelude’s length.

Of course, we seem to be violating this precept in our own module’s header: we import
the Prelude and hide some of the names it exports. There is a practical reason for this.
We define a function named length. If we export this from our module without first
hiding the Prelude’s length, the compiler will complain that it cannot tell whether to
export our version of length or the Prelude’s.

Designing an API for Qualified Import | 585



While we could export the fully qualified name BloomFilter.Mutable.length to elimi-
nate the ambiguity, that seems uglier in this case. This decision has no consequences
for someone using our module, just for ourselves as the authors of what ought to be a
“black box,” so there is little chance of confusion here.

Creating a Mutable Bloom Filter
We put type declaration for our mutable Bloom filter in the BloomFilter.Internal
module, along with the immutable Bloom type:

-- file: BloomFilter/Internal.hs
data MutBloom s a = MB {
      mutHash :: (a -> [Word32])
    , mutArray :: STUArray s Word32 Bool
    }

The STUArray type gives us a mutable unboxed array that we can work with in the ST
monad. To create an STUArray, we use the newArray function. The new function belongs
in the BloomFilter.Mutable function:

-- file: BloomFilter/Mutable.hs
new :: (a -> [Word32]) -> Word32 -> ST s (MutBloom s a)
new hash numBits = MB hash `liftM` newArray (0,numBits-1) False

Most of the methods of STUArray are actually implementations of the MArray typeclass,
which is defined in the Data.Array.MArray module.

Our length function is slightly complicated by two factors. We are relying on our bit
array’s record of its own bounds, and an MArray instance’s getBounds function has a
monadic type. We also have to add one to the answer, as the upper bound of the array
is one less than its actual length:

-- file: BloomFilter/Mutable.hs
length :: MutBloom s a -> ST s Word32
length filt = (succ . snd) `liftM` getBounds (mutArray filt)

To add an element to the Bloom filter, we set all of the bits indicated by the hash
function. We use the mod function to ensure that all of the hashes stay within the bounds
of our array, and isolate our code that computes offsets into the bit array in one function:

-- file: BloomFilter/Mutable.hs
insert :: MutBloom s a -> a -> ST s ()
insert filt elt = indices filt elt >>=
                  mapM_ (\bit -> writeArray (mutArray filt) bit True)

indices :: MutBloom s a -> a -> ST s [Word32]
indices filt elt = do
  modulus <- length filt
  return $ map (`mod` modulus) (mutHash filt elt)

Testing for membership is no more difficult. If every bit indicated by the hash function
is set, we consider an element to be present in the Bloom filter:
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-- file: BloomFilter/Mutable.hs
elem, notElem :: a -> MutBloom s a -> ST s Bool

elem elt filt = indices filt elt >>=
                allM (readArray (mutArray filt))

notElem elt filt = not `liftM` elem elt filt

We need to write a small supporting function—a monadic version of all, which we
will call allM:

-- file: BloomFilter/Mutable.hs
allM :: Monad m => (a -> m Bool) -> [a] -> m Bool
allM p (x:xs) = do
  ok <- p x
  if ok
    then allM p xs
    else return False
allM _ [] = return True

The Immutable API
Our interface to the immutable Bloom filter has the same structure as the mutable API:

-- file: ch26/BloomFilter.hs
module BloomFilter
    (
      Bloom
    , length
    , elem
    , notElem
    , fromList
    ) where

import BloomFilter.Internal
import BloomFilter.Mutable (insert, new)
import Data.Array.ST (runSTUArray)
import Data.Array.IArray ((!), bounds)
import Data.Word (Word32)
import Prelude hiding (elem, length, notElem)

length :: Bloom a -> Int
length = fromIntegral . len

len :: Bloom a -> Word32
len = succ . snd . bounds . blmArray

elem :: a -> Bloom a -> Bool
elt `elem` filt   = all test (blmHash filt elt)
  where test hash = blmArray filt ! (hash `mod` len filt)

notElem :: a -> Bloom a -> Bool
elt `notElem` filt = not (elt `elem` filt)
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We provide an easy-to-use means to create an immutable Bloom filter, via a fromList
function. This hides the ST monad from our users so that they see only the immutable
type:

-- file: ch26/BloomFilter.hs
fromList :: (a -> [Word32])    -- family of hash functions to use
         -> Word32             -- number of bits in filter
         -> [a]                -- values to populate with
         -> Bloom a
fromList hash numBits values =
    B hash . runSTUArray $
      do mb <- new hash numBits
         mapM_ (insert mb) values
         return (mutArray mb)

The key to this function is runSTUArray. We mentioned earlier that in order to return
an immutable array from the ST monad, we must freeze a mutable array. The
runSTUArray function combines execution with freezing. Given an action that returns
an STUArray, it executes the action using runST; freezes the STUArray that it returns; and
returns that as a UArray.

The MArray typeclass provides a freeze function that we could use instead, but
runSTUArray is both more convenient and more efficient. The efficiency lies in the fact
that freeze must copy the underlying data from the STUArray to the new UArray, in order
to ensure that subsequent modifications of the STUArray cannot affect the contents of
the UArray. Thanks to the type system, runSTUArray can guarantee that an STUArray is
no longer accessible when it uses it to create a UArray. It can thus share the underlying
contents between the two arrays, avoiding the copy.

Creating a Friendly Interface
Although our immutable Bloom filter API is straightforward to use once we have created
a Bloom value, the fromList function leaves some important decisions unresolved. We
still have to choose a function that can generate many hash values and determine what
the capacity of a Bloom filter should be:

-- file: BloomFilter/Easy.hs
easyList :: (Hashable a)
         => Double        -- false positive rate (between 0 and 1)
         -> [a]           -- values to populate the filter with
         -> Either String (B.Bloom a)

Here is a possible “friendlier” way to create a Bloom filter. It leaves responsibility for
hashing values in the hands of a typeclass, Hashable. It lets us configure the Bloom filter
based on a parameter that is easier to understand—namely the rate of false positives
that we are willing to tolerate. And it chooses the size of the filter for us, based on the
desired false positive rate and the number of elements in the input list.

This function will, of course, not always be usable—for example, it will fail if the length
of the input list is too long. However, its simplicity rounds out the other interfaces we
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provide. It lets us offer our users a range of control over creation, from entirely imper-
ative to completely declarative.

Re-Exporting Names for Convenience
In the export list for our module, we re-export some names from the base
BloomFilter module. This allows casual users to import only the BloomFilter.Easy
module and have access to all of the types and functions they are likely to need.

If we import both BloomFilter.Easy and BloomFilter, you might wonder what will
happen if we try to use a name exported by both. We already know that if we import
BloomFilter unqualified and try to use length, GHC will issue an error about ambiguity,
because the Prelude also makes the name length available.

The Haskell standard requires an implementation to be able to tell when several names
refer to the same “thing.” For instance, the Bloom type is exported by BloomFilter and
BloomFilter.Easy. If we import both modules and try to use Bloom, GHC will be able
to see that the Bloom re-exported from BloomFilter.Easy is the same as the one exported
from BloomFilter, and it will not report an ambiguity.

Hashing Values
A Bloom filter depends on fast, high-quality hashes for good performance and a low
false positive rate. It is surprisingly difficult to write a general purpose hash function
that has both of these properties.

Luckily for us, a fellow named Bob Jenkins developed some hash functions that have
exactly these properties, and he placed the code in the public domain at http://burtle
burtle.net/bob/hash/doobs.html.† He wrote his hash functions in C, so we can easily use
the FFI to create bindings to them. The specific source file that we need from that site
is named lookup3.c (http://burtleburtle.net/bob/c/lookup3.c). We create a cbits directory
and download it to there.

A little editing
On line 36 of the copy of lookup3.c that you just downloaded, there is
a macro named SELF_TEST defined. To use this source file as a library,
you must delete this line or comment it out. If you forget to do so, the
main function defined near the bottom of the file will supersede the
main of any Haskell program you link this library against.

There remains one hitch: we will frequently need 7 or even 10 hash functions. We really
don’t want to scrape together that many different functions, and fortunately we do not

† Jenkins’s hash functions have much better mixing properties than some other popular noncryptographic hash
functions that you might be familiar with, such as FNV and hashpjw, so we recommend avoiding them.
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need to. In most cases, we can get away with just two. We will see how shortly. The
Jenkins hash library includes two functions, hashword2 and hashlittle2, that compute
two hash values. Here is a C header file that describes the APIs of these two functions.
We save this to cbits/lookup3.h:

/* save this file as lookup3.h */

#ifndef _lookup3_h
#define _lookup3_h

#include <stdint.h>
#include <sys/types.h>

/* only accepts uint32_t aligned arrays of uint32_t */
void hashword2(const uint32_t *key,  /* array of uint32_t */
           size_t length,         /* number of uint32_t values */
           uint32_t *pc,         /* in: seed1, out: hash1 */
           uint32_t *pb);         /* in: seed2, out: hash2 */

/* handles arbitrarily aligned arrays of bytes */
void hashlittle2(const void *key,   /* array of bytes */
         size_t length,     /* number of bytes */
         uint32_t *pc,      /* in: seed1, out: hash1 */
         uint32_t *pb);     /* in: seed2, out: hash2 */

#endif /* _lookup3_h */

A salt is a value that perturbs the hash value that the function computes. If we hash the
same value with two different salts, we will get two different hashes. Since these func-
tions compute two hashes, they accept two salts.

Here are our Haskell bindings to these functions:

-- file: BloomFilter/Hash.hs
{-# LANGUAGE BangPatterns, ForeignFunctionInterface #-}
module BloomFilter.Hash
    (
      Hashable(..)
    , hash
    , doubleHash
    ) where

import Data.Bits ((.&.), shiftR)
import Foreign.Marshal.Array (withArrayLen)
import Control.Monad (foldM)
import Data.Word (Word32, Word64)
import Foreign.C.Types (CSize)
import Foreign.Marshal.Utils (with)
import Foreign.Ptr (Ptr, castPtr, plusPtr)
import Foreign.Storable (Storable, peek, sizeOf)
import qualified Data.ByteString as Strict
import qualified Data.ByteString.Lazy as Lazy
import System.IO.Unsafe (unsafePerformIO)

foreign import ccall unsafe "lookup3.h hashword2" hashWord2
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    :: Ptr Word32 -> CSize -> Ptr Word32 -> Ptr Word32 -> IO ()

foreign import ccall unsafe "lookup3.h hashlittle2" hashLittle2
    :: Ptr a -> CSize -> Ptr Word32 -> Ptr Word32 -> IO ()

We have specified that the definitions of the functions can be found in the lookup3.h
header file that we just created.

For convenience and efficiency, we will combine the 32-bit salts consumed, and the
hash values computed, by the Jenkins hash functions into a single 64-bit value:

-- file: BloomFilter/Hash.hs
hashIO :: Ptr a    -- value to hash
       -> CSize    -- number of bytes
       -> Word64   -- salt
       -> IO Word64
hashIO ptr bytes salt =
    with (fromIntegral salt) $ \sp -> do
      let p1 = castPtr sp
          p2 = castPtr sp `plusPtr` 4
      go p1 p2
      peek sp
  where go p1 p2
          | bytes .&. 3 == 0 = hashWord2 (castPtr ptr) words p1 p2
          | otherwise        = hashLittle2 ptr bytes p1 p2
        words = bytes `div` 4

Without explicit types around to describe what is happening, this code is not com-
pletely obvious. The with function allocates room for the salt on the C stack and stores
the current salt value in there, so sp is a Ptr Word64. The pointers p1 and p2 are
Ptr Word32; p1 points at the low word of sp, and p2 at the high word. This is how we
chop the single Word64 salt into two Ptr Word32 parameters.

Because all of our data pointers are coming from the Haskell heap, we know that they
will be aligned on an address that is safe to pass to either hashWord2 (which accepts only
32-bit-aligned addresses) or hashLittle2. Since hashWord32 is the faster of the two hash-
ing functions, we call it if our data is a multiple of 4 bytes in size; otherwise, we call
hashLittle2.

Since the C hash function will write the computed hashes into p1 and p2, we need only
to peek the pointer sp to retrieve the computed hash.

We don’t want clients of this module to be stuck fiddling with low-level details, so we
use a typeclass to provide a clean, high-level interface:

-- file: BloomFilter/Hash.hs
class Hashable a where
    hashSalt :: Word64        -- ^ salt
             -> a             -- ^ value to hash
             -> Word64

hash :: Hashable a => a -> Word64
hash = hashSalt 0x106fc397cf62f64d3
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We also provide a number of useful implementations of this typeclass. To hash basic
types, we must write a little boilerplate code:

-- file: BloomFilter/Hash.hs
hashStorable :: Storable a => Word64 -> a -> Word64
hashStorable salt k = unsafePerformIO . with k $ \ptr ->
                      hashIO ptr (fromIntegral (sizeOf k)) salt

instance Hashable Char   where hashSalt = hashStorable
instance Hashable Int    where hashSalt = hashStorable
instance Hashable Double where hashSalt = hashStorable

We might prefer to use the Storable typeclass to write just one declaration, as follows:

-- file: BloomFilter/Hash.hs
instance Storable a => Hashable a where
    hashSalt = hashStorable

Unfortunately, Haskell does not permit us to write instances of this form, as allowing
them would make the type system undecidable: they can cause the compiler’s type
checker to loop infinitely. This restriction on undecidable types forces us to write out
individual declarations. It does not, however, pose a problem for a definition such as
this one:

-- file: BloomFilter/Hash.hs
hashList :: (Storable a) => Word64 -> [a] -> IO Word64
hashList salt xs =
    withArrayLen xs $ \len ptr ->
      hashIO ptr (fromIntegral (len * sizeOf x)) salt
  where x = head xs

instance (Storable a) => Hashable [a] where
    hashSalt salt xs = unsafePerformIO $ hashList salt xs

The compiler will accept this instance, so we gain the ability to hash values of many
list types.‡ Most importantly, since Char is an instance of Storable, we can now hash
String values.

For tuple types, we take advantage of function composition. We take a salt in at one
end of the composition pipeline and use the result of hashing each tuple element as the
salt for the next element:

-- file: BloomFilter/Hash.hs
hash2 :: (Hashable a) => a -> Word64 -> Word64
hash2 k salt = hashSalt salt k

instance (Hashable a, Hashable b) => Hashable (a,b) where
    hashSalt salt (a,b) = hash2 b . hash2 a $ salt

instance (Hashable a, Hashable b, Hashable c) => Hashable (a,b,c) where
    hashSalt salt (a,b,c) = hash2 c . hash2 b . hash2 a $ salt

‡ Unfortunately, we do not have room to explain why one of these instances is decidable, but the other is not.
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To hash ByteString types, we write special instances that plug straight into the internals
of the ByteString types (this gives us excellent hashing performance):

-- file: BloomFilter/Hash.hs
hashByteString :: Word64 -> Strict.ByteString -> IO Word64
hashByteString salt bs = Strict.useAsCStringLen bs $ \(ptr, len) ->
                         hashIO ptr (fromIntegral len) salt

instance Hashable Strict.ByteString where
    hashSalt salt bs = unsafePerformIO $ hashByteString salt bs

rechunk :: Lazy.ByteString -> [Strict.ByteString]
rechunk s
    | Lazy.null s = []
    | otherwise   = let (pre,suf) = Lazy.splitAt chunkSize s
                    in  repack pre : rechunk suf
    where repack    = Strict.concat . Lazy.toChunks
          chunkSize = 64 * 1024

instance Hashable Lazy.ByteString where
    hashSalt salt bs = unsafePerformIO $
                       foldM hashByteString salt (rechunk bs)

Since a lazy ByteString is represented as a series of chunks, we must be careful with
the boundaries between those chunks. The string "foobar" can be represented in five
different ways—for example, ["fo","obar"] or ["foob","ar"]. This is invisible to most
users of the type, but not to us, as we use the underlying chunks directly. Our
rechunk function ensures that the chunks we pass to the C hashing code are a uniform
64 KB in size so that we will give consistent hash values no matter where the original
chunk boundaries lie.

Turning Two Hashes into Many
As we mentioned earlier, we need many more than two hashes to make effective use of
a Bloom filter. We can use a technique called double hashing to combine the two values
computed by the Jenkins hash functions, yielding many more hashes. The resulting
hashes are of good enough quality for our needs and far cheaper than computing many
distinct hashes:

-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = [h1 + h2 * i | i <- [0..num]]
    where h   = hashSalt 0x9150a946c4a8966e value
          h1  = fromIntegral (h `shiftR` 32) .&. maxBound
          h2  = fromIntegral h
          num = fromIntegral numHashes

Implementing the Easy Creation Function
In the BloomFilter.Easy module, we use our new doubleHash function to define the
easyList function whose type we defined earlier:
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-- file: BloomFilter/Easy.hs
module BloomFilter.Easy
    (
      suggestSizing
    , sizings
    , easyList

    -- re-export useful names from BloomFilter
    , B.Bloom
    , B.length
    , B.elem
    , B.notElem
    ) where

import BloomFilter.Hash (Hashable, doubleHash)
import Data.List (genericLength)
import Data.Maybe (catMaybes)
import Data.Word (Word32)
import qualified BloomFilter as B

easyList errRate values =
    case suggestSizing (genericLength values) errRate of
      Left err            -> Left err
      Right (bits,hashes) -> Right filt
        where filt = B.fromList (doubleHash hashes) bits values

This depends on a suggestSizing function that estimates the best combination of filter
size and number of hashes to compute, based on our desired false positive rate and the
maximum number of elements that we expect the filter to contain:

-- file: BloomFilter/Easy.hs
suggestSizing
    :: Integer       -- expected maximum capacity
    -> Double        -- desired false positive rate
    -> Either String (Word32,Int) -- (filter size, number of hashes)
suggestSizing capacity errRate
    | capacity <= 0                = Left "capacity too small"
    | errRate <= 0 || errRate >= 1 = Left "invalid error rate"
    | null saneSizes               = Left "capacity too large"
    | otherwise                    = Right (minimum saneSizes)
  where saneSizes = catMaybes . map sanitize $ sizings capacity errRate
        sanitize (bits,hashes)
          | bits > maxWord32 - 1 = Nothing
          | otherwise            = Just (ceiling bits, truncate hashes)
          where maxWord32 = fromIntegral (maxBound :: Word32)

sizings :: Integer -> Double -> [(Double, Double)]
sizings capacity errRate =
    [(((-k) * cap / log (1 - (errRate ** (1 / k)))), k) | k <- [1..50]]
  where cap = fromIntegral capacity

We perform some rather paranoid checking. For instance, the sizings function suggests
pairs of array size and hash count, but it does not validate its suggestions. Since we use
32-bit hashes, we must filter out suggested array sizes that are too large.
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In our suggestSizing function, we attempt to minimize only the size of the bit array,
without regard for the number of hashes. To see why, let us interactively explore the
relationship between array size and number of hashes.

