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Preface



Machine learning is an integral part of many commercial applications and research projects today, in areas ranging from medical diagnosis and treatment to finding your friends on social networks. Many people think that machine learning can only be applied by large companies with extensive research teams. In this book, we want to show you how easy it can be to build machine learning solutions yourself, and how to best go about it.
With the knowledge in this book, you can build your own system for finding out how people feel on Twitter, or making predictions about global warming. The applications of machine learning are endless and, with the amount of data available today, mostly limited by your imagination.








Who Should Read This Book


This book is for current and aspiring machine learning practitioners looking to implement solutions to real-world machine learning problems. This is an introductory book requiring no previous knowledge of machine learning or artificial intelligence (AI). We focus on using Python and the scikit-learn library, and work through all the steps to create a successful machine learning application. The methods we introduce will be helpful for scientists and researchers, as well as data scientists working on commercial applications. You will get the most out of the book if you are somewhat familiar with Python and the NumPy and matplotlib libraries.


We made a conscious effort not to focus too much on the math, but rather on the practical aspects of using machine learning algorithms. As mathematics (probability theory, in particular) is the foundation upon which machine learning is built, we won’t go into the analysis of the algorithms in great detail. If you are interested in the mathematics of machine learning algorithms, we recommend the book The Elements of Statistical Learning (Springer) by Trevor Hastie, Robert Tibshirani, and Jerome Friedman, which is available for free at the authors’ website. We will also not describe how to write machine learning algorithms from  scratch, and will instead focus on how to use the large array of models already implemented in scikit-learn and other libraries.

















Why We Wrote This Book


There are many books on machine learning and AI. However, all of them are meant for graduate students or PhD students in computer science, and they’re full of advanced mathematics. This is in stark contrast with how machine learning is being used, as a commodity tool in research and commercial applications. Today, applying machine learning does not require a PhD. However, there are few resources out there that fully cover all the important aspects of implementing machine learning in practice, without requiring you to take advanced math courses. We hope this book will help people who want to apply machine learning without reading up on years’ worth of calculus, linear algebra, and probability theory.

















Navigating This Book


This book is organized roughly as follows:



	
Chapter 1 introduces the fundamental concepts of machine learning and its applications, and describes the setup we will be using throughout the book.



	
Chapters 2 and 3 describe the actual machine learning algorithms that are most widely used in practice, and discuss their advantages and shortcomings.



	
Chapter 4 discusses the importance of how we represent data that is processed by machine learning, and what aspects of the data to pay attention to.



	
Chapter 5 covers advanced methods for model evaluation and parameter tuning, with a particular focus on cross-validation and grid search.



	
Chapter 6 explains the concept of pipelines for chaining models and encapsulating your workflow.



	
Chapter 7 shows how to apply the methods described in earlier chapters to text data, and introduces some text-specific processing techniques.



	
Chapter 8 offers a high-level overview, and includes references to more advanced topics.






While Chapters 2 and 3 provide the actual algorithms, understanding all of these algorithms might not be necessary for a beginner.  If you need to build a machine learning system ASAP, we suggest starting with Chapter 1 and the opening sections of Chapter 2, which introduce all the core concepts. You can then skip to “Summary and Outlook” in Chapter 2, which includes a list of all the supervised models that we cover. Choose the model that best fits your needs and flip back to read the section devoted to it for details. Then you can use the techniques in Chapter 5 to evaluate and tune your model.

















Online Resources


While studying this book, definitely refer to the scikit-learn website for more in-depth documentation of the classes and functions, and many examples.
There is also a video course created by Andreas Müller, “Advanced Machine Learning with scikit-learn,” that supplements this book. You can find it at http://bit.ly/advanced_machine_learning_scikit-learn.

















Conventions Used in This Book


The following typographical conventions are used in this book:


	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.



	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords. Also used for commands and module and package names.



	Constant width bold

	
Shows commands or other text that should be typed literally by the user.



	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.





Tip

This element signifies a tip or suggestion.



Note

This element signifies a general note.



Warning

This icon indicates a warning or caution.



















Using Code Examples


Supplemental material (code examples, IPython notebooks, etc.) is available for download at  https://github.com/amueller/introduction_to_ml_with_python.


This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.


We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “An Introduction to Machine Learning with Python by Andreas C. Müller and Sarah Guido (O’Reilly). Copyright 2017 Sarah Guido and Andreas Müller, 978-1-449-36941-5.”


If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

















Safari® Books Online

Note

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.




Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals.


Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more information about Safari Books Online, please visit us online.

















How to Contact Us


Please address comments and questions concerning this book to the publisher:


  	O’Reilly Media, Inc.

  	1005 Gravenstein Highway North

  	Sebastopol, CA 95472

  	800-998-9938 (in the United States or Canada)

  	707-829-0515 (international or local)

  	707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/intro-machine-learning-python.


To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.


For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.


Find us on Facebook: http://facebook.com/oreilly


Follow us on Twitter: http://twitter.com/oreillymedia


Watch us on YouTube: http://www.youtube.com/oreillymedia
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Chapter 1. Introduction



Machine learning is about extracting knowledge from data. It is a
research field at the intersection of statistics, artificial
intelligence, and computer science and is also known as predictive
analytics or statistical learning. The application of machine learning
methods has in recent years become ubiquitous in everyday life. From
automatic recommendations of which movies to watch, to what food to
order or which products to buy, to personalized online radio and
recognizing your friends in your photos, many modern websites and
devices have machine learning algorithms at their core. When you look at
a complex website like Facebook, Amazon, or Netflix, it is very likely
that every part of the site contains multiple machine learning
models.


Outside of commercial applications, machine learning has had a
tremendous influence on the way data-driven research is done today. The
tools introduced in this book have been applied to diverse scientific
problems such as understanding stars, finding distant planets,
discovering new particles, analyzing DNA sequences, and providing
personalized cancer treatments.


Your application doesn’t need to be as large-scale or world-changing as
these examples in order to benefit from machine learning, though. In this
chapter, we will explain why machine learning has become so popular and
discuss what kinds of problems can be solved using machine learning. Then,
we will show you how to build your first machine learning model,
introducing important concepts along the way.








Why Machine Learning?


In the early days of “intelligent” applications, many systems used
handcoded rules of “if” and “else” decisions to process data or adjust
to user input. Think of a spam filter whose job is to move the appropriate incoming email messages to a
spam folder. You could make up a blacklist of words that would result
in an email being marked as spam. This would be an example of using an expert-designed rule system to design an “intelligent” application. Manually
crafting decision rules is feasible for some applications, particularly those in which humans have a good understanding of the
process to model. However, using handcoded rules to make decisions has
two major disadvantages:



	
The logic required to make a decision is specific to a single domain
and task. Changing the task even slightly might require a rewrite of the
whole system.



	
Designing rules requires a deep understanding of how a decision
should be made by a human expert.






One example of where this handcoded approach will fail is in detecting
faces in images. Today, every smartphone can detect a face in an image.
However, face detection was an unsolved problem until as recently as 2001.
The main problem is that the way in which pixels (which make up an image
in a computer) are “perceived” by the computer is very different from
how humans perceive a face. This difference in representation makes it
basically impossible for a human to come up with a good set of rules to
describe what constitutes a face in a digital image.


Using machine learning, however, simply presenting a program with a
large collection of images of faces is enough for an algorithm to
determine what characteristics are needed to identify a face.










Problems Machine Learning Can Solve


The most successful kinds of machine learning algorithms are those that
automate decision-making processes by generalizing from known
examples. In this setting, which is known as supervised learning,
the user provides the algorithm with pairs of inputs and desired
outputs, and the algorithm finds a way to produce the desired output
given an input. In particular, the algorithm is able to create an output
for an input it has never seen before without any help from a human.
Going back to our example of spam classification, using machine
learning, the user provides the algorithm with a large number of emails
(which are the input), together with information about whether any
of these emails are spam (which is the desired output). Given a new
email, the algorithm will then produce a prediction as to whether the new email is spam.


Machine learning algorithms that learn from input/output pairs are
called supervised learning algorithms because a “teacher” provides
supervision to the algorithms in the form of the desired outputs for each
example that they learn from. While creating a dataset of inputs and
outputs is often a laborious manual process, supervised learning
algorithms are well understood and their performance is easy to measure.
If your application can be formulated as a supervised learning problem,
and you are able to create a dataset that includes the desired outcome,
machine learning will likely be able to solve your problem.


Examples of supervised machine learning tasks include:


	Identifying the zip code from handwritten digits on an envelope

	
Here the input is a scan of the handwriting, and the desired output is
the actual digits in the zip code. To create a dataset for building a
machine learning model, you need to collect many envelopes. Then you can
read the zip codes yourself and store the digits as your desired
outcomes.



	Determining whether a tumor is benign based on a medical image

	
Here the input is the image, and the output is whether the tumor is benign. To create a dataset for building a model, you need
a database of medical images. You also need an expert opinion, so a
doctor needs to look at all of the images and decide which tumors are
benign and which are not. It might even be necessary to do additional
diagnosis beyond the content of the image to determine whether the tumor in
the image is cancerous or not.



	Detecting fraudulent activity in credit card transactions

	
Here the
input is a record of the credit card transaction, and the output is
whether it is likely to be fraudulent or not. Assuming that you are the
entity distributing the credit cards, collecting a dataset means storing
all transactions and recording if a user reports any transaction as
fraudulent.