Suppose we want to insert 10 million elements into a Bloom filter, with a false positive
rate of 0.1%:

ghci> let kbytes (bits,hashes) = (ceiling bits `div` 8192, hashes)
ghci> :m +BloomFilter.Easy Data.List
ghci> mapM_ (print . kbytes) . take 10 . sort $ sizings 10000000 0.001
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package rwh-bloomfilter-0.1 ... linking ... done.
(17550,10.0)
(17601,11.0)
(17608,9.0)
(17727,12.0)
(17831,8.0)
(17905,13.0)
(18122,14.0)
(18320,7.0)
(18368,15.0)
(18635,16.0)

We achieve the most compact table (just over 17 KB) by computing 10 hashes. If we
really were hashing the data repeatedly, we could reduce the number of hashes to 7 at
a cost of 5% in space. Since we are using Jenkins’s hash functions—which compute
two hashes in a single pass—and double hashing the results to produce additional
hashes, the cost of computing those extra hashes is tiny, so we will choose the smallest
table size.

If we increase our tolerance for false positives tenfold, to 1%, the amount of space and
the number of hashes we need go down, though not by easily predictable amounts:

ghci> mapM_ (print . kbytes) . take 10 . sort $ sizings 10000000 0.01
(11710,7.0)
(11739,6.0)
(11818,8.0)
(12006,9.0)
(12022,5.0)
(12245,10.0)
(12517,11.0)
(12810,12.0)
(12845,4.0)
(13118,13.0)

Creating a Cabal Package
We have created a moderately complicated library, with four public modules and one
internal module. To turn this into a package that we can easily redistribute, we create
a rwh-bloomfilter.cabal file.
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Cabal allows us to describe several libraries in a single package. A .cabal file begins with
information that is common to all of the libraries, which is followed by a distinct section
for each library:

Name:               rwh-bloomfilter
Version:            0.1
License:            BSD3
License-File:       License.txt
Category:           Data
Stability:          experimental
Build-Type:         Simple

As we are bundling some C code with our library, we tell Cabal about our C source files:

Extra-Source-Files: cbits/lookup3.c cbits/lookup3.h

The extra-source-files directive has no effect on a build: it directs Cabal to bundle
some extra files if we run runhaskell Setup sdist to create a source tarball for
redistribution.

Property names are case-insensitive
When reading a property (the text before a “:” character), Cabal ignores
case, so it treats extra-source-files and Extra-Source-Files the same.

Dealing with Different Build Setups
Prior to 2007, the standard Haskell libraries were organized in a handful of large pack-
ages, of which the biggest was named base. This organization tied many unrelated
libraries together, so the Haskell community split the base package up into a number
of more modular libraries. For instance, the array types migrated from base into a
package named array.

A Cabal package needs to specify the other packages that it needs to have present in
order to build. This makes it possible for Cabal’s command-line interface to automat-
ically download and build a package’s dependencies, if necessary. We would like our
code to work with as many versions of GHC as possible, regardless of whether they
have the modern layout of base and numerous other packages. We thus need to be able
to specify that we depend on the array package if it is present, and base alone otherwise.

Cabal provides a generic configurations feature, which we can use to selectively enable
parts of a .cabal file. A build configuration is controlled by a Boolean-valued flag. If it
is True, the text following an if flag directive is used; otherwise, the text following the
associated else is used:

Cabal-Version:      >= 1.2

Flag split-base
  Description: Has the base package been split up?
  Default: True
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Flag bytestring-in-base
  Description: Is ByteString in the base or bytestring package?
  Default: False

• The configurations feature was introduced in version 1.2 of Cabal, so we specify
that our package cannot be built with an older version.

• The meaning of the split-base flag should be self-explanatory.

• The bytestring-in-base flag deals with a more torturous history. When the byte
string package was first created, it was bundled with GHC 6.4 and kept separate
from the base package. In GHC 6.6, it was incorporated into the base package, but
it became independent again when the base package was split before the release of
GHC 6.8.1.

These flags are usually invisible to people building a package, because Cabal handles
them automatically. Before we explain what happens, it will help to see the beginning
of the Library section of our .cabal file:

Library
  if flag(bytestring-in-base)
    -- bytestring was in base-2.0 and 2.1.1
    Build-Depends: base >= 2.0 && < 2.2
  else
    -- in base 1.0 and 3.0, bytestring is a separate package
    Build-Depends: base < 2.0 || >= 3, bytestring >= 0.9

  if flag(split-base)
    Build-Depends: base >= 3.0, array
  else
    Build-Depends: base < 3.0

Cabal creates a package description with the default values of the flags (a missing default
is assumed to be True). If that configuration can be built (e.g., because all of the needed
package versions are available), it will be used. Otherwise, Cabal tries different com-
binations of flags until it either finds a configuration that it can build or exhausts the
alternatives.

For example, if we were to begin with both split-base and bytestring-in-base set to
True, Cabal would select the following package dependencies:

Build-Depends: base >= 2.0 && < 2.2
Build-Depends: base >= 3.0, array

The base package cannot simultaneously be newer than 3.0 and older than 2.2, so Cabal
would reject this configuration as inconsistent. For a modern version of GHC, after a
few attempts, it would discover this configuration that will indeed build:

-- in base 1.0 and 3.0, bytestring is a separate package
Build-Depends: base < 2.0 || >= 3, bytestring >= 0.9
Build-Depends: base >= 3.0, array

When we run runhaskell Setup configure, we can manually specify the values of flags
via the --flag option, though we will rarely need to do so in practice.

Creating a Cabal Package | 597



Compilation Options and Interfacing to C
Continuing with our .cabal file, we fill out the remaining details of the Haskell side of
our library. If we enable profiling when we build, we want all of our top-level functions
to show up in any profiling output:

  GHC-Prof-Options: -auto-all

The Other-Modules property lists Haskell modules that are private to the library. Such
modules will be invisible to code that uses this package.

When we build this package with GHC, Cabal will pass the options from the GHC-
Options property to the compiler.

The -O2 option makes GHC optimize our code aggressively. Code compiled without
optimization is very slow, so we should always use -O2 for production code.

To help ourselves write cleaner code, we usually add the -Wall option, which enables
all of GHC’s warnings. This will cause GHC to issue complaints if it encounters po-
tential problems, such as overlapping patterns; function parameters that are not used;
and a myriad of other potential stumbling blocks. While it is often safe to ignore these
warnings, we generally prefer to fix up our code to eliminate them. The small added
effort usually yields code that is easier to read and maintain.

When we compile with -fvia-C, GHC will generate C code and use the system’s C
compiler to compile it, instead of going straight to assembly language as it usually does.
This slows compilation down, but sometimes the C compiler can further improve
GHC’s optimized code, so it can be worthwhile.

We include -fvia-C here mainly to show how to compile using this option:

  C-Sources:        cbits/lookup3.c
  CC-Options:       -O3
  Include-Dirs:     cbits
  Includes:         lookup3.h
  Install-Includes: lookup3.h

For the C-Sources property, we need only to list files that must be compiled into our
library. The CC-Options property contains options for the C compiler (-O3 specifies a
high level of optimization). Because our FFI bindings for the Jenkins hash functions
refer to the lookup3.h header file, we need to tell Cabal where to find the header file.
We must also tell it to install the header file (Install-Includes); otherwise, client code
will fail to find the header file when we try to build it.
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The value of -fvia-C with the FFI
Compiling with -fvia-C has a useful safety benefit when we write FFI
bindings. If we mention a header file in an FFI declaration (e.g., foreign
import "string.h memcpy"), the C compiler will typecheck the generated
Haskell code and ensure that its invocation of the C function is consis-
tent with the C function’s prototype in the header file.

If we do not use -fvia-C, we lose that additional layer of safety, making
it easy to let simple C type errors slip into our Haskell code. As an ex-
ample, on most 64-bit machines, a CInt is 32 bits wide, and a CSize is
64 bits wide. If we accidentally use one type to describe a parameter for
an FFI binding when we should use the other, we are likely to cause data
corruption or a crash.

Testing with QuickCheck
Before we pay any attention to performance, we want to establish that our Bloom filter
behaves correctly. We can easily use QuickCheck to test some basic properties:

-- file: examples/BloomCheck.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Main where

import BloomFilter.Hash (Hashable)
import Data.Word (Word8, Word32)
import System.Random (Random(..), RandomGen)
import Test.QuickCheck
import qualified BloomFilter.Easy as B
import qualified Data.ByteString as Strict
import qualified Data.ByteString.Lazy as Lazy

We will not use the normal quickCheck function to test our properties, as the 100 test
inputs that it generates do not provide much coverage:

-- file: examples/BloomCheck.hs
handyCheck :: Testable a => Int -> a -> IO ()
handyCheck limit = check defaultConfig {
                     configMaxTest = limit
                   , configEvery   = \_ _ -> ""
                   }

Our first task is to ensure that if we add a value to a Bloom filter, a subsequent
membership test will always report it as present, regardless of the chosen false positive
rate or input value.

We will use the easyList function to create a Bloom filter. The Random instance for
Double generates numbers in the range zero to one, so QuickCheck can nearly supply
us with arbitrary false positive rates.

However, we need to ensure that both zero and one are excluded from the false positives
we test with. QuickCheck gives us two ways to do this:
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Construction
We specify the range of valid values to generate. QuickCheck provides a forAll
combinator for this purpose.

Elimination
When QuickCheck generates an arbitrary value for us, we filter out those that do
not fit our criteria, using the (==>) operator. If we reject a value in this way, a test
will appear to succeed.

If we can choose either method, it is always preferable to take the constructive ap-
proach. To see why, suppose that QuickCheck generates 1,000 arbitrary values for us,
and we filter out 800 as unsuitable for some reason. We will appear to run 1,000 tests,
but only 200 will actually do anything useful.

Following this idea, when we generate desired false positive rates, we could eliminate
zeroes and ones from whatever QuickCheck gives us, but instead we construct values
in an interval that will always be valid:

-- file: examples/BloomCheck.hs
falsePositive :: Gen Double
falsePositive = choose (epsilon, 1 - epsilon)
    where epsilon = 1e-6

(=~>) :: Either a b -> (b -> Bool) -> Bool
k =~> f = either (const True) f k

prop_one_present _ elt =
    forAll falsePositive $ \errRate ->
      B.easyList errRate [elt] =~> \filt ->
        elt `B.elem` filt

Our small combinator, (=~>), lets us filter out failures of easyList. If it fails, the test
automatically passes.

Polymorphic Testing
QuickCheck requires properties to be monomorphic. Since we have many different
hashable types that we would like to test, we want to avoid having to write the same
test in many different ways.

Notice that although our prop_one_present function is polymorphic, it ignores its first
argument. We use this to simulate monomorphic properties, as follows:

ghci> :load BloomCheck
[1 of 1] Compiling Main             ( BloomCheck.hs, interpreted )
Ok, modules loaded: Main.
ghci> :t prop_one_present
prop_one_present :: (Hashable a) => t -> a -> Property
ghci> :t prop_one_present (undefined :: Int)   
prop_one_present (undefined :: Int) :: (Hashable a) => a -> Property
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We can supply any value as the first argument to prop_one_present—all that matters
is its type, as the same type will be used for the first element of the second argument:

ghci> handyCheck 5000 $ prop_one_present (undefined :: Int)
Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package QuickCheck-1.1.0.0 ... linking ... done.
Loading package rwh-bloomfilter-0.1 ... linking ... done.
OK, passed 5000 tests.
ghci> handyCheck 5000 $ prop_one_present (undefined :: Double)
OK, passed 5000 tests.

If we populate a Bloom filter with many elements, they should all be present afterwards:

-- file: examples/BloomCheck.hs
prop_all_present _ xs =
    forAll falsePositive $ \errRate ->
      B.easyList errRate xs =~> \filt ->
        all (`B.elem` filt) xs

This test also succeeds:

ghci> handyCheck 2000 $ prop_all_present (undefined :: Int)
OK, passed 2000 tests.

Writing Arbitrary Instances for ByteStrings
The QuickCheck library does not provide Arbitrary instances for ByteString types, so
we must write our own. Rather than create a ByteString directly, we will use a pack
function to create one from a [Word8]:

-- file: examples/BloomCheck.hs
instance Arbitrary Lazy.ByteString where
    arbitrary = Lazy.pack `fmap` arbitrary
    coarbitrary = coarbitrary . Lazy.unpack

instance Arbitrary Strict.ByteString where
    arbitrary = Strict.pack `fmap` arbitrary
    coarbitrary = coarbitrary . Strict.unpack

Also missing from QuickCheck are Arbitrary instances for the fixed-width types de-
fined in Data.Word and Data.Int. We need to at least create an Arbitrary instance for
Word8:

-- file: examples/BloomCheck.hs
instance Random Word8 where
  randomR = integralRandomR
  random = randomR (minBound, maxBound)

instance Arbitrary Word8 where
    arbitrary = choose (minBound, maxBound)
    coarbitrary = integralCoarbitrary
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We support these instances with a few common functions so that we can reuse them
when writing instances for other integral types:

-- file: examples/BloomCheck.hs
integralCoarbitrary n =
    variant $ if m >= 0 then 2*m else 2*(-m) + 1
  where m = fromIntegral n

integralRandomR (a,b) g = case randomR (c,d) g of
                            (x,h) -> (fromIntegral x, h)
    where (c,d) = (fromIntegral a :: Integer,
                   fromIntegral b :: Integer)

instance Random Word32 where
  randomR = integralRandomR
  random = randomR (minBound, maxBound)

instance Arbitrary Word32 where
    arbitrary = choose (minBound, maxBound)
    coarbitrary = integralCoarbitrary

With these Arbitrary instances created, we can try our existing properties on the
ByteString types:

ghci> handyCheck 1000 $ prop_one_present (undefined :: Lazy.ByteString)
OK, passed 1000 tests.
ghci> handyCheck 1000 $ prop_all_present (undefined :: Strict.ByteString)
OK, passed 1000 tests.

Are Suggested Sizes Correct?
The cost of testing properties of easyList increases rapidly as we increase the number
of tests to run. We would still like to have some assurance that easyList will behave
well on huge inputs. Since it is not practical to test this directly, we can use a proxy:
will suggestSizing give a sensible array size and number of hashes even with extreme
inputs?

This is a slightly tricky property to check. We need to vary both the desired false positive
rate and the expected capacity. When we looked at some results from the sizings
function, we saw that the relationship between these values is not easy to predict.

We can try to ignore the complexity:

-- file: examples/BloomCheck.hs
prop_suggest_try1 =
  forAll falsePositive $ \errRate ->
    forAll (choose (1,maxBound :: Word32)) $ \cap ->
      case B.suggestSizing (fromIntegral cap) errRate of
        Left err -> False
        Right (bits,hashes) -> bits > 0 && bits < maxBound && hashes > 0

Not surprisingly, this gives us a test that is not actually useful:
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ghci> handyCheck 1000 $ prop_suggest_try1
Falsifiable, after 1 tests:
0.2723862775515961
2484762599
ghci> handyCheck 1000 $ prop_suggest_try1
Falsifiable, after 3 tests:
2.390547635799778e-2
2315209155

When we plug the counterexamples that QuickCheck prints into suggestSizings, we
can see that these inputs are rejected because they result in a bit array that would be
too large:

ghci> B.suggestSizing 1678125842 8.501133057303545e-3
Left "capacity too large"

Since we can’t easily predict which combinations will cause this problem, we must
resort to eliminating sizes and false positive rates before they bite us:

-- file: examples/BloomCheck.hs
prop_suggest_try2 =
    forAll falsePositive $ \errRate ->
      forAll (choose (1,fromIntegral maxWord32)) $ \cap ->
        let bestSize = fst . minimum $ B.sizings cap errRate
        in bestSize < fromIntegral maxWord32 ==>
           either (const False) sane $ B.suggestSizing cap errRate
  where sane (bits,hashes) = bits > 0 && bits < maxBound && hashes > 0
        maxWord32 = maxBound :: Word32

If we try this with a small number of tests, it seems to work well:

ghci> handyCheck 1000 $ prop_suggest_try2
OK, passed 1000 tests.

On a larger body of tests, we filter out too many combinations:

ghci> handyCheck 10000 $ prop_suggest_try2
Arguments exhausted after 2074 tests.

To deal with this, we try to reduce the likelihood of generating inputs that we will
subsequently reject:

-- file: examples/BloomCheck.hs
prop_suggestions_sane =
    forAll falsePositive $ \errRate ->
      forAll (choose (1,fromIntegral maxWord32 `div` 8)) $ \cap ->
        let size = fst . minimum $ B.sizings cap errRate
        in size < fromIntegral maxWord32 ==>
           either (const False) sane $ B.suggestSizing cap errRate
  where sane (bits,hashes) = bits > 0 && bits < maxBound && hashes > 0
        maxWord32 = maxBound :: Word32

Finally, we have a robust looking property:

ghci> handyCheck 40000 $ prop_suggestions_sane
OK, passed 40000 tests.
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Performance Analysis and Tuning
We now have a correctness base line: our QuickCheck tests pass. When we start
tweaking performance, we can rerun the tests at any time to ensure that we haven’t
inadvertently broken anything.

Our first step is to write a small test application that we can use for timing:

-- file: examples/WordTest.hs
module Main where

import Control.Parallel.Strategies (NFData(..))
import Control.Monad (forM_, mapM_)
import qualified BloomFilter.Easy as B
import qualified Data.ByteString.Char8 as BS
import Data.Time.Clock (diffUTCTime, getCurrentTime)
import System.Environment (getArgs)
import System.Exit (exitFailure)

timed :: (NFData a) => String -> IO a -> IO a
timed desc act = do
    start <- getCurrentTime
    ret <- act
    end <- rnf ret `seq` getCurrentTime
    putStrLn $ show (diffUTCTime end start) ++ " to " ++ desc
    return ret

instance NFData BS.ByteString where
    rnf _ = ()

instance NFData (B.Bloom a) where
    rnf filt = B.length filt `seq` ()

We borrow the rnf function that we introduced in “Separating Algorithm from Eval-
uation” on page 552 to develop a simple timing harness. Out timed action ensures that
a value is evaluated to normal form in order to accurately capture the cost of evaluating
it.

The application creates a Bloom filter from the contents of a file, treating each line as
an element to add to the filter:

-- file: examples/WordTest.hs
main = do
  args <- getArgs
  let files | null args = ["/usr/share/dict/words"]
            | otherwise = args
  forM_ files $ \file -> do

    words <- timed "read words" $
      BS.lines `fmap` BS.readFile file

    let len = length words
        errRate = 0.01
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    putStrLn $ show len ++ " words"
    putStrLn $ "suggested sizings: " ++
               show (B.suggestSizing (fromIntegral len) errRate)

    filt <- timed "construct filter" $
      case B.easyList errRate words of
        Left errmsg -> do
          putStrLn $ "Error: " ++ errmsg
          exitFailure
        Right filt -> return filt

    timed "query every element" $
      mapM_ print $ filter (not . (`B.elem` filt)) words

We use timed to account for the costs of three distinct phases: reading and splitting the
data into lines; populating the Bloom filter; and querying every element in it.

If we compile this and run it a few times, we can see that the execution time is just long
enough to be interesting, while the timing variation from run to run is small. We have
created a plausible-looking microbenchmark:

$ ghc -O2  --make WordTest
[1 of 1] Compiling Main             ( WordTest.hs, WordTest.o )
Linking WordTest ...
$ ./WordTest
0.196347s to read words
479829 words
1.063537s to construct filter
4602978 bits
0.766899s to query every element
$ ./WordTest
0.179284s to read words
479829 words
1.069363s to construct filter
4602978 bits
0.780079s to query every element

Profile-Driven Performance Tuning
To understand where our program might benefit from some tuning, we rebuild it and
run it with profiling enabled.

Since we already built WordTest and have not subsequently changed it, if we rerun
ghc to enable profiling support, it will quite reasonably decide to do nothing. We must
force it to rebuild, which we accomplish by updating the filesystem’s idea of when we
last edited the source file:

$ touch WordTest.hs
$ ghc -O2 -prof -auto-all --make WordTest
[1 of 1] Compiling Main             ( WordTest.hs, WordTest.o )
Linking WordTest ...

$ ./WordTest +RTS -p
0.322675s to read words
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479829 words
suggested sizings: Right (4602978,7)
2.475339s to construct filter
1.964404s to query every element

$ head -20 WordTest.prof
total time  =          4.10 secs   (205 ticks @ 20 ms)
total alloc = 2,752,287,168 bytes  (excludes profiling overheads)

COST CENTRE                    MODULE               %time %alloc

doubleHash                     BloomFilter.Hash      48.8   66.4
indices                        BloomFilter.Mutable   13.7   15.8
elem                           BloomFilter            9.8    1.3
hashByteString                 BloomFilter.Hash       6.8    3.8
easyList                       BloomFilter.Easy       5.9    0.3
hashIO                         BloomFilter.Hash       4.4    5.3
main                           Main                   4.4    3.8
insert                         BloomFilter.Mutable    2.9    0.0
len                            BloomFilter            2.0    2.4
length                         BloomFilter.Mutable    1.5    1.0

Our doubleHash function immediately leaps out as a huge time and memory sink.

Always profile before—and while—you tune!
Before our first profiling run, we did not expect doubleHash to even ap-
pear in the top 10 of “hot” functions, much less dominate it. Without
this knowledge, we would probably have started tuning something en-
tirely irrelevant.

Recall that the body of doubleHash is an innocuous list comprehension:

-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = [h1 + h2 * i | i <- [0..num]]
    where h   = hashSalt 0x9150a946c4a8966e value
          h1  = fromIntegral (h `shiftR` 32) .&. maxBound
          h2  = fromIntegral h
          num = fromIntegral numHashes

Since the function returns a list, it makes some sense that it allocates so much memory,
but when code this simple performs so badly, we should be suspicious.

Faced with a performance mystery, the suspicious mind will naturally want to inspect
the output of the compiler. We don’t need to start scrabbling through assembly lan-
guage dumps: it’s best to start at a higher level.

GHC’s -ddump-simpl option prints out the code that it produces after performing all of
its high-level optimizations:

$ ghc -O2 -c -ddump-simpl --make BloomFilter/Hash.hs > dump.txt
[1 of 1] Compiling BloomFilter.Hash ( BloomFilter/Hash.hs )
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The file thus produced is about 1,000 lines long. Most of the names in it are mangled
somewhat from their original Haskell representations. Even so, searching for
doubleHash will immediately drop us at the definition of the function. For example, here
is how we might start exactly at the right spot from a Unix shell:

$ less +/doubleHash dump.txt

It can be difficult to start reading the output of GHC’s simplifier. There are many
automatically generated names, and the code has many obscure annotations. We can
make substantial progress by ignoring things that we do not understand, focusing on
those that look familiar. The Core language shares some features with regular Haskell,
notably type signatures, let for variable binding, and case for pattern matching.

If we skim through the definition of doubleHash, we will arrive at a section that looks
something like this:

__letrec { 
  go_s1YC :: [GHC.Word.Word32] -> [GHC.Word.Word32] 
  [Arity 1
   Str: DmdType S]
  go_s1YC =
    \ (ds_a1DR :: [GHC.Word.Word32]) ->
      case ds_a1DR of wild_a1DS {
    [] -> GHC.Base.[] @ GHC.Word.Word32; 
    : y_a1DW ys_a1DX -> 
      GHC.Base.: @ GHC.Word.Word32 
        (case h1_s1YA of wild1_a1Mk { GHC.Word.W32# x#_a1Mm -> 
         case h2_s1Yy of wild2_a1Mu { GHC.Word.W32# x#1_a1Mw ->
         case y_a1DW of wild11_a1My { GHC.Word.W32# y#_a1MA ->
         GHC.Word.W32# 
           (GHC.Prim.narrow32Word#
          (GHC.Prim.plusWord# 
             x#_a1Mm (GHC.Prim.narrow32Word#
                              (GHC.Prim.timesWord# x#1_a1Mw y#_a1MA))))
         }
         }
         })
        (go_s1YC ys_a1DX) 
      };
} in 
  go_s1YC 
    (GHC.Word.$w$dmenumFromTo2
       __word 0 (GHC.Prim.narrow32Word# (GHC.Prim.int2Word# ww_s1X3)))

This is the body of the list comprehension. It may seem daunting, but we can look
through it piece by piece and find that it is not, after all, so complicated:

A __letrec is equivalent to a normal Haskell let.

GHC compiled the body of our list comprehension into a loop named go_s1YC.

If our case expression matches the empty list, we return the empty list. This is re-
assuringly familiar.
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This pattern would read in Haskell as (y_a1DW:ys_a1DX). The (:) constructor appears
before its operands because the Core language uses prefix notation exclusively for
simplicity.

This is an application of the (:) constructor. The @ notation indicates that the first
operand will have type Word32.

Each of the three case expressions unboxes a Word32 value, to get at the primitive
value inside. First to be unboxed is h1 (named h1_s1YA here), then h2, then the current
list element, y.

The unboxing occurs via pattern matching: W32# is the constructor that boxes a
primitive value. By convention, primitive types and values, and functions that use
them, always contains a # somewhere in their name.

Here, we apply the W32# constructor to a value of the primitive type Word32#, in order
to give a normal value of type Word32.

The plusWord# and timesWord# functions add and multiply primitive unsigned
integers.

This is the second argument to the (:) constructor, in which the go_s1YC function
applies itself recursively.

Here, we apply our list comprehension loop function. Its argument is the Core
translation of the expression [0..n].

From reading the Core for this code, we can see two interesting behaviors:

• We are creating a list, and then immediately deconstructing it in the go_s1YC loop.

GHC can often spot this pattern of production followed immediately by consump-
tion, and transform it into a loop in which no allocation occurs. This class of
transformation is called fusion, because the producer and consumer become fused
together. Unfortunately, it is not occurring here.

• The repeated unboxing of h1 and h2 in the body of the loop is wasteful.

To address these problems, we make a few tiny changes to our doubleHash function:

-- file: BloomFilter/Hash.hs
doubleHash :: Hashable a => Int -> a -> [Word32]
doubleHash numHashes value = go 0
    where go n | n == num  = []
               | otherwise = h1 + h2 * n : go (n + 1)

          !h1 = fromIntegral (h `shiftR` 32) .&. maxBound
          !h2 = fromIntegral h

          h   = hashSalt 0x9150a946c4a8966e value
          num = fromIntegral numHashes

We manually fused the [0..num] expression and the code that consumes it into a single
loop. We added strictness annotations to h1 and h2. And nothing more. This has turned
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a six-line function into an eight-line function. What effect does our change have on
Core output?

__letrec {
  $wgo_s1UH :: GHC.Prim.Word# -> [GHC.Word.Word32]
  [Arity 1
   Str: DmdType L]
  $wgo_s1UH =
    \ (ww2_s1St :: GHC.Prim.Word#) ->
      case GHC.Prim.eqWord# ww2_s1St a_s1T1 of wild1_X2m {
    GHC.Base.False ->
      GHC.Base.: @ GHC.Word.Word32
        (GHC.Word.W32#
         (GHC.Prim.narrow32Word#
          (GHC.Prim.plusWord#
           ipv_s1B2
           (GHC.Prim.narrow32Word#
        (GHC.Prim.timesWord# ipv1_s1AZ ww2_s1St)))))
        ($wgo_s1UH (GHC.Prim.narrow32Word#
                        (GHC.Prim.plusWord# ww2_s1St __word 1)));
    GHC.Base.True -> GHC.Base.[] @ GHC.Word.Word32
      };
} in  $wgo_s1UH __word 0

Our new function has compiled down to a simple counting loop. This is very encour-
aging, but how does it actually perform?

$ touch WordTest.hs
$ ghc -O2 -prof -auto-all --make WordTest
[1 of 1] Compiling Main             ( WordTest.hs, WordTest.o )
Linking WordTest ...

$ ./WordTest +RTS -p
0.304352s to read words
479829 words
suggested sizings: Right (4602978,7)
1.516229s to construct filter
1.069305s to query every element
~/src/darcs/book/examples/ch27/examples $ head -20 WordTest.prof 
total time  =        3.68 secs    (184 ticks @ 20 ms)
total alloc = 2,644,805,536 bytes (excludes profiling overheads)

COST CENTRE                    MODULE               %time %alloc

doubleHash                     BloomFilter.Hash      45.1   65.0
indices                        BloomFilter.Mutable   19.0   16.4
elem                           BloomFilter           12.5    1.3
insert                         BloomFilter.Mutable    7.6    0.0
easyList                       BloomFilter.Easy       4.3    0.3
len                            BloomFilter            3.3    2.5
hashByteString                 BloomFilter.Hash       3.3    4.0
main                           Main                   2.7    4.0
hashIO                         BloomFilter.Hash       2.2    5.5
length                         BloomFilter.Mutable    0.0    1.0

Performance Analysis and Tuning | 609



Our tweak has improved performance by about 11%—a good result for such a small
change.

E X E R C I S E S

1. Our use of genericLength in easyList will cause our function to loop infinitely if
we supply an infinite list. Fix this.

2. Difficult: write a QuickCheck property that checks whether the observed false
positive rate is close to the requested false positive rate.
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CHAPTER 27

Sockets and Syslog

Basic Networking
In several earlier chapters of this book, we discussed services that operate over a net-
work. Two examples are client/server databases and web services. When the need arises
to devise a new protocol or to communicate with a protocol that doesn’t have an ex-
isting helper library in Haskell, you’ll need to use the lower-level networking tools in
the Haskell library.

In this chapter, we will discuss these lower-level tools. Network communication is a
broad topic with entire books devoted to it. We will show you how to use Haskell to
apply the low-level network knowledge you already have.

Haskell’s networking functions almost always correspond directly to familiar C func-
tion calls. As most other languages also layer on top of C, you should find this interface
familiar.

Communicating with UDP
UDP breaks data down into packets. It does not ensure that the data reaches its desti-
nation or it reaches it only once. It does use checksumming to ensure that packets that
arrive have not been corrupted. UDP tends to be used in applications that are
performance- or latency-sensitive, in which each individual packet of data is less im-
portant than the overall performance of the system. It may also be used where the TCP
behavior isn’t the most efficient, such as ones that send short, discrete messages. Ex-
amples of systems that tend to use UDP include audio and video conferencing, time
synchronization, network-based filesystems, and logging systems.

611



UDP Client Example: syslog
The traditional Unix syslog service allows programs to send log messages over a net-
work to a central server that records them. Some programs are quite performance-
sensitive and may generate a large volume of messages. In these programs, it could be
more important to have the logging impose a minimal performance overhead than to
guarantee every message is logged. Moreover, it may be desirable to continue program
operation even if the logging server is unreachable. For this reason, UDP is one of the
protocols syslog supports for the transmission of log messages. The protocol is simple;
we present a Haskell implementation of a client here:

-- file: ch27/syslogclient.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import SyslogTypes

data SyslogHandle = 
    SyslogHandle {slSocket :: Socket,
                  slProgram :: String,
                  slAddress :: SockAddr}

openlog :: HostName             -- ^ Remote hostname, or localhost
        -> String               -- ^ Port number or name; 514 is default
        -> String               -- ^ Name to log under
        -> IO SyslogHandle      -- ^ Handle to use for logging
openlog hostname port progname =
    do -- Look up the hostname and port.  Either raises an exception
       -- or returns a nonempty list.  First element in that list
       -- is supposed to be the best option.
       addrinfos <- getAddrInfo Nothing (Just hostname) (Just port)
       let serveraddr = head addrinfos

       -- Establish a socket for communication
       sock <- socket (addrFamily serveraddr) Datagram defaultProtocol

       -- Save off the socket, program name, and server address in a handle
       return $ SyslogHandle sock progname (addrAddress serveraddr)

syslog :: SyslogHandle -> Facility -> Priority -> String -> IO ()
syslog syslogh fac pri msg =
    sendstr sendmsg
    where code = makeCode fac pri
          sendmsg = "<" ++ show code ++ ">" ++ (slProgram syslogh) ++
                    ": " ++ msg

          -- Send until everything is done
          sendstr :: String -> IO ()
          sendstr [] = return ()
          sendstr omsg = do sent <- sendTo (slSocket syslogh) omsg
                                    (slAddress syslogh)
                            sendstr (genericDrop sent omsg)
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closelog :: SyslogHandle -> IO ()
closelog syslogh = sClose (slSocket syslogh)

{- | Convert a facility and a priority into a syslog code -}
makeCode :: Facility -> Priority -> Int
makeCode fac pri =
    let faccode = codeOfFac fac
        pricode = fromEnum pri 
        in
          (faccode `shiftL` 3) .|. pricode

This also requires SyslogTypes.hs, shown here:

-- file: ch27/SyslogTypes.hs
module SyslogTypes where
{- | Priorities define how important a log message is. -}

data Priority = 
            DEBUG                   -- ^ Debug messages
          | INFO                    -- ^ Information
          | NOTICE                  -- ^ Normal runtime conditions
          | WARNING                 -- ^ General Warnings
          | ERROR                   -- ^ General Errors
          | CRITICAL                -- ^ Severe situations
          | ALERT                   -- ^ Take immediate action
          | EMERGENCY               -- ^ System is unusable
                    deriving (Eq, Ord, Show, Read, Enum)

{- | Facilities are used by the system to determine where messages
are sent. -}

data Facility = 
              KERN                      -- ^ Kernel messages
              | USER                    -- ^ General userland messages
              | MAIL                    -- ^ E-Mail system
              | DAEMON                  -- ^ Daemon (server process) messages
              | AUTH                    -- ^ Authentication or security messages
              | SYSLOG                  -- ^ Internal syslog messages
              | LPR                     -- ^ Printer messages
              | NEWS                    -- ^ Usenet news
              | UUCP                    -- ^ UUCP messages
              | CRON                    -- ^ Cron messages
              | AUTHPRIV                -- ^ Private authentication messages
              | FTP                     -- ^ FTP messages
              | LOCAL0                  
              | LOCAL1
              | LOCAL2
              | LOCAL3
              | LOCAL4
              | LOCAL5
              | LOCAL6
              | LOCAL7
                deriving (Eq, Show, Read)

facToCode = [ 
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                       (KERN, 0),
                       (USER, 1),
                       (MAIL, 2),
                       (DAEMON, 3),
                       (AUTH, 4),
                       (SYSLOG, 5),
                       (LPR, 6),
                       (NEWS, 7),
                       (UUCP, 8),
                       (CRON, 9),
                       (AUTHPRIV, 10),
                       (FTP, 11),
                       (LOCAL0, 16),
                       (LOCAL1, 17),
                       (LOCAL2, 18),
                       (LOCAL3, 19),
                       (LOCAL4, 20),
                       (LOCAL5, 21),
                       (LOCAL6, 22),
                       (LOCAL7, 23)
           ]

codeToFac = map (\(x, y) -> (y, x)) facToCode

{- | We can't use enum here because the numbering is discontiguous -}
codeOfFac :: Facility -> Int
codeOfFac f = case lookup f facToCode of
                Just x -> x
                _ -> error $ "Internal error in codeOfFac"

facOfCode :: Int -> Facility
facOfCode f = case lookup f codeToFac of
                Just x -> x
                _ -> error $ "Invalid code in facOfCode"

With ghci, you can send a message to a local syslog server. You can use either the
example syslog server presented in this chapter or an existing syslog server like you
would typically find on Linux or other POSIX systems. Note that most of these disable
the UDP port by default, and you may need to enable UDP before your vendor-supplied
syslog daemon will display received messages.