An interesting thing to note about these examples is that
although the inputs and outputs look fairly straightforward, the data
collection process for these three tasks is vastly different. While
reading envelopes is laborious, it is easy and cheap. Obtaining medical
imaging and diagnoses, on the other hand, requires not only
expensive machinery but also rare and expensive expert knowledge, not to
mention the ethical concerns and privacy issues. In the example of detecting
credit card fraud, data collection is much simpler. Your customers will
provide you with the desired output, as they will report fraud. All you
have to do to obtain the input/output pairs of fraudulent and
nonfraudulent activity is wait.


Unsupervised algorithms are the other type of algorithm that we will cover in this book. In unsupervised learning, only the input data
is known, and no known output data is given to the algorithm. While
there are many successful applications of these methods, they are
usually harder to understand and evaluate.


Examples of unsupervised learning include:


	Identifying topics in a set of blog posts

	
If you have a large
collection of text data, you might want to summarize it and find
prevalent themes in it. You might not know beforehand what these topics
are, or how many topics there might be. Therefore, there are no known
outputs.



	Segmenting customers into groups with similar preferences

	
Given a
set of customer records, you might want to identify which customers are
similar, and whether there are groups of customers with similar
preferences. For a shopping site, these might be “parents,” “bookworms,”
or “gamers.” Because you don’t know in advance what these groups might
be, or even how many there are, you have no known outputs.



	Detecting abnormal access patterns to a website

	
To identify abuse
or bugs, it is often helpful to find access patterns that are different
from the norm. Each abnormal pattern might be very different, and you
might not have any recorded instances of abnormal behavior. Because in
this example you only observe traffic, and you don’t know what
constitutes normal and abnormal behavior, this is an unsupervised
problem.






For both supervised and unsupervised learning tasks, it is important to
have a representation of your input data that a computer can understand.
Often it is helpful to think of your data as a table. Each data point
that you want to reason about (each email, each customer, each
transaction) is a row, and each property that describes that data point
(say, the age of a customer or the amount or location of a transaction) is
a column. You might describe users by their age, their gender, when they
created an account, and how often they have bought from your online shop. You
might describe the image of a tumor by the grayscale values of each
pixel, or maybe by using the size, shape, and color of the tumor.


Each entity or row here is known as a sample (or data point) in machine
learning, while the columns—the properties that describe these
entities—are called features.


Later in this book we will go into more detail on the topic of building
a good representation of your data, which is called feature extraction
or feature engineering. You should keep in mind, however, that no machine
learning algorithm will be able to make a prediction on data for which
it has no information. For example, if the only feature that you have
for a patient is their last name, no algorithm will be able to predict
their gender. This information is simply not contained in your data. If
you add another feature that contains the patient’s first name, you will have
much better luck, as it is often possible to tell the gender by a
person’s first name.

















Knowing Your Task and Knowing Your Data


Quite possibly the most important part in the machine learning process
is understanding the data you are working with and how it relates to
the task you want to solve. It will not be effective to randomly choose
an algorithm and throw your data at it. It is necessary to understand
what is going on in your dataset before you begin building a model. Each
algorithm is different in terms of what kind of data and what problem setting
it works best for. While you are building a machine learning solution,
you should answer, or at least keep in mind, the following questions:



	
What question(s) am I trying to answer? Do I think the data collected
can answer that question?



	
What is the best way to phrase my question(s) as a machine learning
problem?



	
Have I collected enough data to represent the problem I want to solve?



	
What features of the data did I extract, and will these enable the
right predictions?



	
How will I measure success in my application?



	
How will the machine learning solution interact with other parts of
my research or business product?






In a larger context, the algorithms and methods in machine learning are
only one part of a greater process to solve a particular problem, and it
is good to keep the big picture in mind at all times. Many people spend
a lot of time building complex machine learning solutions, only to find
out they don’t solve the right problem.


When going deep into the technical aspects of machine learning (as we
will in this book), it is easy to lose sight of the ultimate goals. While
we will not discuss the questions listed here in detail, we still
encourage you to keep in mind all the assumptions that you might be
making, explicitly or implicitly, when you start building machine
learning models.
























Why Python?


Python has become the lingua franca for many data science applications.
It combines the power of general-purpose programming languages with the
ease of use of domain-specific scripting languages like MATLAB or R.
Python has libraries for data loading, visualization, statistics,
natural language processing, image processing, and more. This vast
toolbox provides data scientists with a large array of general- and
special-purpose functionality. One of the main advantages of using
Python is the ability to interact directly with the code, using a
terminal or other tools like the Jupyter Notebook, which we’ll look at shortly.
Machine learning and data analysis are fundamentally iterative
processes, in which the data drives the analysis. It is essential for
these processes to have tools that allow quick iteration and easy
interaction.


As a general-purpose programming language, Python also allows for the
creation of complex graphical user interfaces (GUIs) and web services, and for
integration into existing systems.

















scikit-learn


scikit-learn is an open source project, meaning that it is
free to use and distribute, and anyone can easily obtain the source code
to see what is going on behind the scenes. The scikit-learn project is
constantly being developed and improved, and it has a very active user
community. It contains a number of state-of-the-art machine learning
algorithms, as well as comprehensive documentation about each algorithm. scikit-learn
is a very popular tool, and the most prominent Python library for
machine learning. It is widely used in industry and academia, and a wealth of tutorials and code snippets are available
online. scikit-learn works well with a number of other scientific Python
tools, which we will discuss later in this chapter.


While reading this, we recommend that you also browse the scikit-learn
user guide and API documentation for additional details on and many more
options for each algorithm. The online documentation is very thorough,
and this book will provide you with all the prerequisites in machine
learning to understand it in detail.










Installing scikit-learn


scikit-learn depends on two other Python packages, NumPy and SciPy. For
plotting and interactive development, you should also install
matplotlib, IPython, and the Jupyter Notebook. We recommend using one of
the following prepackaged Python distributions, which will provide the
necessary packages:


	Anaconda

	
A Python
distribution made for large-scale data processing, predictive analytics,
and scientific computing. Anaconda comes with NumPy, SciPy, matplotlib, pandas,
IPython, Jupyter Notebook, and scikit-learn. Available on
Mac OS, Windows, and Linux, it is a very convenient solution
and is the one we suggest for people without an existing installation of
the scientific Python packages. Anaconda now also includes the commercial
Intel MKL library for free. Using MKL (which is done automatically when Anaconda is installed) can give significant speed improvements for many
algorithms in scikit-learn.



	Enthought Canopy

	
Another Python distribution for scientific computing. This comes with
NumPy, SciPy, matplotlib, pandas, and IPython, but the free version does not
come with scikit-learn. If you are part of an academic, degree-granting
institution, you can request an academic license and get free access to
the paid subscription version of Enthought Canopy. Enthought Canopy is
available for Python 2.7.x, and works on Mac OS, Windows, and Linux.



	Python(x,y)

	
A free Python
distribution for scientific computing, specifically for Windows.
Python(x,y) comes with NumPy, SciPy, matplotlib, pandas, IPython, and
scikit-learn.






If you already have a Python installation set up, you can use pip to
install all of these packages:

$ pip install numpy scipy matplotlib ipython scikit-learn pandas
























Essential Libraries and Tools


Understanding what scikit-learn is and how to use it is important, but
there are a few other libraries that will enhance your experience.
scikit-learn is built on top of the NumPy and SciPy scientific Python
libraries. In addition to NumPy and SciPy, we will be using pandas and
matplotlib. We will also introduce the Jupyter Notebook, which is a
browser-based interactive programming environment. Briefly, here is what
you should know about these tools in order to get the most out of
scikit-learn.1










Jupyter Notebook


The Jupyter Notebook is an interactive environment for running code in
the browser. It is a great tool for exploratory data analysis and is
widely used by data scientists. While the Jupyter Notebook supports many
programming languages, we only need the Python support. The Jupyter
Notebook makes it easy to incorporate code, text, and images, and all of
this book was in fact written as a Jupyter Notebook. All of the code
examples we include can be downloaded from GitHub.

















NumPy


NumPy is one of the fundamental packages for scientific computing in
Python. It contains functionality for multidimensional arrays,
high-level mathematical functions such as linear algebra operations and
the Fourier transform, and pseudorandom number generators.


In scikit-learn, the NumPy array is the fundamental data structure.
scikit-learn takes in data in the form of NumPy arrays. Any data you’re
using will have to be converted to a NumPy array. The core functionality
of NumPy is the ndarray class, a multidimensional (n-dimensional)
array. All elements of the array must be of the same type. A NumPy array
looks like this:


In[2]:


import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6]])
print("x:\n{}".format(x))


Out[2]:


x:
[[1 2 3]
 [4 5 6]]


We will be using NumPy a lot in this book, and we will refer to objects
of the NumPy ndarray class as “NumPy arrays” or just “arrays.”

















SciPy


SciPy is a collection of functions for scientific computing in Python.
It provides, among other functionality, advanced linear algebra
routines, mathematical function optimization, signal processing, special
mathematical functions, and statistical distributions. scikit-learn draws
from SciPy’s collection of functions for implementing its algorithms.
The most important part of SciPy for us is scipy.sparse: this provides
sparse matrices, which are another representation that is used for data
in scikit-learn. Sparse matrices are used whenever we want to store a 2D
array that contains mostly zeros:


In[3]:


from scipy import sparse

# Create a 2D NumPy array with a diagonal of ones, and zeros everywhere else
eye = np.eye(4)
print("NumPy array:\n{}".format(eye))


Out[3]:


NumPy array:
[[ 1.  0.  0.  0.]
 [ 0.  1.  0.  0.]
 [ 0.  0.  1.  0.]
 [ 0.  0.  0.  1.]]