If you were sending a message to a syslog server on the local system, you might use a
command such as this:

ghci> :load syslogclient.hs
[1 of 2] Compiling SyslogTypes      ( SyslogTypes.hs, interpreted )
[2 of 2] Compiling Main             ( syslogclient.hs, interpreted )
Ok, modules loaded: SyslogTypes, Main.
ghci> h <- openlog "localhost" "514" "testprog"
Loading package parsec-2.1.0.1 ... linking ... done.
Loading package network-2.2.0.0 ... linking ... done.
ghci> syslog h USER INFO "This is my message"
ghci> closelog h
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UDP Syslog Server
UDP servers will bind to a specific port on the server machine. They will accept packets
directed to that port and process them. Since UDP is a stateless, packet-oriented pro-
tocol, programmers normally use a call such as recvFrom to receive both the data and
information about the machine that sent it, which is used for sending back a response:

-- file: ch27/syslogserver.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List

type HandlerFunc = SockAddr -> String -> IO ()

serveLog :: String              -- ^ Port number or name; 514 is default
         -> HandlerFunc         -- ^ Function to handle incoming messages
         -> IO ()
serveLog port handlerfunc = withSocketsDo $
    do -- Look up the port.  Either raises an exception or returns
       -- a nonempty list.  
       addrinfos <- getAddrInfo 
                    (Just (defaultHints {addrFlags = [AI_PASSIVE]}))
                    Nothing (Just port)
       let serveraddr = head addrinfos

       -- Create a socket
       sock <- socket (addrFamily serveraddr) Datagram defaultProtocol

       -- Bind it to the address we're listening to
       bindSocket sock (addrAddress serveraddr)

       -- Loop forever processing incoming data.  Ctrl-C to abort.
       procMessages sock
    where procMessages sock =
              do -- Receive one UDP packet, maximum length 1024 bytes,
                 -- and save its content into msg and its source
                 -- IP and port into addr
                 (msg, _, addr) <- recvFrom sock 1024
                 -- Handle it
                 handlerfunc addr msg
                 -- And process more messages
                 procMessages sock

-- A simple handler that prints incoming packets
plainHandler :: HandlerFunc
plainHandler addr msg = 
    putStrLn $ "From " ++ show addr ++ ": " ++ msg

You can run this in ghci. A call to serveLog "1514" plainHandler will set up a UDP
server on port 1514 that will use plainHandler to print out every incoming UDP packet
on that port. Ctrl-C will terminate the program.
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In case of problems
Getting bind: permission denied when testing this? Make sure you use
a port number greater than 1024. Some operating systems only allow
the root user to bind to ports less than 1024.

Communicating with TCP
TCP is designed to make data transfer over the Internet as reliable as possible. TCP
traffic is a stream of data. While this stream gets broken up into individual packets by
the operating system, the packet boundaries are neither known nor relevant to appli-
cations. TCP guarantees that, if traffic is delivered to the application at all, it arrives
intact, unmodified, exactly once, and in order. Obviously, things such as a broken wire
can cause traffic to not be delivered, and no protocol can overcome those limitations.

This brings with it some trade-offs compared with UDP. First of all, there are a few
packets that must be sent at the start of the TCP conversation to establish the link. For
very short conversations, then, UDP would have a performance advantage. Also, TCP
tries very hard to get data through. If one end of a conversation tries to send data to
the remote but doesn’t receive an acknowledgment back, it will periodically retransmit
the data for some time before giving up. This makes TCP robust in the face of dropped
packets. However, it also means that TCP is not the best choice for real-time protocols
that involve things such as live audio or video.

Handling Multiple TCP Streams
With TCP, connections are stateful. That means that there is a dedicated logical “chan-
nel” between a client and server, rather than just one-off packets as with UDP. This
makes things easy for client developers. Server applications almost always will want to
be able to handle more than one TCP connection at once. How then to do this?

On the server side, you will first create a socket and bind to a port, just like with UDP.
Instead of repeatedly listening for data from any location, your main loop will be around
the accept call. Each time a client connects, the server’s operating system allocates a
new socket for it. So we have the master socket, used only to listen for incoming con-
nections, and never to transmit data. We also have the potential for multiple child
sockets to be used at once, each corresponding to a logical TCP conversation.

In Haskell, you will usually use forkIO to create a separate lightweight thread to handle
each conversation with a child. Haskell has an efficient internal implementation of this
that performs quite well.
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TCP Syslog Server
Suppose we want to reimplement syslog using TCP instead of UDP. We could say that
a single message is defined not by being in a single packet, but by a trailing newline
character '\n'. Any given client could send zero or more messages to the server using
a given TCP connection. Here’s how we might write that:

-- file: ch27/syslogtcpserver.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import Control.Concurrent
import Control.Concurrent.MVar
import System.IO

type HandlerFunc = SockAddr -> String -> IO ()

serveLog :: String              -- ^ Port number or name; 514 is default
         -> HandlerFunc         -- ^ Function to handle incoming messages
         -> IO ()
serveLog port handlerfunc = withSocketsDo $
    do -- Look up the port.  Either raises an exception or returns
       -- a nonempty list.  
       addrinfos <- getAddrInfo 
                    (Just (defaultHints {addrFlags = [AI_PASSIVE]}))
                    Nothing (Just port)
       let serveraddr = head addrinfos

       -- Create a socket
       sock <- socket (addrFamily serveraddr) Stream defaultProtocol

       -- Bind it to the address we're listening to
       bindSocket sock (addrAddress serveraddr)

       -- Start listening for connection requests.  Maximum queue size
       -- of 5 connection requests waiting to be accepted.
       listen sock 5

       -- Create a lock to use for synchronizing access to the handler
       lock <- newMVar ()

       -- Loop forever waiting for connections.  Ctrl-C to abort.
       procRequests lock sock

    where
          -- | Process incoming connection requests
          procRequests :: MVar () -> Socket -> IO ()
          procRequests lock mastersock = 
              do (connsock, clientaddr) <- accept mastersock
                 handle lock clientaddr
                    "syslogtcpserver.hs: client connnected"
                 forkIO $ procMessages lock connsock clientaddr
                 procRequests lock mastersock
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          -- | Process incoming messages
          procMessages :: MVar () -> Socket -> SockAddr -> IO ()
          procMessages lock connsock clientaddr =
              do connhdl <- socketToHandle connsock ReadMode
                 hSetBuffering connhdl LineBuffering
                 messages <- hGetContents connhdl
                 mapM_ (handle lock clientaddr) (lines messages)
                 hClose connhdl
                 handle lock clientaddr 
                    "syslogtcpserver.hs: client disconnected"

          -- Lock the handler before passing data to it.
          handle :: MVar () -> HandlerFunc
          -- This type is the same as
          -- handle :: MVar () -> SockAddr -> String -> IO ()
          handle lock clientaddr msg =
              withMVar lock 
                 (\a -> handlerfunc clientaddr msg >> return a)

-- A simple handler that prints incoming packets
plainHandler :: HandlerFunc
plainHandler addr msg = 
    putStrLn $ "From " ++ show addr ++ ": " ++ msg

For our SyslogTypes implementation, see “UDP Client Example: syslog” on page 612.

Let’s look at this code. Our main loop is in procRequests, where we loop forever waiting
for new connections from clients. The accept call blocks until a client connects. When
a client connects, we get a new socket and the client’s address. We pass a message to
the handler about that, and then use forkIO to create a thread to handle the data from
that client. This thread runs procMessages.

When dealing with TCP data, it’s often convenient to convert a socket into a Haskell
Handle. We do so here, and explicitly set the buffering—an important point for TCP
communication. Next, we set up lazy reading from the socket’s Handle. For each in-
coming line, we pass it to handle. After there is no more data—because the remote end
has closed the socket—we output a message about that.

Since we may be handling multiple incoming messages at once, we need to ensure that
we’re not writing out multiple messages at once in the handler. That could result in
garbled output. We use a simple lock to serialize access to the handler, and write a
simple handle function to handle that.

We can test this with the client we’ll present next, or we can even use the telnet program
to connect to this server. Each line of text we send to it will be printed on the display
by the server. Let’s try it out:

ghci> :load syslogtcpserver.hs
[1 of 1] Compiling Main             ( syslogtcpserver.hs, interpreted )
Ok, modules loaded: Main.
ghci> serveLog "10514" plainHandler
Loading package parsec-2.1.0.0 ... linking ... done.
Loading package network-2.1.0.0 ... linking ... done.
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At this point, the server will begin listening for connections at port 10514. It will not
appear to be doing anything until a client connects. We could use telnet to connect to
the server:

~$ telnet localhost 10514
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Test message
^]
telnet> quit
Connection closed.

Meanwhile, in our other terminal running the TCP server, you’ll see something like this:

From 127.0.0.1:38790: syslogtcpserver.hs: client connnected
From 127.0.0.1:38790: Test message
From 127.0.0.1:38790: syslogtcpserver.hs: client disconnected

This shows that a client connected from port 38790 on the local machine (127.0.0.1).
After it connected, it sent one message and disconnected. When you are acting as a
TCP client, the operating system assigns an unused port for you. This port number will
usually be different each time you run the program.

TCP Syslog Client
Now, let’s write a client for our TCP syslog protocol. This client will be similar to the
UDP client, but there are some changes. First, since TCP is a streaming protocol, we
can send data using a Handle rather than using the lower-level socket operations. Sec-
ond, we no longer need to store the destination address in the SyslogHandle, since we
will be using connect to establish the TCP connection. Finally, we need a way to know
where one message ends and the next begins. With UDP, that was easy because each
message was a discrete logical packet. With TCP, we’ll just use the newline character
'\n' as the end-of-message marker, although that means that no individual message
may contain the newline. Here’s our code:

-- file: ch27/syslogtcpclient.hs
import Data.Bits
import Network.Socket
import Network.BSD
import Data.List
import SyslogTypes
import System.IO

data SyslogHandle = 
    SyslogHandle {slHandle :: Handle,
                  slProgram :: String}

openlog :: HostName             -- ^ Remote hostname, or localhost
        -> String               -- ^ Port number or name; 514 is default
        -> String               -- ^ Name to log under
        -> IO SyslogHandle      -- ^ Handle to use for logging
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openlog hostname port progname =
    do -- Look up the hostname and port.  Either raises an exception
       -- or returns a nonempty list.  First element in that list
       -- is supposed to be the best option.
       addrinfos <- getAddrInfo Nothing (Just hostname) (Just port)
       let serveraddr = head addrinfos

       -- Establish a socket for communication
       sock <- socket (addrFamily serveraddr) Stream defaultProtocol

       -- Mark the socket for keep-alive handling since it may be idle
       -- for long periods of time
       setSocketOption sock KeepAlive 1

       -- Connect to server
       connect sock (addrAddress serveraddr)

       -- Make a Handle out of it for convenience
       h <- socketToHandle sock WriteMode

       -- We're going to set buffering to BlockBuffering and then
       -- explicitly call hFlush after each message, below, so that
       -- messages get logged immediately
       hSetBuffering h (BlockBuffering Nothing)
       
       -- Save off the socket, program name, and server address in a handle
       return $ SyslogHandle h progname

syslog :: SyslogHandle -> Facility -> Priority -> String -> IO ()
syslog syslogh fac pri msg =
    do hPutStrLn (slHandle syslogh) sendmsg
       -- Make sure that we send data immediately
       hFlush (slHandle syslogh)
    where code = makeCode fac pri
          sendmsg = "<" ++ show code ++ ">" ++ (slProgram syslogh) ++
                    ": " ++ msg

closelog :: SyslogHandle -> IO ()
closelog syslogh = hClose (slHandle syslogh)

{- | Convert a facility and a priority into a syslog code -}
makeCode :: Facility -> Priority -> Int
makeCode fac pri =
    let faccode = codeOfFac fac
        pricode = fromEnum pri 
        in
          (faccode `shiftL` 3) .|. pricode
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We can try it out under ghci. If you still have the TCP server running from earlier, your
session might look something like this:

ghci> :load syslogtcpclient.hs
Loading package base ... linking ... done.
[1 of 2] Compiling SyslogTypes      ( SyslogTypes.hs, interpreted )
[2 of 2] Compiling Main             ( syslogtcpclient.hs, interpreted )
Ok, modules loaded: Main, SyslogTypes.
ghci> openlog "localhost" "10514" "tcptest"
Loading package parsec-2.1.0.0 ... linking ... done.
Loading package network-2.1.0.0 ... linking ... done.
ghci> sl <- openlog "localhost" "10514" "tcptest"
ghci> syslog sl USER INFO "This is my TCP message"
ghci> syslog sl USER INFO "This is my TCP message again"
ghci> closelog sl

Over on the server, you’ll see something like this:

From 127.0.0.1:46319: syslogtcpserver.hs: client connnected
From 127.0.0.1:46319: <9>tcptest: This is my TCP message
From 127.0.0.1:46319: <9>tcptest: This is my TCP message again
From 127.0.0.1:46319: syslogtcpserver.hs: client disconnected

The <9> is the priority and facility code being sent along, just as it was with UDP.
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CHAPTER 28

Software Transactional Memory

In the traditional threaded model of concurrent programming, when we share data
among threads, we keep it consistent using locks, and we notify threads of changes
using condition variables. Haskell’s MVar mechanism improves somewhat upon these
tools, but it still suffers from all of the same problems:

• Race conditions due to forgotten locks

• Deadlocks resulting from inconsistent lock ordering

• Corruption caused by uncaught exceptions

• Lost wakeups induced by omitted notifications

These problems frequently affect even the smallest concurrent programs, but the dif-
ficulties they pose become far worse in larger code bases or under heavy load.

For instance, a program with a few big locks is somewhat tractable to write and debug,
but contention for those locks will clobber us under heavy load. If we react with finer-
grained locking, it becomes far harder to keep our software working at all. The addi-
tional bookkeeping will hurt performance even when loads are light.

The Basics
Software transactional memory (STM) gives us a few simple, but powerful, tools with
which we can address most of these problems. We execute a block of actions as a
transaction using the atomically combinator. Once we enter the block, other threads
cannot see any modifications we make until we exit, nor can our thread see any changes
made by other threads. These two properties mean that our execution is isolated.

623



Upon exit from a transaction, exactly one of the following things will occur:

• If no other thread concurrently modifies the same data as us, all of our modifica-
tions will simultaneously become visible to other threads.

• Otherwise, our modifications are discarded without being performed, and our
block of actions is automatically restarted.

This all-or-nothing nature of an atomically block is referred to as atomic, hence the
name of the combinator. If you have used databases that support transactions, you
should find that working with STM feels quite familiar.

Some Simple Examples
In a multiplayer role playing game, a player’s character will have some state such as
health, possessions, and money. To explore the world of STM, let’s start with a few
simple functions and types based around working with some character state for a game.
We will refine our code as we learn more about the API.

The STM API is provided by the stm package, and its modules are in the
Control.Concurrent.STM hierarchy:

-- file: ch28/GameInventory.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Concurrent.STM
import Control.Monad

data Item = Scroll
          | Wand
          | Banjo
            deriving (Eq, Ord, Show)

newtype Gold = Gold Int
    deriving (Eq, Ord, Show, Num)

newtype HitPoint = HitPoint Int
    deriving (Eq, Ord, Show, Num)

type Inventory = TVar [Item]
type Health = TVar HitPoint
type Balance = TVar Gold

data Player = Player {
      balance :: Balance,
      health :: Health,
      inventory :: Inventory
    }

The TVar parameterized type is a mutable variable that we can read or write inside an
atomically block. For simplicity, we represent a player’s inventory as a list of items.
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Notice, too, that we use newtype declarations so that we cannot accidentally confuse
wealth with health.

To perform a basic transfer of money from one Balance to another, all we have to do is
adjust the values in each TVar:

-- file: ch28/GameInventory.hs
basicTransfer qty fromBal toBal = do
  fromQty <- readTVar fromBal
  toQty   <- readTVar toBal
  writeTVar fromBal (fromQty - qty)
  writeTVar toBal   (toQty + qty)

Let’s write a small function to try this out:

-- file: ch28/GameInventory.hs
transferTest = do
  alice <- newTVar (12 :: Gold)
  bob   <- newTVar 4
  basicTransfer 3 alice bob
  liftM2 (,) (readTVar alice) (readTVar bob)

If we run this in ghci, it behaves as we should expect:

ghci> :load GameInventory
[1 of 1] Compiling Main             ( GameInventory.hs, interpreted )
Ok, modules loaded: Main.
ghci> atomically transferTest
Loading package array-0.1.0.0 ... linking ... done.
Loading package stm-2.1.1.1 ... linking ... done.
(Gold 9,Gold 7)

The properties of atomicity and isolation guarantee that if another thread sees a change
in bob’s balance, they will also be able to see the modification of alice’s balance.