In[4]:


# Convert the NumPy array to a SciPy sparse matrix in CSR format
# Only the nonzero entries are stored
sparse_matrix = sparse.csr_matrix(eye)
print("\nSciPy sparse CSR matrix:\n{}".format(sparse_matrix))


Out[4]:


SciPy sparse CSR matrix:
  (0, 0)    1.0
  (1, 1)    1.0
  (2, 2)    1.0
  (3, 3)    1.0


Usually it is not possible to create dense representations of sparse
data (as they would not fit into memory), so we need to create
sparse representations directly. Here is a way to create the same sparse matrix
as before, using the COO format:


In[5]:


data = np.ones(4)
row_indices = np.arange(4)
col_indices = np.arange(4)
eye_coo = sparse.coo_matrix((data, (row_indices, col_indices)))
print("COO representation:\n{}".format(eye_coo))


Out[5]:


COO representation:
  (0, 0)    1.0
  (1, 1)    1.0
  (2, 2)    1.0
  (3, 3)    1.0


More details on SciPy sparse matrices can be found in the SciPy Lecture
Notes.

















matplotlib


matplotlib is the primary scientific plotting library in Python. It
provides functions for making publication-quality visualizations such as
line charts, histograms, scatter plots, and so on. Visualizing your data
and different aspects of your analysis can give you important insights, and we
will be using matplotlib for all our visualizations. When working inside
the Jupyter Notebook, you can show figures directly in the browser by
using the %matplotlib notebook and %matplotlib inline commands. We
recommend using %matplotlib notebook, which provides an interactive
environment (though we are using %matplotlib inline to produce this
book). For example, this code produces the plot in Figure 1-1:


In[6]:


%matplotlib inline
import matplotlib.pyplot as plt

# Generate a sequence of numbers from -10 to 10 with 100 steps in between
x = np.linspace(-10, 10, 100)
# Create a second array using sine
y = np.sin(x)
# The plot function makes a line chart of one array against another
plt.plot(x, y, marker="x")



[image: png]
Figure 1-1. Simple line plot of the sine function using matplotlib



















pandas


pandas is a Python library for data wrangling and analysis. It is built
around a data structure called the DataFrame that is modeled after the R
DataFrame. Simply put, a pandas DataFrame is a table, similar to an
Excel spreadsheet. pandas provides a great range of methods to modify
and operate on this table; in particular, it allows SQL-like queries and
joins of tables. In contrast to NumPy, which requires that all entries
in an array be of the same type, pandas allows each column to have a
separate type (for example, integers, dates, floating-point numbers, and
strings). Another valuable tool provided by pandas is its ability to
ingest from a great variety of file formats and databases, like SQL,
Excel files, and comma-separated values (CSV) files. Going into detail
about the functionality of pandas is out of the scope of this book.
However, Python for Data Analysis by Wes McKinney (O’Reilly, 2012) provides a great
guide. Here is a small example of creating a DataFrame using a
dictionary:


In[7]:


import pandas as pd

# create a simple dataset of people
data = {'Name': ["John", "Anna", "Peter", "Linda"],
        'Location' : ["New York", "Paris", "Berlin", "London"],
        'Age' : [24, 13, 53, 33]
       }

data_pandas = pd.DataFrame(data)
# IPython.display allows "pretty printing" of dataframes
# in the Jupyter notebook
display(data_pandas)


This produces the following output:





	
	Age
	Location
	Name





	0

	24

	New York

	John




	1

	13

	Paris

	Anna




	2

	53

	Berlin

	Peter




	3

	33

	London

	Linda







There are several possible ways to query this table. For example:


In[8]:


# Select all rows that have an age column greater than 30
display(data_pandas[data_pandas.Age > 30])


This produces the following result:





	
	Age
	Location
	Name





	2

	53

	Berlin

	Peter




	3

	33

	London

	Linda






















mglearn


This book comes with accompanying code, which you can find on GitHub. The
accompanying code includes not only all the examples shown in
this book, but also the mglearn library. This is a library of utility
functions we wrote for this book, so that we don’t clutter up our code
listings with details of plotting and data loading. If you’re
interested, you can look up all the functions in the repository, but the
details of the mglearn module are not really important to the material
in this book. If you see a call to mglearn in the code, it is
usually a way to make a pretty picture quickly, or to get our hands on
some interesting data.

Note

Throughout the book we make ample use of NumPy, matplotlib and pandas. All the code will assume the following imports:


import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import mglearn


We also assume that you will run the code in a Jupyter Notebook with the %matplotlib notebook or %matplotlib inline magic enabled to show plots. If you are not using the notebook or these magic commands, you will have to call plt.show to actually show any of the figures.


























Python 2 Versus Python 3


There are two major versions of Python that are widely used at the
moment: Python 2 (more precisely, 2.7) and Python 3 (with the latest
release being 3.5 at the time of writing). This sometimes leads to some
confusion. Python 2 is no longer actively developed, but because Python 3
contains major changes, Python 2 code usually does not run on Python 3. If
you are new to Python, or are starting a new project from scratch, we
highly recommend using the latest version of Python 3 without changes. If
you have a large codebase that you rely on that is written for Python 2,
you are excused from upgrading for now. However, you should try to
migrate to Python 3 as soon as possible. When writing any new code, it is for
the most part quite easy to write code that runs under Python 2 and
Python 3.2 If you
don’t have to interface with legacy software, you should definitely use
Python 3. All the code in this book is written in a way that works for
both versions. However, the exact output might differ slightly under
Python 2.

















Versions Used in this Book


We are using the following versions of the previously mentioned libraries in this book:


In[9]:


import sys
print("Python version: {}".format(sys.version))

import pandas as pd
print("pandas version: {}".format(pd.__version__))

import matplotlib
print("matplotlib version: {}".format(matplotlib.__version__))

import numpy as np
print("NumPy version: {}".format(np.__version__))

import scipy as sp
print("SciPy version: {}".format(sp.__version__))

import IPython
print("IPython version: {}".format(IPython.__version__))

import sklearn
print("scikit-learn version: {}".format(sklearn.__version__))


Out[9]:


Python version: 3.5.2 |Anaconda 4.1.1 (64-bit)| (default, Jul  2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
pandas version: 0.18.1
matplotlib version: 1.5.1
NumPy version: 1.11.1
SciPy version: 0.17.1
IPython version: 5.1.0
scikit-learn version: 0.18


While it is not important to match these versions exactly, you should
have a version of scikit-learn that is as least as recent as the one we
used.


Now that we have everything set up, let’s dive into our first application
of machine learning.

Warning

This book assumes that you have version 0.18 or later of scikit-learn. The model_selection module was added in 0.18, and if you use an earlier version of scikit-learn, you will need to adjust the imports from this module.



















A First Application: Classifying Iris Species


In this section, we will go through a simple machine learning
application and create our first model. In the process, we will
introduce some core concepts and terms.


Let’s assume that a hobby botanist is interested in distinguishing the
species of some iris flowers that she has found. She has collected some
measurements associated with each iris: the length and width of the
petals and the length and width of the sepals, all measured in
centimeters (see Figure 1-2).


She also has the measurements of some irises that have been previously
identified by an expert botanist as belonging to the species setosa,
versicolor, or virginica. For these measurements, she can be certain of
which species each iris belongs to. Let’s assume that these are the only
species our hobby botanist will encounter in the wild.


Our goal is to build a machine learning model that can learn from the
measurements of these irises whose species is known, so that we can
predict the species for a new iris.



[image: sepal_petal]
Figure 1-2. Parts of the iris flower




Because we have measurements for which we know the correct species of
iris, this is a supervised learning problem. In this problem, we want to
predict one of several options (the species of iris). This is an example
of a classification problem. The possible outputs (different species
of irises) are called classes. Every iris in the dataset belongs
to one of three classes, so this problem is a three-class classification
problem.


The desired output for a single data point (an iris) is the species of
this flower. For a particular data point, the species it belongs to is
called its label.










Meet the Data


The data we will use for this example is the Iris dataset, a classical
dataset in machine learning and statistics. It is included in
scikit-learn in the datasets module. We can load it by calling the
load_iris function:


In[10]:


from sklearn.datasets import load_iris
iris_dataset = load_iris()


The iris object that is returned by load_iris is a Bunch object,
which is very similar to a dictionary. It contains keys and values:


In[11]:


print("Keys of iris_dataset: \n{}".format(iris_dataset.keys()))


Out[11]:


Keys of iris_dataset:
dict_keys(['target_names', 'feature_names', 'DESCR', 'data', 'target'])


The value of the key DESCR is a short description of the dataset. We
show the beginning of the description here (feel free to look up the
rest yourself):


In[12]:


print(iris_dataset['DESCR'][:193] + "\n...")


Out[12]:


Iris Plants Database
====================

Notes
----
Data Set Characteristics:
    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive att
...
----


The value of the key target_names is an array of strings, containing the
species of flower that we want to predict:


In[13]:


print("Target names: {}".format(iris_dataset['target_names']))


Out[13]:


Target names: ['setosa' 'versicolor' 'virginica']


The value of feature_names is a list of strings, giving the description of
each feature:


In[14]:


print("Feature names: \n{}".format(iris_dataset['feature_names']))


Out[14]:


Feature names:
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
 'petal width (cm)']


The data itself is contained in the target and data fields. data contains the numeric measurements of sepal length, sepal width,
petal length, and petal width in a NumPy array:


In[15]:


print("Type of data: {}".format(type(iris_dataset['data'])))


Out[15]:


Type of data: <class 'numpy.ndarray'>


The rows in the data array correspond to flowers, while the columns
represent the four measurements that were taken for each flower:


In[16]:


print("Shape of data: {}".format(iris_dataset['data'].shape))


Out[16]:


Shape of data: (150, 4)


We see that the array contains measurements for 150 different flowers.
Remember that the individual items are called samples in machine
learning, and their properties are called features. The shape of the
data array is the number of samples multiplied by the number of features. This
is a convention in scikit-learn, and your data will always be assumed to
be in this shape. Here are the feature values for the first five
samples:


In[17]:


print("First five columns of data:\n{}".format(iris_dataset['data'][:5]))


Out[17]:


First five columns of data:
[[ 5.1  3.5  1.4  0.2]
 [ 4.9  3.   1.4  0.2]
 [ 4.7  3.2  1.3  0.2]
 [ 4.6  3.1  1.5  0.2]
 [ 5.   3.6  1.4  0.2]]


From this data, we can see that all of the first five flowers have a
petal width of 0.2 cm and that the first flower has the longest
sepal, at 5.1 cm.