Even in a concurrent program, we strive to keep as much of our code as possible purely
functional. This makes our code easier to reason about and to test. It also gives the
underlying STM engine less work to do, since the data involved is not transactional.
Here’s a pure function that removes an item from the list we use to represent a player’s
inventory:

-- file: ch28/GameInventory.hs
removeInv :: Eq a => a -> [a] -> Maybe [a]
removeInv x xs =
    case takeWhile (/= x) xs of
      (_:ys) -> Just ys
      []     -> Nothing

The result uses Maybe so that we can tell whether the item was actually present in the
player’s inventory.

Here is a transactional function to give an item to another player, slightly complicated
by the need to determine whether the donor actually has the item in question:
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-- file: ch28/GameInventory.hs
maybeGiveItem item fromInv toInv = do
  fromList <- readTVar fromInv
  case removeInv item fromList of
    Nothing      -> return False
    Just newList -> do
      writeTVar fromInv newList
      destItems <- readTVar toInv
      writeTVar toInv (item : destItems)
      return True

STM and Safety
If we are to provide atomic, isolated transactions, it is critical that we cannot either
deliberately or accidentally escape from an atomically block. Haskell’s type system
enforces this on our behalf, via the STM monad:

ghci> :type atomically
atomically :: STM a -> IO a

The atomically block takes an action in the STM monad, executes it, and makes its result
available to us in the IO monad. This is the monad in which all transactional code
executes. For instance, the functions that we have seen for manipulating TVar values
operate in the STM monad:

ghci> :type newTVar
newTVar :: a -> STM (TVar a)
ghci> :type readTVar
readTVar :: TVar a -> STM a
ghci> :type writeTVar
writeTVar :: TVar a -> a -> STM ()

This is also true of the transactional functions we defined earlier:

-- file: ch28/GameInventory.hs
basicTransfer :: Gold -> Balance -> Balance -> STM ()
maybeGiveItem :: Item -> Inventory -> Inventory -> STM Bool

The STM monad does not let us perform I/O or manipulate nontransactional mutable
state, such as MVar values. This lets us avoid operations that might violate the transac-
tional guarantees.

Retrying a Transaction
The API of our maybeGiveItem function is somewhat awkward. It gives an item only if
the character actually possesses it, which is reasonable, but by returning a Bool, it com-
plicates the code of its callers. Here is an item sale function that has to look at the result
of maybeGiveItem to decide what to do next:

-- file: ch28/GameInventory.hs
maybeSellItem :: Item -> Gold -> Player -> Player -> STM Bool
maybeSellItem item price buyer seller = do
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  given <- maybeGiveItem item (inventory seller) (inventory buyer)
  if given
    then do
      basicTransfer price (balance buyer) (balance seller)
      return True
    else return False

Not only do we have to check whether the item was given, we have to propagate an
indication of success back to our caller. The complexity thus cascades outwards.

There is a more elegant way to handle transactions that cannot succeed. The STM API
provides a retry action that will immediately terminate an atomically block that cannot
proceed. As the name suggests, when this occurs, execution of the block is restarted
from scratch, with any previous modifications unperformed. Here is a rewrite of
maybeGiveItem to use retry:

-- file: ch28/GameInventory.hs
giveItem :: Item -> Inventory -> Inventory -> STM ()

giveItem item fromInv toInv = do
  fromList <- readTVar fromInv
  case removeInv item fromList of
    Nothing -> retry
    Just newList -> do
      writeTVar fromInv newList
      readTVar toInv >>= writeTVar toInv . (item :)

Our basicTransfer from earlier had a different kind of flaw: it did not check the sender’s
balance to see if she had sufficient money to transfer. We can use retry to correct this,
while keeping the function’s type the same:

-- file: ch28/GameInventory.hs
transfer :: Gold -> Balance -> Balance -> STM ()

transfer qty fromBal toBal = do
  fromQty <- readTVar fromBal
  when (qty > fromQty) $
    retry
  writeTVar fromBal (fromQty - qty)
  readTVar toBal >>= writeTVar toBal . (qty +)

Now that we are using retry, our item sale function becomes dramatically simpler:

-- file: ch28/GameInventory.hs
sellItem :: Item -> Gold -> Player -> Player -> STM ()
sellItem item price buyer seller = do
  giveItem item (inventory seller) (inventory buyer)
  transfer price (balance buyer) (balance seller)

Its behavior is slightly different from our earlier function. Instead of immediately re-
turning False if the seller doesn’t have the item, it will block (if necessary) until both
the seller has the item and the buyer has enough money to pay for it.
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The beauty of STM lies in the cleanliness of the code it lets us write. We can take two
functions that work correctly, and use them to create a third that will also behave itself,
all with minimal effort.

What Happens When We Retry?
The retry function doesn’t just make our code cleaner—its underlying behavior seems
nearly magical. When we call it, it doesn’t restart our transaction immediately. Instead,
it blocks our thread until one or more of the variables that we touched before calling
retry is changed by another thread.

For instance, if we invoke transfer with insufficient funds, retry will automatically
wait until our balance changes before it starts the atomically block again. The same
happens with our new giveItem function: if the sender doesn’t currently have the item
in his inventory, the thread will block until he does.

Choosing Between Alternatives
We don’t always want to restart an atomically action if it calls retry or fails due to
concurrent modification by another thread. For instance, our new sellItem function
will retry indefinitely as long as we are missing either the item or enough money, but
we might prefer to just try the sale once.

The orElse combinator lets us perform a “backup” action if the main one fails:

ghci> :type orElse
orElse :: STM a -> STM a -> STM a

If sellItem fails, orElse will invoke the return False action, causing our sale function
to return immediately.

Using Higher Order Code with Transactions
Imagine that we’d like to be a little more ambitious and buy the first item from a list
that is both in the possession of the seller and affordable to us, but it does nothing if
we cannot afford something right now. We could, of course, write code to do this in a
direct manner:

-- file: ch28/GameInventory.hs
crummyList :: [(Item, Gold)] -> Player -> Player
             -> STM (Maybe (Item, Gold))
crummyList list buyer seller = go list
    where go []                         = return Nothing
          go (this@(item,price) : rest) = do
              sellItem item price buyer seller
              return (Just this)
           `orElse`
              go rest
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This function suffers from the familiar problem of muddling together what we want to
do with how we ought to do it. A little inspection suggests that there are two reusable
patterns buried in this code.

The first of these is to make a transaction fail immediately instead of retrying:

-- file: ch28/GameInventory.hs
maybeSTM :: STM a -> STM (Maybe a)
maybeSTM m = (Just `liftM` m) `orElse` return Nothing

Second, we want to try an action over successive elements of a list, stopping at the first
that succeeds or performing a retry if every one fails. Conveniently for us, STM is an
instance of the MonadPlus typeclass:

-- file: ch28/STMPlus.hs
instance MonadPlus STM where
  mzero = retry
  mplus = orElse

The Control.Monad module defines the msum function as follows, which is exactly what
we need:

-- file: ch28/STMPlus.hs
msum :: MonadPlus m => [m a] -> m a
msum =  foldr mplus mzero

We now have a few key pieces of machinery that will help us write a much clearer
version of our function:

-- file: ch28/GameInventory.hs
shoppingList :: [(Item, Gold)] -> Player -> Player
             -> STM (Maybe (Item, Gold))
shoppingList list buyer seller = maybeSTM . msum $ map sellOne list
    where sellOne this@(item,price) = do
            sellItem item price buyer seller
            return this

Since STM is an instance of the MonadPlus typeclass, we can generalize maybeSTM to work
over any MonadPlus:

-- file: ch28/GameInventory.hs
maybeM :: MonadPlus m => m a -> m (Maybe a)
maybeM m = (Just `liftM` m) `mplus` return Nothing

This gives us a function that is useful in a greater variety of situations.

I/O and STM
The STM monad forbids us from performing arbitrary I/O actions, because they can
break the guarantees of atomicity and isolation that the monad provides. Of course,
the need to perform I/O still arises—we just have to treat it very carefully.

Most often, we will need to perform some I/O action as a result of a decision we made
inside an atomically block. In these cases, the right thing to do is usually to return a
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piece of data from atomically, which will tell the caller in the IO monad what to do
next. We can even return the action to perform, since actions are first-class values:

-- file: ch28/STMIO.hs
someAction :: IO a

stmTransaction :: STM (IO a)
stmTransaction = return someAction

doSomething :: IO a
doSomething = join (atomically stmTransaction)

We occasionally need to perform an I/O operation from within STM. For instance, read-
ing immutable data from a file that must exist does not violate the STM guarantees of
isolation or atomicity. In these cases, we can use unsafeIOToSTM to execute an IO action.
This function is exported by the low-level GHC.Conc module, so we must go out of our
way to use it:

ghci> :m +GHC.Conc
ghci> :type unsafeIOToSTM
unsafeIOToSTM :: IO a -> STM a

The IO action that we execute must not start another atomically transaction. If a thread
tries to nest transactions, the runtime system will throw an exception.

Since the type system can’t help us to ensure that our IO code is doing something
sensible, we will be safest if we limit our use of unsafeIOToSTM as much as possible. Here
is a typical error that can arise with IO in an atomically block:

-- file: ch28/STMIO.hs
launchTorpedoes :: IO ()

notActuallyAtomic = do
  doStuff
  unsafeIOToSTM launchTorpedoes
  mightRetry

If the mightRetry block causes our transaction to restart, we will call launchTorpedoes
more than once. Indeed, we can’t predict how many times it will be called, since the
runtime system handles retries for us. The solution is not to perform these kinds of
nonidempotent* I/O operations inside a transaction.

Communication Between Threads
As well as the basic TVar type, the stm package provides two types that are more useful
for communicating between threads. A TMVar is the STM equivalent of an MVar: it can
hold either Just a value or Nothing. The TChan type is the STM counterpart of Chan, and
it implements a typed FIFO channel.

* An idempotent action gives the same result every time it is invoked, no matter how many times this occurs.
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A Concurrent Web Link Checker
As a practical example of using STM, we will develop a program that checks an HTML
file for broken links—that is, URLs that either point to bad web pages or dead servers.
This is a good problem to address via concurrency: if we try to talk to a dead server, it
will take up to two minutes before our connection attempt times out. If we use multiple
threads, we can still get useful work done while one or two are stuck talking to slow or
dead servers.

We can’t simply create one thread per URL, because that may overburden either our
CPU or our network connection if (as we expect) most of the links are live and respon-
sive. Instead, we use a fixed number of worker threads, which fetch URLs to download
from a queue:

-- file: ch28/Check.hs
{-# LANGUAGE FlexibleContexts, GeneralizedNewtypeDeriving,
             PatternGuards #-}

import Control.Concurrent (forkIO)
import Control.Concurrent.STM
import Control.Exception (catch, finally)
import Control.Monad.Error
import Control.Monad.State
import Data.Char (isControl)
import Data.List (nub)
import Network.URI
import Prelude hiding (catch)
import System.Console.GetOpt
import System.Environment (getArgs)
import System.Exit (ExitCode(..), exitWith)
import System.IO (hFlush, hPutStrLn, stderr, stdout)
import Text.Printf (printf)
import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.Set as S

-- This requires the HTTP package, which is not bundled with GHC
import Network.HTTP

type URL = B.ByteString

data Task = Check URL | Done

Our main function provides the top-level scaffolding for our program:

-- file: ch28/Check.hs
main :: IO ()
main = do
    (files,k) <- parseArgs
    let n = length files

    -- count of broken links
    badCount <- newTVarIO (0 :: Int)

    -- for reporting broken links
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    badLinks <- newTChanIO

    -- for sending jobs to workers
    jobs <- newTChanIO

    -- the number of workers currently running
    workers <- newTVarIO k

    -- one thread reports bad links to stdout
    forkIO $ writeBadLinks badLinks

    -- start worker threads
    forkTimes k workers (worker badLinks jobs badCount)

    -- read links from files, and enqueue them as jobs
    stats <- execJob (mapM_ checkURLs files)
                     (JobState S.empty 0 jobs)

    -- enqueue "please finish" messages
    atomically $ replicateM_ k (writeTChan jobs Done)

    waitFor workers

    broken <- atomically $ readTVar badCount

    printf fmt broken
               (linksFound stats)
               (S.size (linksSeen stats))
               n
  where
    fmt   = "Found %d broken links. " ++
            "Checked %d links (%d unique) in %d files.\n"

When we are in the IO monad, we can create new TVar values using the newTVarIO
function. There are also counterparts for creating TMVar and TChan values.

Notice that we use the printf function to print a report at the end. Unlike its counterpart
in C, the Haskell printf function can check its argument types and their numbers at
runtime:

ghci> :m +Text.Printf
ghci> printf "%d and %d\n" (3::Int)
3 and *** Exception: Printf.printf: argument list ended prematurely
ghci> printf "%s and %d\n" "foo" (3::Int)
foo and 3

Try evaluating printf "%d" True at the ghci prompt, and see what happens.

Several short functions support main:

-- file: ch28/Check.hs
modifyTVar_ :: TVar a -> (a -> a) -> STM ()
modifyTVar_ tv f = readTVar tv >>= writeTVar tv . f

forkTimes :: Int -> TVar Int -> IO () -> IO ()
forkTimes k alive act =
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  replicateM_ k . forkIO $
    act
    `finally`
    (atomically $ modifyTVar_ alive (subtract 1))

The forkTimes function starts a number of identical worker threads and decreases the
“alive” count each time a thread exits. We use a finally combinator to ensure that the
count is always decremented, no matter how the thread terminates.

Next, the writeBadLinks function prints each broken or dead link to stdout:

-- file: ch28/Check.hs
writeBadLinks :: TChan String -> IO ()
writeBadLinks c =
  forever $
    atomically (readTChan c) >>= putStrLn >> hFlush stdout

We use the forever combinator in the preceding code, which repeats an action
endlessly:

ghci> :m +Control.Monad
ghci> :type forever
forever :: (Monad m) => m a -> m ()

Our waitFor function uses check, which calls retry if its argument evaluates to False:

-- file: ch28/Check.hs
waitFor :: TVar Int -> IO ()
waitFor alive = atomically $ do
  count <- readTVar alive
  check (count == 0)

Checking a Link
Here is a naive function to check the state of a link. This code is similar to the podcatcher
that we developed in Chapter 22, with a few small differences:

-- file: ch28/Check.hs
getStatus :: URI -> IO (Either String Int)
getStatus = chase (5 :: Int)
  where
    chase 0 _ = bail "too many redirects"
    chase n u = do
      resp <- getHead u
      case resp of
        Left err -> bail (show err)
        Right r ->
          case rspCode r of
            (3,_,_) ->
               case findHeader HdrLocation r of
                 Nothing -> bail (show r)
                 Just u' ->
                   case parseURI u' of
                     Nothing -> bail "bad URL"
                     Just url -> chase (n-1) url
            (a,b,c) -> return . Right $ a * 100 + b * 10 + c
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    bail = return . Left

getHead :: URI -> IO (Result Response)
getHead uri = simpleHTTP Request { rqURI = uri,
                                   rqMethod = HEAD,
                                   rqHeaders = [],
                                   rqBody = "" }

We follow an HTTP redirect response just a few times, in order to avoid endless redirect
loops. To determine whether a URL is valid, we use the HTTP standard’s HEAD verb,
which uses less bandwidth than a full GET.

This code has the classic “marching off the right of the screen” style that we have learned
to be wary of. Here is a rewrite that offers greater clarity via the ErrorT monad trans-
former and a few generally useful functions:

-- file: ch28/Check.hs
getStatusE = runErrorT . chase (5 :: Int)
  where
    chase :: Int -> URI -> ErrorT String IO Int
    chase 0 _ = throwError "too many redirects"
    chase n u = do
      r <- embedEither show =<< liftIO (getHead u)
      case rspCode r of
        (3,_,_) -> do
            u'  <- embedMaybe (show r)  $ findHeader HdrLocation r
            url <- embedMaybe "bad URL" $ parseURI u'
            chase (n-1) url
        (a,b,c) -> return $ a*100 + b*10 + c

-- This function is defined in Control.Arrow.
left :: (a -> c) -> Either a b -> Either c b
left f (Left x)  = Left (f x)
left _ (Right x) = Right x

-- Some handy embedding functions.
embedEither :: (MonadError e m) => (s -> e) -> Either s a -> m a
embedEither f = either (throwError . f) return

embedMaybe :: (MonadError e m) => e -> Maybe a -> m a
embedMaybe err = maybe (throwError err) return

Worker Threads
Each worker thread reads a task off the shared queue. It either checks the given URL
or exits:

-- file: ch28/Check.hs
worker :: TChan String -> TChan Task -> TVar Int -> IO ()
worker badLinks jobQueue badCount = loop
  where
    -- Consume jobs until we are told to exit.
    loop = do
        job <- atomically $ readTChan jobQueue
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        case job of
            Done  -> return ()
            Check x -> checkOne (B.unpack x) >> loop

    -- Check a single link.
    checkOne url = case parseURI url of
        Just uri -> do
            code <- getStatus uri `catch` (return . Left . show) 
            case code of
                Right 200 -> return ()
                Right n   -> report (show n)
                Left err  -> report err
        _ -> report "invalid URL"

        where report s = atomically $ do
                           modifyTVar_ badCount (+1)
                           writeTChan badLinks (url ++ " " ++ s)

Finding Links
We structure our link finding around a state monad transformer stacked on the IO
monad. Our state tracks links that we have already seen (so we don’t check a repeated
link more than once), the total number of links we have encountered, and the queue
to which we should add the links that we will be checking:

-- file: ch28/Check.hs
data JobState = JobState { linksSeen :: S.Set URL,
                           linksFound :: Int,
                           linkQueue :: TChan Task }

newtype Job a = Job { runJob :: StateT JobState IO a }
    deriving (Monad, MonadState JobState, MonadIO)

execJob :: Job a -> JobState -> IO JobState
execJob = execStateT . runJob

Strictly speaking, for a small standalone program, we don’t need the newtype wrapper,
but we include it here as an example of good practice (it costs only a few lines of code,
anyway).