The target array contains the species of each of the flowers that were
measured, also as a NumPy array:


In[18]:


print("Type of target: {}".format(type(iris_dataset['target'])))


Out[18]:


Type of target: <class 'numpy.ndarray'>


target is a one-dimensional array, with one entry per flower:


In[19]:


print("Shape of target: {}".format(iris_dataset['target'].shape))


Out[19]:


Shape of target: (150,)


The species are encoded as integers from 0 to 2:


In[20]:


print("Target:\n{}".format(iris_dataset['target']))


Out[20]:


Target:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]


The meanings of the numbers are given by the iris['target_names']
array: 0 means setosa, 1 means versicolor, and 2 means virginica.

















Measuring Success: Training and Testing Data


We want to build a machine learning model from this data that can
predict the species of iris for a new set of measurements. But before we can
apply our model to new measurements, we need to know whether it actually works—that is, whether we should trust its predictions.


Unfortunately, we cannot use the data we used to build the model to
evaluate it. This is because our model can always simply remember the
whole training set, and will therefore always predict the correct label
for any point in the training set. This “remembering” does not indicate
to us whether our model will generalize well (in other words, whether
it will also perform well on new data).


To assess the model’s performance, we show it new data (data that it
hasn’t seen before) for which we have labels. This is usually done by
splitting the labeled data we have collected (here, our 150 flower
measurements) into two parts. One part of the data is used to build our
machine learning model, and is called the training data or training
set. The rest of the data will be used to assess how well the model
works; this is called the test data, test set, or hold-out set.


scikit-learn contains a function that shuffles the dataset and splits it
for you: the train_test_split function. This function extracts 75% of
the rows in the data as the training set, together with the
corresponding labels for this data. The remaining 25% of the data,
together with the remaining labels, is declared as the test set. Deciding how much data you want to put into the training and the test set
respectively is somewhat arbitrary, but using a test set containing 25%
of the data is a good rule of thumb.


In scikit-learn, data is usually denoted with a capital X, while
labels are denoted by a lowercase y. This is inspired by the standard
formulation f(x)=y in mathematics, where x
is the input to a function and y is the output. Following
more conventions from mathematics, we use a capital X because the data
is a two-dimensional array (a matrix) and a lowercase y
because the target is a one-dimensional array (a vector).


Let’s call train_test_split on our data and assign the outputs using
this nomenclature:


In[21]:


from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    iris_dataset['data'], iris_dataset['target'], random_state=0)


Before making the split, the train_test_split function shuffles the
dataset using a pseudorandom number generator. If we just took the last 25%
of the data as a test set, all the data points would have the label 2,
as the data points are sorted by the label (see the output for
iris['target'] shown earlier). Using a test set containing only one of the
three classes would not tell us much about how well our model generalizes, so we
shuffle our data to make sure the test data contains data from all
classes.


To make sure that we will get the same output if we run the same
function several times, we provide the pseudorandom number generator
with a fixed seed using the random_state parameter. This will make the
outcome deterministic, so this line will always have the same outcome.
We will always fix the random_state in this way when using randomized
procedures in this book.


The output of the train_test_split function is X_train, X_test,
y_train, and y_test, which are all NumPy arrays. X_train contains
75% of the rows of the dataset, and X_test contains the remaining 25%:


In[22]:


print("X_train shape: {}".format(X_train.shape))
print("y_train shape: {}".format(y_train.shape))


Out[22]:


X_train shape: (112, 4)
y_train shape: (112,)


In[23]:


print("X_test shape: {}".format(X_test.shape))
print("y_test shape: {}".format(y_test.shape))


Out[23]:


X_test shape: (38, 4)
y_test shape: (38,)

















First Things First: Look at Your Data


Before building a machine learning model it is often a good idea to
inspect the data, to see if the task is easily solvable without machine
learning, or if the desired information might not be contained in the
data.


Additionally, inspecting your data is a good way to find abnormalities
and peculiarities. Maybe some of your irises were measured using inches
and not centimeters, for example. In the real world, inconsistencies in
the data and unexpected measurements are very common.


One of the best ways to inspect data is to visualize it. One way to do
this is by using a scatter plot. A scatter plot of the data puts one
feature along the x-axis and another along the y-axis, and draws a
dot for each data point. Unfortunately, computer screens have only two
dimensions, which allows us to plot only two (or maybe three) features
at a time. It is difficult to plot datasets with more than three
features this way. One way around this problem is to do a pair plot,
which looks at all possible pairs of features. If you have a small number of
features, such as the four we have here, this is quite reasonable. You
should keep in mind, however, that a pair plot does not show the interaction of
all of features at once, so some interesting aspects of the data may not
be revealed when visualizing it this way.


Figure 1-3 is a pair plot of the features in the training set. The data points
are colored according to the species the iris belongs to. To create the
plot, we first convert the NumPy array into a pandas DataFrame. pandas
has a function to create pair plots called scatter_matrix. The diagonal
of this matrix is filled with histograms of each feature:


In[24]:


# create dataframe from data in X_train
# label the columns using the strings in iris_dataset.feature_names
iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)
# create a scatter matrix from the dataframe, color by y_train
grr = pd.scatter_matrix(iris_dataframe, c=y_train, figsize=(15, 15), marker='o',
                        hist_kwds={'bins': 20}, s=60, alpha=.8, cmap=mglearn.cm3)



[image: png]
Figure 1-3. Pair plot of the Iris dataset, colored by class label




From the plots, we can see that the three classes seem to be relatively
well separated using the sepal and petal measurements. This means that a
machine learning model will likely be able to learn to separate them.

















Building Your First Model: k-Nearest Neighbors


Now we can start building the actual machine learning model. There are
many classification algorithms in scikit-learn that we could use. Here
we will use a k-nearest neighbors classifier, which is easy to
understand. Building this model only consists of storing the training
set. To make a prediction for a new data point, the algorithm finds the
point in the training set that is closest to the new point. Then it assigns the label of this training point to the new data
point.


The k in k-nearest neighbors signifies that instead of
using only the closest neighbor to the new data point, we can consider
any fixed number k of neighbors in the training (for example, the
closest three or five neighbors). Then, we can make a prediction using
the majority class among these neighbors. We will go into more detail
about this in Chapter 2; for now, we’ll use only a single neighbor.


All machine learning models in scikit-learn are implemented in their own
classes, which are called Estimator classes. The k-nearest neighbors
classification algorithm is implemented in the KNeighborsClassifier
class in the neighbors module. Before we can use the model, we need to
instantiate the class into an object. This is when we will set any
parameters of the model. The most important parameter of KNeighborsClassifier is the number of neighbors, which we will set to
1:


In[25]:


from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)


The knn object encapsulates the algorithm that will be used to build
the model from the training data, as well the algorithm to make
predictions on new data points. It will also hold the information that
the algorithm has extracted from the training data. In the case of
KNeighborsClassifier, it will just store the training set.


To build the model on the training set, we call the fit method of the
knn object, which takes as arguments the NumPy array X_train
containing the training data and the NumPy array y_train of the
corresponding training labels:


In[26]:


knn.fit(X_train, y_train)


Out[26]:


KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=1, p=2,
           weights='uniform')


The fit method returns the knn object itself (and modifies it in
place), so we get a string representation of our classifier. The
representation shows us which parameters were used in creating the
model. Nearly all of them are the default values, but you can also find
n_neighbors=1, which is the parameter that we passed. Most models in
scikit-learn have many parameters, but the majority of them are either
speed optimizations or for very special use cases. You don’t have to worry about
the other parameters shown in this representation. Printing a
scikit-learn model can yield very long strings, but don’t be intimidated
by these. We will cover all the important parameters in Chapter 2. In the remainder of this book, we will not show the output of fit because it doesn’t contain any new information.

















Making Predictions


We can now make predictions using this model on new data for which we
might not know the correct labels. Imagine we found an iris in the wild
with a sepal length of 5 cm, a sepal width of 2.9 cm, a petal length of
1 cm, and a petal width of 0.2 cm. What species of iris would this be? We
can put this data into a NumPy array, again by calculating the shape—that is, the number of samples (1) multiplied by the number of features (4):


In[27]:


X_new = np.array([[5, 2.9, 1, 0.2]])
print("X_new.shape: {}".format(X_new.shape))


Out[27]:


X_new.shape: (1, 4)


Note that we made the measurements of this single flower into a row in a
two-dimensional NumPy array, as scikit-learn always expects
two-dimensional arrays for the data.


To make a prediction, we call the predict method of the knn object:


In[28]:


prediction = knn.predict(X_new)
print("Prediction: {}".format(prediction))
print("Predicted target name: {}".format(
       iris_dataset['target_names'][prediction]))


Out[28]:


Prediction: [0]
Predicted target name: ['setosa']


Our model predicts that this new iris belongs to the class 0, meaning
its species is setosa. But how do we know whether we can trust our
model? We don’t know the correct species of this sample, which is the
whole point of building the model!

