The main function maps checkURLs over each input file, so checkURLs needs only to read
a single file:

-- file: ch28/Check.hs
checkURLs :: FilePath -> Job ()
checkURLs f = do
    src <- liftIO $ B.readFile f
    let urls = extractLinks src
    filterM seenURI urls >>= sendJobs
    updateStats (length urls)

updateStats :: Int -> Job ()
updateStats a = modify $ \s ->
    s { linksFound = linksFound s + a }
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-- | Add a link to the set we have seen.
insertURI :: URL -> Job ()
insertURI c = modify $ \s ->
    s { linksSeen = S.insert c (linksSeen s) }

-- | If we have seen a link, return False.  Otherwise, record that we
-- have seen it, and return True.
seenURI :: URL -> Job Bool
seenURI url = do
    seen <- (not . S.member url) `liftM` gets linksSeen
    insertURI url
    return seen

sendJobs :: [URL] -> Job ()
sendJobs js = do
    c <- gets linkQueue
    liftIO . atomically $ mapM_ (writeTChan c . Check) js

Our extractLinks function doesn’t attempt to properly parse an HTML or text file.
Instead, it looks for strings that appear to be URLs and treats them as “good enough”:

-- file: ch28/Check.hs
extractLinks :: B.ByteString -> [URL]
extractLinks = concatMap uris . B.lines
  where uris s      = filter looksOkay (B.splitWith isDelim s)
        isDelim c   = isControl c || c `elem` " <>\"{}|\\^[]`"
        looksOkay s = http `B.isPrefixOf` s
        http        = B.pack "http:"

Command-Line Parsing
To parse our command-line arguments, we use the System.Console.GetOpt module. It
provides useful code for parsing arguments, but it is slightly involved to use:

-- file: ch28/Check.hs
data Flag = Help | N Int
            deriving Eq

parseArgs :: IO ([String], Int)
parseArgs = do
    argv <- getArgs
    case parse argv of
        ([], files, [])                     -> return (nub files, 16)
        (opts, files, [])
            | Help `elem` opts              -> help
            | [N n] <- filter (/=Help) opts -> return (nub files, n)
        (_,_,errs)                          -> die errs
  where
    parse argv = getOpt Permute options argv
    header     = "Usage: urlcheck [-h] [-n n] [file ...]"
    info       = usageInfo header options
    dump       = hPutStrLn stderr
    die errs   = dump (concat errs ++ info) >> exitWith (ExitFailure 1)
    help       = dump info                  >> exitWith ExitSuccess
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The getOpt function takes three arguments:

• An argument ordering, which specifies whether options can be mixed with other
arguments (Permute, which we used earlier) or must appear before them.

• A list of option definitions. Each consists of a list of short names for the option, a
list of long names for the option, a description of the option (e.g., whether it accepts
an argument), and an explanation for users.

• A list of the arguments and options, as returned by getArgs.

The function returns a triple that consists of the parsed options, the remaining argu-
ments, and any error messages that arose.

We use the Flag algebraic data type to represent the options that our program can
accept:

-- file: ch28/Check.hs
options :: [OptDescr Flag]
options = [ Option ['h'] ["help"] (NoArg Help)
                   "Show this help message",
            Option ['n'] []       (ReqArg (\s -> N (read s)) "N")
                   "Number of concurrent connections (default 16)" ]

Our options list describes each option that we accept. Each description must be able
to create a Flag value. Take a look at our uses of NoArg and ReqArg in the preceding
code. These are constructors for the GetOpt module’s ArgDescr type:

-- file: ch28/GetOpt.hs
data ArgDescr a = NoArg a
                | ReqArg (String -> a) String
                | OptArg (Maybe String -> a) String

The constructors have the following meanings:

NoArg
Accepts a parameter that will represent this option. In our case, if a user invokes
our program with -h or --help, we will use the value Help.

ReqArg
Accepts a function that maps a required argument to a value. Its second argument
is used when printing help. Here, we convert a string into an integer, and pass it
to our Flag type’s N constructor.

OptArg
Similar to the ReqArg constructor, but it permits the use of options that can be used
without arguments.

Pattern Guards
We sneaked one last language extension into our definition of parseArgs. Pattern guards
let us write more concise guard expressions. They are enabled via the PatternGuards
language extension. 
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A pattern guard has three components: a pattern, a <- symbol, and an expression. The
expression is evaluated and matched against the pattern. If it matches, any variables
present in the pattern are bound. We can mix pattern guards and normal Bool guard
expressions in a single guard by separating them with commas:

-- file: ch28/PatternGuard.hs
{-# LANGUAGE PatternGuards #-}

testme x xs | Just y <- lookup x xs, y > 3 = y
            | otherwise                    = 0

In this example, we return a value from the alist xs if its associated key x is present,
provided the value is greater than 3. This definition is equivalent to the following:

-- file: ch28/PatternGuard.hs
testme_noguards x xs = case lookup x xs of
                         Just y | y > 3 -> y
                         _              -> 0

Pattern guards let us “collapse” a collection of guards and case expressions into a single
guard, allowing us to write more succinct and descriptive guards.

Practical Aspects of STM
We have so far been quiet about the specific benefits that STM gives us. Most obvious
is how well it composes—to add code to a transaction, we just use our usual monadic
building blocks, (>>=) and (>>).

The notion of composability is critical to building modular software. If we take two
pieces of code that work correctly individually, the composition of the two should also
be correct. While normal threaded programming makes composability impossible,
STM restores it as a key assumption that we can rely upon.

The STM monad prevents us from accidentally performing nontransactional I/O actions.
We don’t need to worry about lock ordering, since our code contains no locks. We can
forget about lost wakeups, since we don’t have condition variables. If an exception is
thrown, we can either catch it using catchSTM or be bounced out of our transaction,
leaving our state untouched. Finally, the retry and orElse functions give us some
beautiful ways to structure our code.

Code that uses STM will not deadlock, but it is possible for threads to starve each other
to some degree. A long-running transaction can cause another transaction to retry
often enough that it will make comparatively little progress. To address a problem such
as this, make your transactions as short as you can, while keeping your data consistent.

Getting Comfortable with Giving Up Control
Whether with concurrency or memory management, there will be times when we must
retain control: some software must make solid guarantees about latency or memory
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footprint, so we will be forced to spend the extra time and effort managing and de-
bugging explicit code. For many interesting, practical uses of software, garbage collec-
tion and STM will do more than well enough.

STM is not a complete panacea. It is useful to compare it with the use of garbage collection
for memory management. When we abandon explicit memory management in favor
of garbage collection, we give up control in return for safer code. Likewise, with STM,
we abandon the low-level details in exchange for code that we can better hope to
understand.

Using Invariants
STM cannot eliminate certain classes of bugs. For instance, if we withdraw money from
an account in one atomically block, return to the IO monad, and then deposit it to
another account in a different atomically block, our code will have an inconsistency.
There will be a window of time in which the money is present in neither account.

-- file: ch28/GameInventory.hs
bogusTransfer qty fromBal toBal = do
  fromQty <- atomically $ readTVar fromBal
  -- window of inconsistency
  toQty   <- atomically $ readTVar toBal
  atomically $ writeTVar fromBal (fromQty - qty)
  -- window of inconsistency
  atomically $ writeTVar toBal   (toQty + qty)

bogusSale :: Item -> Gold -> Player -> Player -> IO ()
bogusSale item price buyer seller = do
  atomically $ giveItem item (inventory seller) (inventory buyer)
  bogusTransfer price (balance buyer) (balance seller)

In concurrent programs, these kinds of problems are notoriously difficult to find and
reproduce. For instance, the inconsistency that we describe here will usually only occur
for a brief period of time. Problems such as this often refuse to show up during devel-
opment, instead occurring only in the field under heavy load.

The alwaysSucceeds function lets us define an invariant, a property of our data that
must always be true:

ghci> :type alwaysSucceeds
alwaysSucceeds :: STM a -> STM ()

When we create an invariant, it will immediately be checked. To fail, the invariant must
raise an exception. More interestingly, the invariant will subsequently be checked
automatically at the end of every transaction. If it fails at any point, the transaction will
be aborted, and the exception raised by the invariant will be propagated. This means
that we will get immediate feedback as soon as one of our invariants is violated.

For instance, here are a few functions to populate our game world from the beginning
of this chapter with players:
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-- file: ch28/GameInventory.hs
newPlayer :: Gold -> HitPoint -> [Item] -> STM Player
newPlayer balance health inventory =
    Player `liftM` newTVar balance
              `ap` newTVar health
              `ap` newTVar inventory

populateWorld :: STM [Player]
populateWorld = sequence [ newPlayer 20 20 [Wand, Banjo],
                           newPlayer 10 12 [Scroll] ]

This function returns an invariant that we can use to ensure that the world’s money
balance is always consistent—the balance at any point in time should be the same as
at the creation of the world:

-- file: ch28/GameInventory.hs
consistentBalance :: [Player] -> STM (STM ())
consistentBalance players = do
    initialTotal <- totalBalance
    return $ do
      curTotal <- totalBalance
      when (curTotal /= initialTotal) $
        error "inconsistent global balance"
  where totalBalance   = foldM addBalance 0 players
        addBalance a b = (a+) `liftM` readTVar (balance b)

Let’s write a small function that exercises this:

-- file: ch28/GameInventory.hs
tryBogusSale = do
  players@(alice:bob:_) <- atomically populateWorld
  atomically $ alwaysSucceeds =<< consistentBalance players
  bogusSale Wand 5 alice bob

If we run it in ghci, it should detect the inconsistency caused by our incorrect use of
atomically in the bogusTransfer function we wrote:

ghci> tryBogusSale
*** Exception: inconsistent global balance
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APPENDIX A

Installing GHC and Haskell Libraries

The instructions in this appendix are based on our experience installing GHC and other
software in late 2008. Installation instructions inevitably become dated quickly; please
bear this in mind as you read.

Installing GHC
Because GHC runs on a large number of platforms, we focus on a handful of the most
popular.

Windows
The prebuilt binary packages of GHC should work on Windows Vista and XP (even
Windows 2000). We have installed GHC 6.8.3 under Windows XP Service Pack 2; the
following paragraphs detail the steps we followed.

How much room does GHC need?
On Windows, GHC requires about 400 MB of disk space. The exact
amount will vary from release to release.

Our first step is to visit the GHC at http://www.haskell.org/ghcdownload.html (see Fig-
ure A-1) and follow the link to the current stable release. Scroll down to the section
entitled “Binary packages,” and then again to the subsection for Windows. Download
the installer; in our case, it’s named ghc-6.8.3-i386-windows.exe.

After the installer has downloaded, double-click it to start the installation process. This
involves stepping through a normal Windows installer wizard (see Figure A-2).

Once the installer has finished, the Start Menu’s “All Programs” submenu (see Fig-
ure A-3) should have a GHC folder, inside which you’ll find an icon that you can use
to run ghci.
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Clicking the ghci icon brings up a normal Windows console window that is running
ghci (see Figure A-4).

Updating your search path
The GHC installer automatically modifies your user account’s PATH
environment variable so that commands such as ghc will be present in
the command shell’s search path (i.e., you can type a GHC command
name without typing its complete path). This change will take effect the
next time you open a command shell.

Mac OS X
We have installed GHC 6.8.3 under Mac OS X 10.5 (Leopard), on an Intel-based Mac-
Book. Before installing GHC, the Xcode development system must already be installed.

The Xcode software installer may have come bundled on a DVD with your Mac. If not
(or you can’t find it), you should be able to download it from Apple. Once you’ve
finished installing Xcode, continue on to download GHC itself.

Visit the GHC download page (http://www.haskell.org/ghc/download.html) and follow
the link to the current stable release. Scroll down to the section entitled “Binary pack-
ages,” and then again to the subsection for Mac OS X. There is a single installer package
available. Download and run it.

Figure A-1. Screenshot of Firefox, displaying the GHC download page
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Terminal at your fingertips yet?
Since most of your interactions with GHC will be through a Terminal
window, this might be a good time to add the Terminal application to
your dock (if you haven’t already done so). You can find it in the sys-
tem’s /Applications/Utilities folder.

The installation process should take a minute or two. Finally, you should be able to
successfully run the ghci command from your shell prompt (see Figure A-5).

Alternatives

Both the MacPorts and Fink projects provide builds of GHC.

Ubuntu and Debian Linux
Under both Ubuntu and Debian, you can install a minimal working version of GHC
by running sudo aptitude install ghc6 from a shell prompt.

These distros maintain a small core GHC package, which is insufficient for much prac-
tical development. However, they make a number of additional prebuilt packages

Figure A-2. Screenshot of the GHC installation wizard on Windows
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available; run apt-cache search libghc6 to find a complete list of these prebuilt pack-
ages. We recommend that you install at least the mtl package, using
sudo aptitude install libghc6-mtl-dev.

Since you will probably want to profile the performance of your Haskell programs at
some point, you should also install the ghc6-prof package.

Figure A-3. Screenshot of the Windows XP Start menu, showing the GHC submenu

Figure A-4. Screenshot of the ghci interpreter running on Windows
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Fedora Linux
GHC is available as a standard Fedora binary package. From a shell, all you need to do
is run the following command:

          sudo yum -y install ghc ghc-doc ghc683-prof

The base package, containing the ghc and ghci commands and libraries, is ghc. The
ghc-doc package contains the GHC user guide, and command and library documenta-
tion. The ghc683-prof package contains profiling-capable versions of the standard
libraries (its version number may have changed by the time you read this).

Once installation has finished, you should be able to run ghci from the shell immedi-
ately. You won’t need to change your shell’s search path or set any environment
variables.

FreeBSD
Under FreeBSD, run the following commands:

$ cd /usr/ports/lang/ghc
$ sudo make install clean

This will download and build GHC from source. You should expect the process to take
several hours.

Figure A-5. Screenshot of the ghci interpreter running in a Terminal window on Mac OS X
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Installing Haskell Software
Almost all Haskell libraries are distributed using a standard packaging system named
Cabal. You can find hundreds of Haskell open source libraries and programs, all of
which use Cabal, at http://hackage.haskell.org/, the home of the Hackage code
repository.

Automated Download and Installation with cabal
A command named cabal automates the job of downloading, building, and installing
a Haskell package. It also figures out what dependencies a particular library needs and
either makes sure that they are installed already or downloads and builds them first.
You can install any Haskell package with a single cabal install mypackage command.

The cabal command is not bundled with GHC, so at least as of GHC version 6.8.3,
you will have to download and build it yourself.

Installing cabal

To build the cabal command, download the sources for the following four packages
from http://hackage.haskell.org/:

• Cabal

• HTTP

• zlib

• cabal-install

Follow the instructions in “Building Packages by Hand” on page 647 to manually
build each of these four packages, making sure that you leave cabal-install until last.

After you install the cabal-install package, the $HOME/.cabal/bin directory will con-
tain the cabal command. You can either move it somewhere more convenient or add
that directory to your shell’s search path.

Updating cabal’s package list

After installing cabal, and periodically thereafter, you should download a fresh list of
packages from Hackage. You can do so as follows:

$ cabal update

Installing a library or program

To install some executable or library, just run the following command:

$ cabal install -p mypackage
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Building Packages by Hand
If you download a tarball from Hackage, it will arrive in source form. Unpack the tarball
and go into the newly created directory in a command shell. The process to build and
install it is simple, consisting of three commands:

1. Configure for system-wide installation (i.e., available to all users):

$ runghc Setup configure -p

Alternatively, configure to install only for yourself:

$ runghc Setup configure --user --prefix=$HOME -p

2. Build (this will build each source file twice, with and without profiling support):

$ runghc Setup build

3. Install if you chose system-wide configuration:

$ sudo runghc Setup install

Alternatively, if you chose configuration for yourself only:

$ runghc Setup install

If you build by hand, you will frequently find that the configuration step fails because
some other library must be installed first. You may find yourself needing to download
and build several packages before you can make progress on the one you really want.
This is why we recommend using the cabal command instead.
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APPENDIX B

Characters, Strings, and Escaping Rules

This appendix covers the escaping rules used to represent non-ASCII characters in
Haskell character and string literals. Haskell’s escaping rules follow the pattern estab-
lished by the C programming language, but they expand considerably upon them.

Writing Character and String Literals
A single character is surrounded by ASCII single quotes, ', and has type Char:

ghci> 'c'
'c'
ghci> :type 'c'
'c' :: Char

A string literal is surrounded by double quotes, ", and has type [Char] (more often
written as String):

ghci> "a string literal"
"a string literal"
ghci> :type "a string literal"
"a string literal" :: [Char]

The double-quoted form of a string literal is just syntactic sugar for list notation:

ghci> ['a', ' ', 's', 't', 'r', 'i', 'n', 'g'] == "a string"
True

International Language Support
Haskell uses Unicode internally for its Char data type. Since String is just an alias for
[Char] (which is a list of Chars), Unicode is also used to represent strings.

Different Haskell implementations place limitations on the character sets they can ac-
cept in source files. GHC allows source files to be written in the UTF-8 encoding of
Unicode, so in a source file, you can use UTF-8 literals inside a character or string
constant. Do be aware that if you use UTF-8, other Haskell implementations may not
be able to parse your source files.
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When you run the ghci interpreter interactively, it may not be able to deal with inter-
national characters in character or string literals that you enter at the keyboard.