Evaluating the Model


This is where the test set that we created earlier comes in. This data
was not used to build the model, but we do know what the correct species is for each iris in the test set.


Therefore, we can make a prediction for each iris in the test data and compare it
against its label (the known species). We can measure how well the model
works by computing the accuracy, which is the fraction of flowers for
which the right species was predicted:


In[29]:


y_pred = knn.predict(X_test)
print("Test set predictions:\n {}".format(y_pred))


Out[29]:


Test set predictions:
 [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0 2]


In[30]:


print("Test set score: {:.2f}".format(np.mean(y_pred == y_test)))


Out[30]:


Test set score: 0.97


We can also use the score method of the knn object, which will
compute the test set accuracy for us:


In[31]:


print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))


Out[31]:


Test set score: 0.97


For this model, the test set accuracy is about 0.97, which means we made
the right prediction for 97% of the irises in the test set. Under some
mathematical assumptions, this means that we can expect our model to be
correct 97% of the time for new irises. For our hobby botanist
application, this high level of accuracy means that our model may be
trustworthy enough to use. In later chapters we will discuss how we can
improve performance, and what caveats there are in tuning a model.
























Summary and Outlook


Let’s summarize what we learned in this chapter. We started with a brief introduction to machine learning and its applications, then discussed the distinction between supervised and unsupervised learning and gave an overview of the tools we’ll be using in this book. Then, we formulated the task of predicting which species of iris a particular
flower belongs to by using physical measurements of the flower. We used
a dataset of measurements that was annotated by an expert with the
correct species to build our model, making this a supervised learning
task. There were three possible species, setosa, versicolor, or
virginica, which made the task a three-class classification problem.
The possible species are called classes in the classification problem,
and the species of a single iris is called its label.


The Iris dataset consists of two NumPy arrays: one containing the data, which
is referred to as X in scikit-learn, and one containing the correct or
desired outputs, which is called y. The array X is a two-dimensional
array of features, with one row per data point and one column per
feature. The array y is a one-dimensional array, which here contains
one class label, an integer ranging from 0 to 2, for each of the samples.


We split our dataset into a training set, to build our model, and a
test set, to evaluate how well our model will generalize to new,
previously unseen data.


We chose the k-nearest neighbors classification algorithm, which makes
predictions for a new data point by considering its closest neighbor(s)
in the training set. This is implemented in the
KNeighborsClassifier class, which contains the algorithm that builds
the model as well as the algorithm that makes a prediction using the
model. We instantiated the class, setting parameters. Then we built the
model by calling the fit method, passing the training data (X_train)
and training outputs (y_train) as parameters. We evaluated the model
using the score method, which computes the accuracy of the model. We
applied the score method to the test set data and the test set labels
and found that our model is about 97% accurate, meaning it is correct
97% of the time on the test set.


This gave us the confidence to apply the model to new data (in our
example, new flower measurements) and trust that the model will be
correct about 97% of the time.


Here is a summary of the code needed for the whole training and
evaluation procedure:


In[32]:


X_train, X_test, y_train, y_test = train_test_split(
    iris_dataset['data'], iris_dataset['target'], random_state=0)

knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)

print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))


Out[32]:


Test set score: 0.97


This snippet contains the core code for applying any machine learning
algorithm using scikit-learn. The fit, predict, and score methods
are the common interface to supervised models in scikit-learn, and with
the concepts introduced in this chapter, you can apply these models to
many machine learning tasks. In the next chapter, we will go into more
depth about the different kinds of supervised models in scikit-learn
and how to apply them successfully.










1 If you are unfamiliar with NumPy or matplotlib, we recommend reading the first chapter of the SciPy Lecture Notes.
2 The six package can be very handy for that.



Chapter 2. Supervised Learning



As we mentioned earlier, supervised machine learning is one
of the most commonly used and successful types of machine learning. In
this chapter, we will describe supervised learning in more detail and
explain several popular supervised learning algorithms. We already saw
an application of supervised machine learning in Chapter 1:
classifying iris flowers into several species using physical
measurements of the flowers.


Remember that supervised learning is used whenever we want to predict a
certain outcome from a given input, and we have examples of input/output
pairs. We build a machine learning model from these input/output pairs,
which comprise our training set. Our goal is to make accurate
predictions for new, never-before-seen data. Supervised learning often
requires human effort to build the training set, but afterward
automates and often speeds up an otherwise laborious or infeasible task.








Classification and Regression


There are two major types of supervised machine learning problems,
called classification and regression.


In classification, the goal is to predict a class label, which is a
choice from a predefined list of possibilities. In Chapter 1 we used the example of classifying irises into one of
three possible species. Classification is sometimes separated into
binary classification, which is the special case of distinguishing
between exactly two classes, and multiclass classification, which is
classification between more than two classes. You can think of binary
classification as trying to answer a yes/no question. Classifying
emails as either spam or not spam is an example of a binary
classification problem. In this binary classification task, the yes/no question being asked would be “Is this email spam?”

Note

In binary classification we often speak of one class being the
positive class and the other class being the negative class. Here,
positive doesn’t represent having benefit or value, but rather what the object of
the study is. So, when looking for spam, “positive” could mean the spam
class. Which of the two classes is called positive is often a subjective
matter, and specific to the domain.




The iris example, on the other hand, is an example of a multiclass
classification problem. Another example is predicting what language a website is in from the text on the
website. The classes here would be a pre-defined list of possible
languages.


For regression tasks, the goal is to predict a continuous number, or a
floating-point number in programming terms (or real number in
mathematical terms). Predicting a person’s annual income from their
education, their age, and where they live is an example of a regression
task. When predicting income, the predicted value is an amount, and
can be any number in a given range. Another example of a regression task
is predicting the yield of a corn farm given attributes such as
previous yields, weather, and number of employees working on the farm.
The yield again can be an arbitrary number.


An easy way to distinguish between classification and regression tasks
is to ask whether there is some kind of continuity in the output. If
there is continuity between possible outcomes, then the problem is a
regression problem. Think about predicting annual income. There is a
clear continuity in the output. Whether a person makes $40,000 or
$40,001 a year does not make a tangible difference, even though these
are different amounts of money; if our algorithm predicts $39,999 or
$40,001 when it should have predicted $40,000, we don’t mind that much.


By contrast, for the task of recognizing the language of a website
(which is a classification problem), there is no matter of degree. A
website is in one language, or it is in another. There is no continuity
between languages, and there is no language that is between English
and French.1

















Generalization, Overfitting, and Underfitting


In supervised learning, we want to build a model on the training data
and then be able to make accurate predictions on new, unseen data that
has the same characteristics as the training set that we used. If a
model is able to make accurate predictions on unseen data, we say it is
able to generalize from the training set to the test set. We want to
build a model that is able to generalize as accurately as possible.


Usually we build a model in such a way that it can make accurate
predictions on the training set. If the training and test sets have
enough in common, we expect the model to also be accurate on the test
set. However, there are some cases where this can go wrong. For example,
if we allow ourselves to build very complex models, we can always be as
accurate as we like on the training set.


Let’s take a look at a made-up example to illustrate this point. Say a
novice data scientist wants to predict whether a customer will buy a
boat, given records of previous boat buyers and customers who we know
are not interested in buying a boat.2 The goal is to
send out promotional emails to people who are likely to actually make a
purchase, but not bother those customers who won’t be interested.


Suppose we have the customer records shown in Table 2-1.


Table 2-1. Example data about customers


	Age
	Number of 
cars owned
	Owns house
	Number of children
	Marital status
	Owns a dog
	Bought a boat





	66

	1

	yes

	2

	widowed

	no

	yes




	52

	2

	yes

	3

	married

	no

	yes




	22

	0

	no

	0

	married

	yes

	no




	25

	1

	no

	1

	single

	no

	no




	44

	0

	no

	2

	divorced

	yes

	no




	39

	1

	yes

	2

	married

	yes

	no




	26

	1

	no

	2

	single

	no

	no




	40

	3

	yes

	1

	married

	yes

	no




	53

	2

	yes

	2

	divorced

	no

	yes




	64

	2

	yes

	3

	divorced

	no

	no




	58

	2

	yes

	2

	married

	yes

	yes




	33

	1

	no

	1

	single

	no

	no







After looking at the data for a while, our novice data scientist comes
up with the following rule: “If the customer is older than 45, and has
less than 3 children or is not divorced, then they want to buy a boat.”
When asked how well this rule of his does, our data scientist answers,
“It’s 100 percent accurate!” And indeed, on the data that is in the table,
the rule is perfectly accurate. There are many possible rules we could
come up with that would explain perfectly if someone in this dataset wants to buy a
boat. No age appears twice in the data, so we could say people who are
66, 52, 53, or 58 years old want to buy a boat, while all others don’t.
While we can make up many rules that work well on this data, remember
that we are not interested in making predictions for this dataset; we
already know the answers for these customers. We want to know if new
customers are likely to buy a boat. We therefore want to find a
rule that will work well for new customers, and achieving 100 percent
accuracy on the training set does not help us there. We might not expect
that the rule our data scientist came up with will work very well on new
customers. It seems too complex, and it is supported by very little
data. For example, the “or is not divorced” part of the rule hinges on a
single customer.


The only measure of whether an algorithm will perform well on new data
is the evaluation on the test set. However, intuitively3 we expect simple models to generalize
better to new data. If the rule was “People older than 50 want to buy a
boat,” and this would explain the behavior of all the
customers, we would trust it more than the rule involving children and
marital status in addition to age. Therefore, we always want to find
the simplest model. Building a model that is too complex for the amount
of information we have, as our novice data scientist did, is called
overfitting. Overfitting occurs when you fit a model too closely to
the particularities of the training set and obtain a model that works
well on the training set but is not able to generalize to new data. On
the other hand, if your model is too simple—say, “Everybody who owns a
house buys a boat”—then you might not be able to capture all the
aspects of and variability in the data, and your model will do badly even
on the training set. Choosing too simple a model is called
underfitting.


The more complex we allow our model to be, the better we will be able to
predict on the training data. However, if our model becomes too complex,
we start focusing too much on each individual data point in our training
set, and the model will not generalize well to new data.


There is a sweet spot in between that will yield the best
generalization performance. This is the model we want to find.


The trade-off between overfitting and underfitting is illustrated in
Figure 2-1.



[image: model_complexity]
Figure 2-1. Trade-off of model complexity against training and test accuracy












Relation of Model Complexity to Dataset Size


It’s important to note that model complexity is intimately tied to the
variation of inputs contained in your training dataset: the larger
variety of data points your dataset contains, the more complex a model
you can use without overfitting. Usually, collecting more data points
will yield more variety, so larger datasets allow building more complex
models. However, simply duplicating the same data points or collecting
very similar data will not help.


Going back to the boat selling example, if we saw 10,000 more rows
of customer data, and all of them complied with the rule “If the
customer is older than 45, and has less than 3 children or is not
divorced, then they want to buy a boat,” we would be much more likely to
believe this to be a good rule than when it was developed using only
the 12 rows in Table 2-1.


Having more data and building appropriately more complex models can
often work wonders for supervised learning tasks. In this book, we will
focus on working with datasets of fixed sizes. In the real world, you
often have the ability to decide how much data to collect, which might
be more beneficial than tweaking and tuning your model. Never
underestimate the power of more data.
























Supervised Machine Learning Algorithms


We will now review the most popular machine learning algorithms and
explain how they learn from data and how they make predictions. We will
also discuss how the concept of model complexity plays out for each of
these models, and provide an overview of how each algorithm builds a
model. We will examine the strengths and weaknesses of each algorithm,
and what kind of data they can best be applied to. We will also explain
the meaning of the most important parameters and options.4 Many algorithms have a
classification and a regression variant, and we will describe both.


It is not necessary to read through the descriptions of each algorithm in
detail, but understanding the models will give you a better feeling for
the different ways machine learning algorithms can work. This chapter
can also be used as a reference guide, and you can come back to it when
you are unsure about the workings of any of the algorithms.










Some Sample Datasets


We will use several datasets to illustrate the different algorithms.
Some of the datasets will be small and synthetic (meaning made-up),
designed to highlight particular aspects of the algorithms. Other
datasets will be large, real-world examples.


An example of a synthetic two-class classification dataset is the
forge dataset, which has two features. The following code creates a scatter plot (Figure 2-2)
visualizing all of the data points in this dataset. The plot has the
first feature on the x-axis and the second feature on the y-axis. As is
always the case in scatter plots, each data point is represented as one
dot. The color and shape of the dot indicates its class:


In[2]:


# generate dataset
X, y = mglearn.datasets.make_forge()
# plot dataset
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.legend(["Class 0", "Class 1"], loc=4)
plt.xlabel("First feature")
plt.ylabel("Second feature")
print("X.shape: {}".format(X.shape))


Out[2]:


X.shape: (26, 2)



[image: malp 0202]
Figure 2-2. Scatter plot of the forge dataset




As you can see from X.shape, this dataset consists of 26 data points,
with 2 features.


To illustrate regression algorithms, we will use the synthetic wave
dataset. The wave dataset has a single input feature and a continuous target variable (or response) that we want to model.
The plot created here (Figure 2-3) shows the single feature on the x-axis and the
regression target (the output) on the y-axis:


In[3]:


X, y = mglearn.datasets.make_wave(n_samples=40)
plt.plot(X, y, 'o')
plt.ylim(-3, 3)
plt.xlabel("Feature")
plt.ylabel("Target")



[image: malp 0203]
Figure 2-3. Plot of the wave dataset, with the x-axis showing the feature and the y-axis showing the regression target




We are using these very simple, low-dimensional datasets because we can
easily visualize them—a printed page has two dimensions, so data with
more than two features is hard to show. Any intuition derived from
datasets with few features (also called low-dimensional datasets)
might not hold in datasets with many features (high-dimensional
datasets). As long as you keep that in mind, inspecting algorithms on
low-dimensional datasets can be very instructive.


We will complement these small synthetic datasets with two real-world
datasets that are included in scikit-learn. One is the Wisconsin Breast
Cancer dataset (cancer, for short), which records clinical
measurements of breast cancer tumors. Each tumor is labeled as “benign”
(for harmless tumors) or “malignant” (for cancerous tumors), and the
task is to learn to predict whether a tumor is malignant based on the
measurements of the tissue.


The data can be loaded using the load_breast_cancer function from
scikit-learn:


In[4]:


from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
print("cancer.keys(): \n{}".format(cancer.keys()))


Out[4]:


cancer.keys():
dict_keys(['feature_names', 'data', 'DESCR', 'target', 'target_names'])

Note

Datasets that are included in scikit-learn are usually
stored as Bunch objects, which contain some information about the
dataset as well as the actual data. All you need to know about Bunch
objects is that they behave like dictionaries, with the added benefit
that you can access values using a dot (as in bunch.key instead of
bunch['key']).




The dataset consists of 569 data points, with 30 features each:


In[5]:


print("Shape of cancer data: {}".format(cancer.data.shape))


Out[5]:


Shape of cancer data: (569, 30)


Of these 569 data points, 212 are labeled as malignant and 357 as
benign:


In[6]:


print("Sample counts per class:\n{}".format(
      {n: v for n, v in zip(cancer.target_names, np.bincount(cancer.target))}))


Out[6]:


Sample counts per class:
{'benign': 357, 'malignant': 212}


To get a description of the semantic meaning of each feature, we can
have a look at the feature_names attribute:


In[7]:


print("Feature names:\n{}".format(cancer.feature_names))


Out[7]:


Feature names:
['mean radius' 'mean texture' 'mean perimeter' 'mean area'
 'mean smoothness' 'mean compactness' 'mean concavity'
 'mean concave points' 'mean symmetry' 'mean fractal dimension'
 'radius error' 'texture error' 'perimeter error' 'area error'
 'smoothness error' 'compactness error' 'concavity error'
 'concave points error' 'symmetry error' 'fractal dimension error'
 'worst radius' 'worst texture' 'worst perimeter' 'worst area'
 'worst smoothness' 'worst compactness' 'worst concavity'
 'worst concave points' 'worst symmetry' 'worst fractal dimension']


You can find out more about the data by reading cancer.DESCR if you
are interested.


We will also be using a real-world regression dataset, the Boston
Housing dataset. The task associated with this dataset is to predict the
median value of homes in several Boston neighborhoods in the 1970s,
using information such as crime rate, proximity
to the Charles River, highway accessibility, and so on. The dataset
contains 506 data points, described by 13 features:


In[8]:


from sklearn.datasets import load_boston
boston = load_boston()
print("Data shape: {}".format(boston.data.shape))


Out[8]:


Data shape: (506, 13)


Again, you can get more information about the dataset by reading the
DESCR attribute of boston. For our purposes here, we will actually
expand this dataset by not only considering these 13 measurements as
input features, but also looking at all products (also called
interactions) between features. In other words, we will not only
consider crime rate and highway accessibility as features, but also the
product of crime rate and highway accessibility. Including derived
feature like these is called feature engineering, which we will
discuss in more detail in Chapter 4. This derived
dataset can be loaded using the load_extended_boston function:


In[9]:


X, y = mglearn.datasets.load_extended_boston()
print("X.shape: {}".format(X.shape))


Out[9]:


X.shape: (506, 104)


The resulting 104 features are the 13 original features together with the 91 possible combinations of two features within those 13.5


We will use these datasets to explain and illustrate the properties of
the different machine learning algorithms. But for now, let’s get to the
algorithms themselves. First, we will revisit the k-nearest neighbors (k-NN)
algorithm that we saw in the previous chapter.

















k-Nearest Neighbors


The k-NN algorithm is arguably the simplest machine
learning algorithm. Building the model consists only of storing the
training dataset. To make a prediction for a new data point, the
algorithm finds the closest data points in the training dataset—its
“nearest neighbors.”












k-Neighbors classification


In its simplest version, the k-NN algorithm only considers exactly one
nearest neighbor, which is the closest training data point to the point
we want to make a prediction for. The prediction is then simply the
known output for this training point. Figure 2-4
illustrates this for the case of classification on the forge dataset:


In[10]:


mglearn.plots.plot_knn_classification(n_neighbors=1)



[image: malp 0204]
Figure 2-4. Predictions made by the one-nearest-neighbor model on the forge dataset




Here, we added three new data points, shown as stars. For each of them,
we marked the closest point in the training set. The prediction of the
one-nearest-neighbor algorithm is the label of that point (shown by the
color of the cross).


Instead of considering only the closest neighbor,
we can also consider an arbitrary number, k, of neighbors.
This is where the name of the k-nearest neighbors algorithm comes
from. When considering more than one neighbor, we use voting to assign
a label. This means that for each test point, we count how many neighbors
belong to class 0 and how many neighbors belong to class 1. We then
assign the class that is more frequent: in other words, the majority
class among the k-nearest neighbors. The following example (Figure 2-5) uses the three
closest neighbors:


In[11]:


mglearn.plots.plot_knn_classification(n_neighbors=3)



[image: malp 0205]
Figure 2-5. Predictions made by the three-nearest-neighbors model on the forge dataset




Again, the prediction is shown as the color of the
cross. You can see that the prediction for the new data point at the top
left is not the same as the prediction when we used only one neighbor.