Although Haskell represents characters and strings internally using
Unicode, there is no standardized way to do I/O on files that contain
Unicode data. Haskell’s standard text I/O functions treat text as a
sequence of 8-bit characters, and do not perform any character set
conversion.

There are third-party libraries that will convert between the many dif-
ferent encodings used in files and Haskell’s internal Unicode
representation.

Escaping Text
Some characters must be escaped to be represented inside a character or string literal.
For example, a double-quote character inside a string literal must be escaped, or else
it will be treated as the end of the string.

Single-Character Escape Codes
Haskell uses essentially the same single-character escapes as the C language and many
other popular languages. The escape codes are shown in Table B-1.

Table B-1. Single-character escape codes

Escape Unicode Character

\0 U+0000 Null character

\a U+0007 Alert

\b U+0008 Backspace

\f U+000C Form feed

\n U+000A Newline (linefeed)

\r U+000D Carriage return

\t U+0009 Horizontal tab

\v U+000B Vertical tab

\" U+0022 Double-quote

\& n/a Empty string

\' U+0027 Single quote

\\ U+005C Backslash
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Multiline String Literals
To write a string literal that spans multiple lines, terminate one line with a backslash
and resume the string with another backslash. An arbitrary amount of whitespace (of
any kind) can fill the gap between the two backslashes:

"this is a \
    \long string,\
    \ spanning multiple lines"

ASCII Control Codes
Haskell recognizes the escaped use of the standard two- and three-letter abbreviations
of ASCII control codes, shown in Table B-2.

Table B-2. ASCII control code abbreviations

Escape Unicode Meaning

\NUL U+0000 Null character

\SOH U+0001 Start of heading

\STX U+0002 Start of text

\ETX U+0003 End of text

\EOT U+0004 End of transmission

\ENQ U+0005 Enquiry

\ACK U+0006 Acknowledge

\BEL U+0007 Bell

\BS U+0008 Backspace

\HT U+0009 Horizontal tab

\LF U+000A Newline (linefeed)

\VT U+000B Vertical tab

\FF U+000C Form feed

\CR U+000D Carriage return

\SO U+000E Shift out

\SI U+000F Shift in

\DLE U+0010 Data link escape

\DC1 U+0011 Device control 1

\DC2 U+0012 Device control 2

\DC3 U+0013 Device control 3

\DC4 U+0014 Device control 4

\NAK U+0015 Negative acknowledge

\SYN U+0016 Synchronous idle
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Escape Unicode Meaning

\ETB U+0017 End of transmission block

\CAN U+0018 Cancel

\EM U+0019 End of medium

\SUB U+001A Substitute

\ESC U+001B Escape

\FS U+001C File separator

\GS U+001D Group separator

\RS U+001E Record separator

\US U+001F Unit separator

\SP U+0020 Space

\DEL U+007F Delete

Control-with-Character Escapes
Haskell recognizes an alternate notation for control characters, which represents the
archaic effect of pressing the Ctrl key on a keyboard and chording it with another key.
These sequences begin with the characters \^, followed by a symbol or uppercase letter
and are listed in Table B-3.

Table B-3. Control-with-character escapes

Escape Unicode Meaning

\^@ U+0000 Null character

\^A through \^Z U+0001 through U+001A Control codes

\^[ U+001B Escape

\^\ U+001C File separator

\^] U+001D Group separator

\^^ U+001E Record separator

\^_ U+001F Unit separator

Numeric Escapes
Haskell allows Unicode characters to be written using numeric escapes. A decimal
character begins with a digit, e.g., \1234. A hexadecimal character begins with an x, e.g.
\xbeef. An octal character begins with an o, e.g., \o1234.

The maximum value of a numeric literal is \1114111, which may also be written
\x10ffff or \o4177777.
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The Zero-Width Escape Sequence
String literals can contain a zero-width escape sequence, written \&. This is not a real
character, as it represents the empty string:

ghci> "\&"
""
ghci> "foo\&bar"
"foobar"

The purpose of this escape sequence is to make it possible to write a numeric escape
followed immediately by a regular ASCII digit:

ghci> "\130\&11"
"\130\&11"

Because the empty escape sequence represents an empty string, it is not legal in a char-
acter literal.
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Symbols
!= (C comparison operator), 6
" (double quotes), writing strings, 11, 649
&& (logical and), 5
' (single quotes), 649
( ) (parentheses)

arithmetic expressions, writing, 4
foldl and foldr function, 94
operator precedence and, 7
tuples, writing, 25

(!!) operator, 196
(!) operator, 272, 291
($) operator, 248
(%) operator, 14, 146
(&&) operator, 80
(*) multiplication function, 145
(**) (exponentiation) operator, 8, 145
(*>) operator, 397
(+) (accumulator) option, 93, 145
(++) append function, 80, 120, 317

fold functions and, 96
mplus function, 364

(++) append option, 11, 166
lazy functions, writing, 205

(-) subtraction function, 145
(-) unary operator, 4
(.&.) (bitwise and), 91, 146
(.) operator, 105, 318
(.|.) bitwise or, 91, 146
(/) fractional division function, 145
(/=) operator, 6, 148
(:) list constructor

pattern matching, using, 51
recursive types and, 58

splitting lines of text, 74
(:) operator, 202
(::) operator, using type signatures and, 22
(<$>) operator, 248, 397
(<*) operator, 399
(<-) operator, 72, 167, 344
(<>) operator, 120, 125
(<?>) operator, 390
(<|) operator, 323
(<|>) operator, 388

lookaheads and, 389
(=<<) function, 212
(=<<) operator, 346
(==) operator, 46, 136, 148, 223
(==>) operator, 242, 258, 600
(=~) operator, 198
(>) operator, 223
(><) operator, 323
(>=) operator, 148
(>>) operator, 186, 330, 333, 397

return calls and, 329
(>>=) operator, 186, 332, 346, 354

coding style and, 356
list Monads and, 340
Monad typeclasses and, 329
return call and, 335, 367

reading/modifying state, 348
state monads and, 347

(>>?) operator, 238, 326
(\\) operator, 258
(^) operator, 145
(^^) operator, 146
(|>) operator, 323
(||) operator, 31, 33, 80

recursion and, 35

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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* (asterisk), as a wild card, 197
, (commas), 9

CSV files and, 383
tuples, writing, 24

- (dash), as a range character, 197
-> syntax, 100

case expressions, 67
lambda (\) functions and, 99

. (point) character, 120

.. (enumeration) characters, 10
-02 GHC option, 598
:? (help) command, 3
<*> operator, 397
? (question mark), matching characters with,

197
@ (at-sign), matching patterns, 104
[ ] (square brackets)

character classes, 197
exhaustive patterns, as a constructor, 54
lists, using, 9
recursive types and, 58
type variables and, 24

\ (backslash character), using lambda
functions, 99

^ (carat) exponentiation operator, 8
^ (caret) exponentiation operator, 4
_ (underscore character), matching wild cards,

53
` (backtick) characters, using infix functions

and, 76
| (pipe), separating value constructors, 44
|| (logical or), 5

A
abs function, 146
abstract data types (ADT), 44
abstraction, 17
accum function, 274
accumulator (+) option, 93, 145
“acquire-use-release” cycle, 221
actions, 72, 183

monadic values, 331
addition (+) option, 145

(see also accumulator function)
addToClockTime function, 475
Adler-32 checksum, 91
ADT (abstract data types), 44
algebraic data types, 44–50

tuples and, 45

alist (association lists), 121
alloca C function, 406
alternatives (value constructors), 44
anchored regular expressions, 202
and function, 80
anonymous (lambda) functions, 99, 214
anonymous types, 47
API design, handling errors through, 210
append (++) option, 80, 120, 317

fold functions and, 96
lazy functions, writing, 205
mplus function, 364

application/x-www-form-urlencoded
encoding, 359, 393

applicative functor, 395
approxRational function, 146
arbitrary function, 260
Arbitrary typeclass, 256, 260, 381
arithmetic, 3
arrays, 111, 122, 288–292

barcode recognition and, 270–275
elements, modifying, 274
laziness and, 273

Bloom filters and, 581, 583
mutable, creating, 586

as-patterns, 103
ASCII control codes, 651
association lists, 299, 359

alists, 121
associativity of operators, 7
asterisk (*), as a wild card, 197
at-sign (@), matching patterns, 104
atomically blocks, 626
-auto-all flag (GHC), 564
autocommit mode (databases), 495
automatic derivation, 148

B
backslash characters (\), using lambda

functions, 99
backtick (`) characters, using infix functions,

76
backtracking, 402
barcodes, 269–297

color images and, 278
base case, induction, 88

inductive/recursive case and, 87
binary data, parsing, 235–254

implicit state and, 239–244
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binary I/O, 194
binding function (see (>>=) operator)
bison command, 383
bitwise and (.&.), 91, 146
bitwise or (.|.), 91, 146
BlockBuffering mode (BufferMode), 189
bloom filters, building, 581–610
boilerplate code, 55

getting rid of, 238
lifting, avoiding with, 223

Bool type, 21
Boolean logic, 5
Bounded typeclass, 472
bounded variables, 28
bounds function, 273, 278
bracket function, 221
break function, 73, 82
buffering, 189
BufferMode type, 189
Build-Depends fields, 132
ByetString module

marshaling, 419
bytestring library, 193

text I/O and, 195
ByteString module, 193
ByteString type

PGM files and, 236
bytestring-in-base Cabal flag, 597

C
-c option (ghc), 114
C PCRE API, 412
C programming language, 3, 405–427, 598

algebraic data types, analogues to, 47
allocating data, 419
comparison operators and, 6
hsc2hs, 411
loops, 87
marshaling data, 418
preprocessor, 410
typed pointers, 416

Cabal, 131–134, 596
GUI programming and, 528

cabal command, installing Haskell software,
646

CAFs (constant applicative forms), 564
CalendarTime type, 470

using, 472
callback functions, 519

“camel cased” names, 204, 232
carat (^) exponentiation operator, 4, 8
carriage return (\r) character, 73

CSV files and, 387
case expression, 66
cases (value constructors), 44
catch function, 458
catchError function, 464
category theory, 354
ccall keyword, 407
:cd command, 28
Chan type, 539
Char value, 21
character classes, 197
characters, 11

writing, 649
cheap modifications, 289
Check digits of barcodes, 269
child sockets, 616
chunks, 193
CInt values, 411
cl compiler, 114
classes, 41
ClockTime type, 470

TimeDiff type for, 474
using, 471

closed world assumptions, 152
code

boilerplate, 55, 223
compiling source, 114
guidelines, using, 232–234
pure, 443
readable, writing, 107
reuse, 104–107
threads and, 538

coercion
polymorphism, 38
using strong types and, 18

color images, 278–280
combinator functions, 225
combining functions, 291
command-line, 71

arguments, reading, 190
editing, 9

commas (,), 9
CSV files and, 383
tuples, writing, 24

compact function, 127
comparison operators, 5, 148
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compilers, 114
Glasgow Haskell, 1

components (types), 41
composable functors, 249
composite data types, 23
concat function, 80, 98, 341
concurrent programs, 531–560, 631

latency, hiding, 532
main thread waiting for other threads, 534–

539
shared-state, 540–542

conditional evaluation, 29–32, 68
constant applicative forms (CAFs), 564
constants, binding C to Haskell, 412
constraints

decoding, 275
type definitions and, 247

constructors, 51
Content-Length field, 403
continuations, 402
control-with-character escapes, 652
Control.Applicative module, 248
Control.Arrow module, 369
control.Concurrent module, 521

concurrent programming with threads, 532
Control.Exception module, 221, 454, 457
Control.Monad module, 355, 538

lifting, 361
MonadPlus typeclass and, 365

Control.Monad.Error module, 451, 453, 462
Control.Monad.Trans module, 377
Control.Parallel module, 546
Control.Parallel.Strategies module, 553
Coordinated Universal Time (UTC), 470
cores, 575–578

using multiple, 542
cos function, 146
countEntries function, 433
CSV files, 383–386

Parsec helper functions and, 386
ctTZName function, 472
ctWDay function, 472
ctYDay function, 472
currying, using partial functions, 102
custom data types for errors, 452
c_sin function, 407

D
dash (-), as a range character, 197

data keyword, 41
newtype keyword and, 156

data structures, 41, 47, 299–323
functions and, 303

taking advantage of, 317–322
data type, defining, 41–43

(see also types)
Data.Array module

barcode recognition and, 271
folding over arrays, 273

Data.Bits module, 122
Data.ByteString.Char8 module, 195, 426
Data.ByteString.Lazy.Char8 module, 195
Data.Char module, 88
Data.Dynamic module, 459
Data.Foldable module, 323, 443
Data.Function module, 285
Data.List module, 571

tails function, 103
Data.List.lookup function, 299
Data.Map module, 289, 301–303
Data.Monoid module, 321
Data.Ratio module, 3
Data.Sequence module, 322
Data.Traversable module, 443
Data.Typeable module, 459
database engines, 493
Database.HDBC module, 521
databases, 493–504

connecting, 495
lazy reading, 501
metadata, 502
queries, 496

dates, 470–476
dates and times, 470–476
Daylight Saving Time (DST), 471
-ddump-asm compiler flag, 579
-ddump-simpl compiler flag, 576, 606
deadlocks, 536, 541
Dean, Jeffrey, 559
Debian Linux, installing GHC/Haskell

libraries, 643
debugging, 6
declarations (module), 113
decoding barcodes, 275
deconstructors, 51
delete function, 291
DeriveDataTypeable language, 460
describeTable function, 502
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DiffArray type, 274
diffClockTimes function, 475
directories, 468
disconnect function, 495
discriminated unions, 49
div function, 146
do keyword, 72

Monads and, 344
sequencing and, 186

Doc data type, 259
doskey command (ghci), 9
double hashing, 593
double quotes ("), writing strings, 11, 649
Double value, 21, 145
drivers (HDBC), installing, 494
drop function, 26, 29
dropWhile function, 82
DST (Daylight Saving Time), 471
duck typing, 19
dynamic exceptions, 459–462

E
EAN-13 barcodes, 269
easyList function, 599
Either type, 429, 452–454

monadic use of, 453
elem function, 82
elements function, 260
ELF object files, 194
else keyword, 30
embedded domain specific languages, 222–

226
EmptyDataDecls language extension, 416
enclose function, 120
endBy function, 386
#enum construct, 414
enum keyword (C/C++), 48
Enum typeclass, 472
enumeration notation, 10
enumeration types, 48
environment (programming), 1
environment variables, 191
EOF (end of file), 170
eol function, 389
equality tests, 135, 148
error function, 210
errors, 243

API design, handling, 210
compiling source code, 117

custom data types for, 452
handling, 447–454

data types, 447–454
databases, 503
monads, 462

I/O and, 173
messages

Boolean values and, 6
No instance, 6, 45

parsers, handling, 390
reporting, 60
typeclasses, 18, 151

ErrorT transformer, 462
escape characters, 11
escaping text, 650
/etc/passwd file, 304–307
evaluation, 32–36

conditional with guards, 68
strict, 108–110

evaluation strategies, 553
event-driven programming, 519
Exception type, 454
exceptions, 447, 454–462

dynamic, 459–462
I/O (input/output), 457
selective handling of, 456
throwing, 459

--exclude flag (hpc), 266
executables, creating, 115
executeFile function, 477
exhaustive patterns, 54
explicit recursion, 85
exponentiation (**) operator, 8, 145
exports, 113
Exposed-Modules field, 132
expressions

functions, passing to, 26
let blocks and, 62

external programs, running, 467
extract methods, 357

F
fail function, 330
False Boolean value, 5
FDs (file descriptors), 477
Fedora Linux, installing GHC/Haskell libraries,

645
fetchAllRowsAL’ function, 502
fetchAllRows’ function, 501
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FFI (Haskell Foreign Function Interface), 405–
427

FFI binding, 599
fFlush function, 190
file descriptors (FDs), 477
file processing, 193–212
filename matching, 197
files, 169–175

deleting/renaming, 174
filename matching, 197
modification times, 475
processing (see file processing)
sizing safely, 219–221
System.Directory module, using, 468
temporary, 174

filesystems
searching, 213–234

filter function, 82, 90
interact, 182

find command, 213
first function, 369
flex, 383
Float type, 145
floating-point numbers, 4

enumerating, 11
fmap function, 248, 437

monads and, 354
fold functions, 92

folding from left, 92
folding from right, 94–96

foldl function, 92, 571
foldr function and, 94–96
laziness and space leaks, 96

foldr function, 92, 94–96
fold’ function, 571
force function, 546
foreign import declarations, 406
Foreign modules, 406–409
Foreign.C.String module, 406, 415
Foreign.Marshal.Array module, 406
Foreign.Ptr module, 406
ForeignPtr type, 417
forkManaged function, 537
forkProcess function, 477
forM function, 215
-fphc flag, 265
fractional division (/) option, 145
FreeBSD, installing GHC/Haskell libraries,

645

fromInteger function, 146
fromIntegral function, 146, 408
fromRational function, 146
fst function, 26, 38
-funbox-strict-fields option, 576, 579
functional programming, 71–110
functions, 27–40

data structures and, 303
taking advantage of, 317–322

expressions, passing, 26
fold, 92
high-order, 89
infix, 76
lists and tuples, 25
local, 63
monads and, 347, 354–355
partial, 79
partial applications of, 101
purity and, 169
shadowing parameters, 63
string-handling, 84
types and purity, 27
writing, 27–32

Functor typeclass, 279
functors, 249

applicative, 395
Parse type, writing for, 250
parsing, 251

fusion, 578
-fvia-C GHC option, 598
-fvia-C option, 579
-fwarn-incomplete-patterns option, 54
-fwarn-name-shadowing option, 63

G
garbage collecting

binding C to Haskell, 417
closing file handles and, 220

gcc compiler, 114
Gen environment, 260
GeneralizedNewtypeDeriving extension, 367,