While this illustration is for a binary classification problem, this
method can be applied to datasets with any number of classes. For more
classes, we count how many neighbors belong to each class and again
predict the most common class.


Now let’s look at how we can apply the k-nearest neighbors
algorithm using scikit-learn. First, we split our data into a training
and a test set so we can evaluate generalization performance, as
discussed in Chapter 1:


In[12]:


from sklearn.model_selection import train_test_split
X, y = mglearn.datasets.make_forge()

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)


Next, we import and instantiate the class. This is when we can set
parameters, like the number of neighbors to use. Here, we set it to
3:


In[13]:


from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=3)


Now, we fit the classifier using the training set. For
KNeighborsClassifier this means storing the dataset, so we can compute
neighbors during prediction:


In[14]:


clf.fit(X_train, y_train)


To make predictions on the test data, we call the predict method. For each data point in the test set, this
computes its nearest neighbors in the training set and finds the most
common class among these:


In[15]:


print("Test set predictions: {}".format(clf.predict(X_test)))


Out[15]:


Test set predictions: [1 0 1 0 1 0 0]


To evaluate how well our model generalizes, we can call the score
method with the test data together with the test labels:


In[16]:


print("Test set accuracy: {:.2f}".format(clf.score(X_test, y_test)))


Out[16]:


Test set accuracy: 0.86


We see that our model is about 86% accurate, meaning the model predicted
the class correctly for 86% of the samples in the test dataset.

















Analyzing KNeighborsClassifier


For two-dimensional datasets, we can also illustrate the prediction for
all possible test points in the xy-plane. We color the plane according to
the class that would be assigned to a point in this region. This lets us
view the decision boundary, which is the divide between where the
algorithm assigns class 0 versus where it assigns class 1. The following code produces the visualizations of the decision boundaries for one, three, and nine neighbors shown in Figure 2-6:


In[17]:


fig, axes = plt.subplots(1, 3, figsize=(10, 3))

for n_neighbors, ax in zip([1, 3, 9], axes):
    # the fit method returns the object self, so we can instantiate
    # and fit in one line
    clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y)
    mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=.4)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
    ax.set_title("{} neighbor(s)".format(n_neighbors))
    ax.set_xlabel("feature 0")
    ax.set_ylabel("feature 1")
axes[0].legend(loc=3)
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Figure 2-6. Decision boundaries created by the nearest neighbors model for different values of n_neighbors




As you can see on the left in the figure, using a single neighbor results in a
decision boundary that follows the training data closely. Considering
more and more neighbors leads to a smoother decision boundary. A
smoother boundary corresponds to a simpler model. In other words, using
few neighbors corresponds to high model complexity (as shown on the
right side of Figure 2-1), and using many neighbors
corresponds to low model complexity (as shown on the left side of Figure 2-1). If you consider the extreme case where the number of
neighbors is the number of all data points in the training set, each
test point would have exactly the same neighbors (all training points)
and all predictions would be the same: the class that is most frequent
in the training set.


Let’s investigate whether we can confirm the connection between model
complexity and generalization that we discussed earlier. We will do this
on the real-world Breast Cancer dataset. We begin by splitting the
dataset into a training and a test set. Then we evaluate training
and test set performance with different numbers of neighbors. The results are shown in Figure 2-7:


In[18]:


from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=66)

training_accuracy = []
test_accuracy = []
# try n_neighbors from 1 to 10
neighbors_settings = range(1, 11)

for n_neighbors in neighbors_settings:
    # build the model
    clf = KNeighborsClassifier(n_neighbors=n_neighbors)
    clf.fit(X_train, y_train)
    # record training set accuracy
    training_accuracy.append(clf.score(X_train, y_train))
    # record generalization accuracy
    test_accuracy.append(clf.score(X_test, y_test))

plt.plot(neighbors_settings, training_accuracy, label="training accuracy")
plt.plot(neighbors_settings, test_accuracy, label="test accuracy")
plt.ylabel("Accuracy")
plt.xlabel("n_neighbors")
plt.legend()


The plot shows the training and test set accuracy on the y-axis against
the setting of n_neighbors on the x-axis. While real-world plots
are rarely very smooth, we can still recognize some of the
characteristics of overfitting and underfitting (note that because considering
fewer neighbors corresponds to a more complex model, the plot is
horizontally flipped relative to the illustration in
Figure 2-1). Considering a single nearest neighbor, the prediction
on the training set is perfect. But when more neighbors are considered, the model
becomes simpler and the training accuracy drops. The test set
accuracy for using a single neighbor is lower than when using more
neighbors, indicating that using the single nearest neighbor leads to a
model that is too complex. On the other hand, when considering 10
neighbors, the model is too simple and performance is even worse. The
best performance is somewhere in the middle, using around six neighbors.
Still, it is good to keep the scale of the plot in mind. The worst
performance is around 88% accuracy, which might still be acceptable.



[image: malp 0207]
Figure 2-7. Comparison of training and test accuracy as a function of n_neighbors



















k-neighbors regression


There is also a regression variant of the k-nearest neighbors algorithm.
Again, let’s start by using the single nearest neighbor, this time using
the wave dataset. We’ve added three test data points as green stars on
the x-axis. The prediction using a single neighbor is just the target
value of the nearest neighbor. These are shown as blue stars in Figure 2-8:


In[19]:


mglearn.plots.plot_knn_regression(n_neighbors=1)
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Figure 2-8. Predictions made by one-nearest-neighbor regression on the wave dataset




Again, we can use more than the single closest neighbor for regression.
When using multiple nearest neighbors, the prediction is
the average, or mean, of the relevant neighbors (Figure 2-9):


In[20]:


mglearn.plots.plot_knn_regression(n_neighbors=3)
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Figure 2-9. Predictions made by three-nearest-neighbors regression on the wave dataset




The k-nearest neighbors algorithm for regression is implemented in the
KNeighborsRegressor class in scikit-learn. It’s used similarly to KNeighborsClassifier:


In[21]:


from sklearn.neighbors import KNeighborsRegressor

X, y = mglearn.datasets.make_wave(n_samples=40)

# split the wave dataset into a training and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

# instantiate the model and set the number of neighbors to consider to 3
reg = KNeighborsRegressor(n_neighbors=3)
# fit the model using the training data and training targets
reg.fit(X_train, y_train)


Now we can make predictions on the test set:


In[22]:


print("Test set predictions:\n{}".format(reg.predict(X_test)))


Out[22]:


Test set predictions:
[-0.054  0.357  1.137 -1.894 -1.139 -1.631  0.357  0.912 -0.447 -1.139]


We can also evaluate the model using the score method, which for
regressors returns the R2 score. The R2
score, also known as the coefficient of determination, is a measure of
goodness of a prediction for a regression model, and yields a score between 0 and 1. A value of 1 corresponds to a perfect prediction, and a value of 0
corresponds to a constant model that just predicts the mean of the
training set responses, y_train:


In[23]:


print("Test set R^2: {:.2f}".format(reg.score(X_test, y_test)))


Out[23]:


Test set R^2: 0.83


Here, the score is 0.83, which indicates a relatively good model fit.

















Analyzing KNeighborsRegressor


For our one-dimensional dataset, we can see what the predictions look
like for all possible feature values (Figure 2-10). To do this, we create a
test dataset consisting of many points on the line:


In[24]:


fig, axes = plt.subplots(1, 3, figsize=(15, 4))
# create 1,000 data points, evenly spaced between -3 and 3
line = np.linspace(-3, 3, 1000).reshape(-1, 1)
for n_neighbors, ax in zip([1, 3, 9], axes):
    # make predictions using 1, 3, or 9 neighbors
    reg = KNeighborsRegressor(n_neighbors=n_neighbors)
    reg.fit(X_train, y_train)
    ax.plot(line, reg.predict(line))
    ax.plot(X_train, y_train, '^', c=mglearn.cm2(0), markersize=8)
    ax.plot(X_test, y_test, 'v', c=mglearn.cm2(1), markersize=8)

    ax.set_title(
        "{} neighbor(s)\n train score: {:.2f} test score: {:.2f}".format(
            n_neighbors, reg.score(X_train, y_train),
            reg.score(X_test, y_test)))
    ax.set_xlabel("Feature")
    ax.set_ylabel("Target")
axes[0].legend(["Model predictions", "Training data/target",
                "Test data/target"], loc="best")
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Figure 2-10. Comparing predictions made by nearest neighbors regression for different values of n_neighbors




As we can see from the plot, using only a single neighbor, each point in
the training set has an obvious influence on the predictions, and the
predicted values go through all of the data points. This leads to a very
unsteady prediction. Considering more neighbors leads to smoother
predictions, but these do not fit the training data as well.

















Strengths, weaknesses, and parameters


In principle, there are two important parameters to the KNeighbors
classifier: the number of neighbors and how you measure distance between
data points. In practice, using a small number of neighbors like three or five
often works well, but you should certainly adjust this parameter.
Choosing the right distance measure is somewhat beyond the scope of this
book. By default, Euclidean distance is used, which works well in many
settings.


One of the strengths of k-NN is that the model is very easy
to understand, and often gives reasonable performance without a lot of
adjustments. Using this algorithm is a good baseline method to try
before considering more advanced techniques. Building the nearest
neighbors model is usually very fast, but when your training set is very
large (either in number of features or in number of samples) prediction
can be slow. When using the k-NN algorithm, it’s important to preprocess
your data (see Chapter 3). This approach often
does not perform well on datasets with many features (hundreds or more), and it does particularly badly with datasets where most features are 0
most of the time (so-called sparse datasets).