435
generator expressions, 284
generics (Java), 57
GET method (HTTP), 401
getClockTime function, 471
getDirectoryContents function, 469
getModificationTime function, 475
getProcessStatus function, 477
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getSt function, 348
getStatus function, 537
getStdRandom function, 368
getTables function, 502
GHC (Glasgow Haskell Compiler), 1

installing, 641–647
ghc compiler, 1, 114

-fhpc flag, 265
GHC-Options property, 598
GHC.Conc module, 543, 630
ghci interpreter, 1–9, 165

calculators, using as, 3–9
command-line editing, 9
compiling source, 114
data types, creating, 42
directories and files, 468
external programs, running with, 467
I/O, 165
regular expressions and, 198
strings and characters, 12

Ghemawat, Jeffrey, 559
Glade, 517

concepts, 518
Glasgow Haskell Compiler (GHC), 1
glob patterns, 197

regular expressions, translating from, 202
global variables, 63
Google, 551
grain sizes, 552
Graphics.UI.Gtk module, 521
Graphics.UI.Gtk.Graphics.UI.Gtk.Glade

module, 521
grayscale image format, 235, 278–280
group function, 282
GTK+ development environment, 517
gtk2hs, 517–529
guards, 68
GUI (graphical user interface) programming,

517–529
event-driven, 519
initializing, 520–524

H
“h” functions, 169
handle function, 456
handleJust function, 456
handles, 169–175

closing, 172
resources, 220

“hanging lambdas”, 242
hasElfMagic function, 195
hash tables, 288–292, 589

maps and, 301
turning two into many, 593

Haskell 98
instances, writing, 151
LANGUAGE pragmas, binding languages,

406
monomorphism and, 162
OverlappingInstances/

TypeSynonymInstances language
extensions and, 155

Haskell DataBase Connectivity system
(HDBC), 494

Haskell Foreign Function Interface (FFI), 405–
427

Haskell Program Coverage (HPC), 265–268
-hc runtime flag, 566
hClose function, 172, 221
head function, 23, 25, 78

lists, passing empty, 79
head normal form (HNF), 545
headers (HTTP), parsing, 402
help command (ghci), 3
hFileSize function, 221
hGetContents function, 178–180
high-level wrappers, blending C with Haskell,

408
high-order functions, 89
HNF (head normal form), 545
HPC (Haskell Program Coverage), 265–268
hPrint function, 170
hPutStrLn function, 169
.hs source files, 28
.hsc files, 411, 413
hsc2hs command, 411
hSeek function, 172
hTell function, 172
HTTP requests, parsing, 401–402
Hugs interpreter, 1
HUnit library, 255

I
I/O (input/output), 165–191

binary, 194
buffering, 189
errors, 173
exceptions, 457–459

Index | 661



filesystems, searching, 213–234
lazy, 178–183, 556
monadic values and, 331, 336
predicates, 217
pure functions and, 168
STM monad and, 629
text, 195

IConnection function, 496
IConnection typeclass, 495
id function, 95
idempotency, 256
identities, 249
identity parsers, 240
“identity” transformation (foldr), 96
if expression, 29
ill typed rules, 18
immutable arrays, 271
immutable lists, 26
immutable states, 373
implementation, 370
implicit state, 239–244, 326
import directive, 115, 124

ByteString modules and, 194
impure code, 40
impure functions, 27

I/O (input/output) and, 168
in keyword, 62, 233, 345
in scope, 62
indices of arrays, 296
inductive case, 87
infix form, using arithmetic operators and, 3
infix functions, 76
:info command (ghci), 7
InfoP type, 222, 226
init function, 78
“injector” functions, 328
input/output (see I/O)
insert function, 291
INSERT queries, 497
insertWith function, 291
instances

flexible, 248
overlapping, 153
type synonyms, making, 151
typeclasses, 440

Int type, 21, 145
Int16 type, 145
Int32 type, 145
Int64 type, 145

Int8 type, 145
Integer type, 14, 21, 145
interact function, 181–183
interface files, 114
interfaces, making code modular, 369–373,

370
internal modules, 132
international language support, 649
interpreters, 1

ghci, 39
invariants, 639
invisible data dependencies, 548
IO monad, 183–188, 325, 375–381

blending with C, 408
random numbers, supplying, 368
random values, generating, 350

IO type, 166
isInfixOf function, 82
isPrefixOf function, 82
isSuffixOf function, 82
it variable in ghci output, 13
Iterator type, 230
Ix type, 272

J
Java programming language, 59
JavaScript Object Notation (see JSON)
Jenkins hash functions, 589, 593
join function, 355
JSON (JavaScript Object Notation), 111–134

parsing, 398
representing data, 111
typeclasses and, 149

overlapping instances, 159–162

K
-keep-tmp-files option, 580
key-value pairs, 359, 393

L
lambda functions, 99
language extensions

BangPatterns, 574
CPP, 410
DeriveDataTypeable, 460
EmptyDataDecls, 416
FlexibleContexts, 454
FlexibleInstances, 372
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ForeignFunctionInterface, 406
FunctionalDependencies, 370
GeneralizedNewtypeDeriving, 367, 374,

435
MultiParamTypeClasses, 370
NoMonomorphismRestriction, 163
OverlappingInstances, 154
PatternGuards, 637
TypeSynonymInstances, 152, 154

last function, 36, 78
lastButOne function, 39
latency, 532
lazy evaluations, 32

foldl function and, 96
I/O, 178–183

lazy functions
databases, reading from, 502
writing, 205

lazy I/O, 178–183, 556
lazy languages, 62
lazy reading from databases, 501
leaky code, 365
left fold functions, 92
left identity (see (>>=) operator)
Left value, 452, 453
left-biased functions, 291
lend function, 63
length function, 78, 79
let construct (ghci), 8
let expression, 61

local functions/global variables, 63
shadowing, 62

let keyword, 233, 345
exceptions and, 455

library sections, 132
lift function, 436, 437
lifted functions, 223
lifting functions, 245
liftM function, 227, 335, 360, 437
Line constructor, 125
line function, 125
LINE pragma, 413
line-aligned chunks, finding, 557
LineBuffering mode (BufferMode), 189
lines function, 27, 72, 84
link time, using multiple cores, 542
linking, 115
list comprehensions, 284
listArray function, 272

lists, 9–11, 23–25, 80, 320
functions for, 25, 77–84
loops, working with, 85
mapping over, 88–90
models, using as, 263
Monads, 340–344

:load command (ghci), 42
local function, 63
local variables, 61–64
lock order inversion, 541
log function, 146
logBase function, 146
logical and (&&), 5
logical or (||), 5
lookaheads (regular expressions), 388
lookup function, 290
loop function, 86
loops, 84–99

transforming input and, 87

M
:m (module) command, 14
Mac OS X, installing GHC/Haskell libraries,

642
magic numbers, 194
main function, 115
main loop (GUI programming), 519
mainloop keyword, 170
malloc C function, 406
manufacturer ID of barcodes, 269
map function, 88
Map type, 290
Map.insert function, 302
mapM function, 185, 215
MapReduce (Google), 551

definitions, writing, 554
maps, 88, 289–292, 301–303
marshaling data, binding C to Haskell, 418
master sockets, 616
maxBound function, 146
maxium function, 196
Maybe monads, 448–452
MaybeT monad transformer, 438, 462
memory locations, 29
memory management, binding C to Haskell,

417
metadata (database), 502
minBound function, 146
.mix files, 266
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mod function, 146
mode based testing, 259
modifyMVar function, 536

starvation and, 541
:module command, 3
module declarations, 113
module headers, 122

writing, 123
modules, 113
Moggi, Eugenio, 443
MonadIO typeclass, 377
MonadPlus typeclass

Parsec and, 393
MonadReader typeclass, 431
monads, 183–188, 325–357

common patterns, 431
error handling, 462–464
functions, 354–355
lists and, 340–344
programming with, 359–381
state, 346–354

random values, generating, 349
running, 352

transformer stacking and, 441
transformers, 429–445

creating, 439
stacking multiple, 433–436
understanding, 438–441

typeclasses, 329
MonadState typeclass, 437
MonadTrans class, 439
Monoid instance, 266
monoids, 320
monomorphic properties, 600
monomorphism restriction, 162–163
mplus function, 364
mtl library, 429, 444

common patterns in monads, 431
mulitcore programming, 542–560
multiline string literals, 651
multiplication (*) option, 145
mutable arrays, 288
mutable references, 584
MVar type, 533, 536, 539
MySQL, 493

N
\n (newline) character, 11, 73

CSV files, parsing, 387

-N RTS option, 543
negative numbers, writing, 4
netpbm file format, 235, 275

color images, parsing, 278
networking, 611–621
newEmptyMVar function, 534
newline (\n) character, 11, 73

CSV files, parsing, 387
newtype keyword, 155–159

JSON typclasses and, 159
NF (normal form), 545
Nil, 58
NoBuffering mode (BufferMode), 189
NoMonomorphismRestriction language

extension, 163
non-strict evaluation, 32
non-threaded runtime, 542
normal form (NF), 545
normal form data, 553
notElem function, 82
null function, 31, 78
null values, 59
nullPtr constant, 415
number systems of barcodes, 269
numeric escapes, 652
Numeric library, 121
numeric types, 144–148, 307–317

O
-o option (ghc), 115
object files, 114
objects, 111, 122
ODBC drivers, 496
offside rule, 64–66
onClicked event handler, 523
onDestroy function, 523
open world assumption, 152–155
openBinaryTempFile function, 174
openFile function, 169, 171
openTempFile function, 174
operators, 5

defining and using new, 225
precedence and associativity, 7

-optc-02 option, 579
OPTIONS_GHC clause, 482
or function, 80
Oracle, 493
Other-Modules field, 132
Other-Modules property, 598
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otherwise expression, 69
out of scope, 62
overlapping instances, 153

JSON typeclasses and, 159–162
OverlappingInstances language extension, 154

P
P3 (plain) netpbm image format, 235
P5 (raw) netpbm image format, 235
pack function, 195
packages, creating, 131–134
pair (2-tuple), 25
par function, 547, 550
parallel programs, 531, 544–551

MapReduce and, 551
parameterized types, 37, 57
parametric polymorphism, 37
parentheses (( ))

arithmetic expressions, writing, 4
foldl and foldr functions, 94
operator precedence and, 7
tuples, writing, 25

Parse type, 250, 429
monad stack, replacing, 440

Parse wrapper, 241
parseByte function, 242
Parsec, 383–402

CSV files and, 383–386
MonadPlus and, 393

Parsec CSV files and, 386
parseChar function, 251
parseTimes function, 279
partial application of functions, 101
partial functions, 79
partial type Monad instances, 439
pattern matches

newtype declarations and, 158
wild card, 53

pattern matching, 50–55
as-patterns, 103
filenames, 197
record syntax and, 241
substrings, binding C with Haskell, 424
variable naming, 53

PatternGuards language extension, 637
PCRE (Perl-compatible regular expression),

405
C preprocessor and, 410
types, adding safety to, 411

pcre.h header file, 414
pcre_compile function, 419
pcre_exec function, 422
pcre_fullinfo function, 423
peek function, 415
Perl

PCRE library and, 405
regular expressions and, 202

permissive types, 18
PGM files, 236–238
pi value, 146
pipe (|), separating value constructors, 44
pipes (redirection), 477–491
pivots, 545
pixels, 279
plain (P3) netpbm format, 235
plusPtr function, 415
podcatcher, building, 505
point (.) character, 120
point-free expressions, 120
point-free style, 120
pointers, 415

typed, 416
poke function, 415
polymorphic list types, 23
polymorphic testing, 600
polymorphic types, 37, 57
polymorphism, 36–38
positional types, 47
POSIX regular expressions, 202
POST method (HTTP), 401
PostgreSQL, 493
predicates, 30

domain-specific language for, 221–226
I/O, 217–219

prefix form, 4
prefix notation, 76
Prelude module, 3, 139
prepare function, 498
pretty printers, 118

testing, 259–265
primitive recursive functions, 95
print function, 170
printf (C) option, 562
PRNG (pseudorandom number generator),

548
Product IDs of barcodes, 269
product types, 261
-prof flag (GHC), 563
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profiling, 561
program termination, 469
programmable semicolon, 345
programming environment, 1
projection functions, 296
prompt directive (ghci), 3
property-based testing, 256
prop_one_present function, 600
pseudorandom number generator (PRNG),

548
pseudorandom value generation, 350
Ptr type, 415
pure code, 443
pure error handling, 447
pure function, 27

PGM files and, 236
vs. I/O, 168

purity, 27, 39, 169
(see also pure functions)
random values and, 350

putSt function, 348
putStr function, 181
putStrLn function, 12, 165, 169

actions, 184
pwd command, 481
Python, 2, 3, 29

universal newline support and, 73

Q
qualified imports, 194

syntax, 194
quality assurance, 255–268

HPC, measuring test coverage with, 265–
268

queries (database), 496
query (database)

parameters, 497
question mark (?), matching characters with,

197
QuickCheck, 256–259, 599

test data and, 259
quickCheck function, 599
quickQuery’ function, 499, 501
Quicksort algorithm, 545
quot function, 146

R
\r (carriage return) character, 73

CSV files and, 387
random values, 349

numbers, supplying, 368
state monad and, 351

randomR function, 350
randoms function, 548
ranges (pattern matching), 197
Rational type, 145
raw (P5) netpbm format, 235
rawSystem function, 467, 477
read, 143
Read typeclass, 141
ReaderT monad layer, 433

transformer stacking order and, 441
readFile function, 180, 195
readInt function, 196
realToFrac function, 408
recip function, 146
record syntax, 55, 241
recursion, 34–36

explicit, 85
listing directories with, 213
tail, 571

recursive case, induction, 88
recursive types, 58–60
redirection (pipes), 477–491
RegexContex typeclass, 199
regexp (see regular expressions)
regular expressions, 198–202

casual parsing for, 395
glob patterns, translating into, 202–205
hsc2hs and, 426
Parsec, using instead of, 383
PCRE libraries and, 409–414

:reload command, 112
rem function, 146
rendering, 118
replicate function, 122
report flag (hpc), 266
return calls, 170, 187

(>>=) function and, 329, 335, 367
reading/modifying state, 348

list Monads and, 340
return keyword, 28
reverse function, 80
Reverse Polish Notation (RPN), 308
RGB images, 279
right identity (see (>>=) operator)
Right value, 452
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right-associative signatures, 39
rnf function, 573
round function, 146
row data, working with, 295
RPN (Reverse Polish Notation), 308
RSS format, 505
+RTS flag (GHC), 562
-RTS flag (GHC), 562
Ruby, 2
runghc program, 1

I/O, 165
runParse function, 241
runST function, 584
runtime options, 543
runtime statistics, 562

S
-s flag (GHC), 562
safe keyword, 416
scaled values, managing, 283
scope, 62
second function, 369
sections, 102
seek pointers, 557
SeekMode parameter (hTell), 172
SELECT statements, 499
sepBy function, 386
seq function, 108–110
sequencing, 186
sequential sorting, 545
serialization, 143
:set prompt, 3, 12
setFileTimes function, 476
sFetchAllRows’ function, 501
shadowing, 62
shape of functors, 249
shared patterns, 327
shell scripting, 467
shift function, 146
shiftL function, 91
shiftR function, 122
show, 143
Show typeclass, 139

strings and, 155
showHex function, 121
side effects, 27

blending C with Haskell, 407
signatures, 39
sin function, 147

single quotes ('), 649
single-character escape codes, 650
snd function, 26
sockets, 611–621
solution maps, 293
sort function, 545
source files, 27–32
space leaks, 96, 108–110, 566
spines for maps, 289
split function, 196

supplying random numbers, 368
split-base Cabal flag, 597
splitAt function, 81
SQL (Structured Query Language), 493
SqlError type, 503
SqlValues type, 497
sqrt function, 147
square brackets ([ ])

character classes, 197
exhaustive patterns, as a constructor, 54
lists, using, 9
recursive types and, 58
type variables and, 24

-sstderr RTS option, 551, 562
ST (state thread) monad, 584
stack, 433–438

monad transformers, 433–436
standard module, 3
starvation, 541
state monads, 346–354, 429, 463

random values, generating, 349
running, 352

StateT monad transformer, 433
transformer stacking order and, 441

static types, 19
stderr function, 173
stdin function, 173
stdout function, 173
STM (software transactional memory), 623–

640
I/O (input/output), 626

strict evaluation, 32, 108–110
strict types, 193
strictness, 571–575
string function, 121
string literals, 649
String type, 13

file processing and, 193
hGetContents function and, 178
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regular expressions, 200
strings, 11

multiline literals, 651
passing data between C and Haskell, 414–

422
matching on, 422

strong types, 18
struct keyword (C/C++), 47
structural recursion, 87
Structured Query Language (SQL), 493
structures, 41, 47, 299

(see also data structures)
stub versions of types/functions, 119
subtraction (-) option, 145
subtype polymorphism, 38
suffixes function, 104
sum types, 261
synchronizing variable, 533
synonyms (types), 43
syntactic sugar, 344
syslog, 611
System.Cmd module, 467
System.Directory library, 174
System.Directory module, 208, 468, 475
System.Environment module, 543
System.Exit module, 469
System.FilePath module, 208, 216
System.IO library, 169

errors, 173
files, sizing safely, 219

System.IO.Error module, 458
System.Posix module, 218
System.Posix.Files module, 475
System.Random module, 350

supplying random numbers, 368
System.Time module, 470
System.Win32 module, 218
systems programming, 467–491

dates and times, 470–476

T
\t (tab) character, 11

vs. spaces, 66
tab (\t) character, 11

vs. spaces, 66
tables (hash), 288, 589

maps and, 301
turning two into many, 593
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