So, while the nearest k-neighbors algorithm is easy to understand, it is
not often used in practice, due to prediction being slow and its
inability to handle many features. The method we discuss next has
neither of these drawbacks.






















Linear Models



Linear models are a class of models that are widely used in practice
and have been studied extensively in the last few decades, with roots
going back over a hundred years. Linear models make a
prediction using a linear function of the input features, which
we will explain shortly.












Linear models for regression


For regression, the general prediction formula for a linear model looks
as follows:


  	ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b 




Here, x[0] to x[p] denotes the features (in
this example, the number of features is p) of a single data
point, w and b are parameters of the model
that are learned, and ŷ is the prediction the model
makes. For a dataset with a single feature, this is:


  	ŷ = w[0] * x[0] + b




which you might remember from high school mathematics as the equation
for a line. Here, w[0] is the slope and b
is the y-axis offset. For more features, w contains the slopes along
each feature axis. Alternatively, you can think of the predicted
response as being a weighted sum of the input features, with weights
(which can be negative) given by the entries of w.


Trying to learn the parameters w[0] and b on
our one-dimensional wave dataset might lead to the following line (see Figure 2-11):


In[25]:


mglearn.plots.plot_linear_regression_wave()


Out[25]:


w[0]: 0.393906  b: -0.031804
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Figure 2-11. Predictions of a linear model on the wave dataset




We added a coordinate cross into the plot to make it easier to
understand the line. Looking at w[0] we see that the slope should be around 0.4, which we can confirm visually in the plot. The
intercept is where the prediction line should cross the y-axis: this is
slightly below zero, which you can also confirm in the image.


Linear models for regression can be characterized as regression models
for which the prediction is a line for a single feature, a plane when
using two features, or a hyperplane in higher dimensions (that is, when
using more features).


If you compare the predictions made by the straight line with those made
by the KNeighborsRegressor in Figure 2-10, using
a straight line to make predictions seems very restrictive. It looks
like all the fine details of the data are lost. In a sense, this is true.
It is a strong (and somewhat unrealistic) assumption that our target
y is a linear combination of the features. But looking at
one-dimensional data gives a somewhat skewed perspective. For datasets
with many features, linear models can be very powerful. In particular,
if you have more features than training data points, any target
y can be perfectly modeled (on the training set) as a
linear function.6


There are many different linear models for regression. The difference
between these models lies in how the model parameters w and
b are learned from the training data, and how model
complexity can be controlled. We will now take a look at the most popular
linear models for regression.

















Linear regression (aka ordinary least squares)


Linear regression, or ordinary least squares (OLS), is the simplest and
most classic linear method for regression. Linear regression finds the
parameters w and b that minimize the mean
squared error between predictions and the true regression targets,
y, on the training set. The mean squared error is the sum
of the squared differences between the predictions and the true values.
Linear regression has no parameters, which is a benefit, but it also has
no way to control model complexity.


Here is the code that produces the model you can see in Figure 2-11:


In[26]:


from sklearn.linear_model import LinearRegression
X, y = mglearn.datasets.make_wave(n_samples=60)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

lr = LinearRegression().fit(X_train, y_train)


The “slope” parameters (w), also called weights or coefficients, are
stored in the coef_ attribute, while the offset or intercept (b) is
stored in the intercept_ attribute:


In[27]:


print("lr.coef_: {}".format(lr.coef_))
print("lr.intercept_: {}".format(lr.intercept_))


Out[27]:


lr.coef_: [ 0.394]
lr.intercept_: -0.031804343026759746

Note

You might notice the
strange-looking trailing underscore at the end of coef_ and
intercept_. scikit-learn always stores anything that is derived from
the training data in attributes that end with a trailing underscore.
That is to separate them from parameters that are set by the user.




The intercept_ attribute is always a single float number, while the
coef_ attribute is a NumPy array with one entry per input feature. As
we only have a single input feature in the wave dataset, lr.coef_
only has a single entry.


Let’s look at the training set and test set performance:


In[28]:


print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))


Out[28]:


Training set score: 0.67
Test set score: 0.66


An R2 of around 0.66 is not very good, but we can see that
the scores on the training and test sets are very close together. This means
we are likely underfitting, not overfitting. For this one-dimensional
dataset, there is little danger of overfitting, as the model is very
simple (or restricted). However, with higher-dimensional datasets
(meaning datasets with a large number of features), linear models become
more powerful, and there is a higher chance of overfitting. Let’s take a
look at how LinearRegression performs on a more complex dataset, like
the Boston Housing dataset. Remember that this dataset has 506 samples
and 105 derived features. First, we load the dataset and split it into a
training and a test set. Then we build the linear regression model as
before:


In[29]:


X, y = mglearn.datasets.load_extended_boston()

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
lr = LinearRegression().fit(X_train, y_train)


When comparing training set and test set scores, we find that we predict
very accurately on the training set, but the R2 on the
test set is much worse:


In[30]:


print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))


Out[30]:


Training set score: 0.95
Test set score: 0.61


This discrepancy between performance on the training set and the test set
is a clear sign of overfitting, and therefore we should try to find a
model that allows us to control complexity. One of the most commonly
used alternatives to standard linear regression is ridge regression,
which we will look into next.

















Ridge regression


Ridge regression is also a linear model for regression, so the formula
it uses to make predictions is the same one used for ordinary least
squares. In ridge regression, though, the coefficients (w) are chosen not only so
that they predict well on the training data, but also to fit an
additional constraint. We also want the magnitude of coefficients to be
as small as possible; in other words, all entries of w should be close
to zero. Intuitively, this means each feature should have as little
effect on the outcome as possible (which translates to having a small
slope), while still predicting well. This constraint is an example of
what is called regularization. Regularization means explicitly
restricting a model to avoid overfitting. The particular kind used by
ridge regression is known as L2 regularization.7


Ridge regression is implemented in linear_model.Ridge. Let’s see how
well it does on the extended Boston Housing dataset:


In[31]:


from sklearn.linear_model import Ridge

ridge = Ridge().fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge.score(X_train, y_train)))
print("Test set score: {:.2f}".format(ridge.score(X_test, y_test)))


Out[31]:


Training set score: 0.89
Test set score: 0.75


As you can see, the training set score of Ridge is lower than for
LinearRegression, while the test set score is higher. This is
consistent with our expectation. With linear regression, we were
overfitting our data. Ridge is a more restricted model, so we are less
likely to overfit. A less complex model means worse performance on the
training set, but better generalization. As we are only interested in
generalization performance, we should choose the Ridge model over the
LinearRegression model.


The Ridge model makes a trade-off between the simplicity of the model
(near-zero coefficients) and its performance on the training set. How
much importance the model places on simplicity versus training set
performance can be specified by the user, using the alpha parameter.
In the previous example, we used the default parameter alpha=1.0. There is no reason why
this will give us the best trade-off, though. The optimum setting of
alpha depends on the particular dataset we are using. Increasing alpha
forces coefficients to move more toward zero, which decreases training
set performance but might help generalization. For example:


In[32]:


ridge10 = Ridge(alpha=10).fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge10.score(X_train, y_train)))
print("Test set score: {:.2f}".format(ridge10.score(X_test, y_test)))


Out[32]:


Training set score: 0.79
Test set score: 0.64


Decreasing alpha allows the coefficients to be less restricted, meaning
we move right in Figure 2-1. For very small values of alpha,
coefficients are barely restricted at all, and we end up with a model
that resembles LinearRegression:


In[33]:


ridge01 = Ridge(alpha=0.1).fit(X_train, y_train)
print("Training set score: {:.2f}".format(ridge01.score(X_train, y_train)))
print("Test set score: {:.2f}".format(ridge01.score(X_test, y_test)))


Out[33]:


Training set score: 0.93
Test set score: 0.77


Here, alpha=0.1 seems to be working well. We could try decreasing
alpha even more to improve generalization. For now, notice how the
parameter alpha corresponds to the model complexity as shown in
Figure 2-1. We will discuss methods to properly select parameters
in Chapter 5.


We can also get a more qualitative insight into how the alpha
parameter changes the model by inspecting the coef_ attribute of
models with different values of alpha. A higher alpha means a more
restricted model, so we expect the entries of coef_ to have smaller
magnitude for a high value of alpha than for a low value of alpha. This
is confirmed in the plot in Figure 2-12:


In[34]:


plt.plot(ridge.coef_, 's', label="Ridge alpha=1")
plt.plot(ridge10.coef_, '^', label="Ridge alpha=10")
plt.plot(ridge01.coef_, 'v', label="Ridge alpha=0.1")

plt.plot(lr.coef_, 'o', label="LinearRegression")
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
plt.hlines(0, 0, len(lr.coef_))
plt.ylim(-25, 25)
plt.legend()
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Figure 2-12. Comparing coefficient magnitudes for ridge regression with different values of alpha and linear regression




Here, the x-axis enumerates the entries of coef_: x=0 shows the
coefficient associated with the first feature, x=1 the coefficient
associated with the second feature, and so on up to x=100. The y-axis
shows the numeric values of the corresponding values of the coefficients.
The main takeaway here is that for alpha=10, the coefficients are
mostly between around –3 and 3. The coefficients for the Ridge model
with alpha=1 are somewhat larger. The dots corresponding to alpha=0.1
have larger magnitude still, and many of the dots corresponding to
linear regression without any regularization (which would be alpha=0)
are so large they are outside of the chart.


Another way to understand the influence of regularization is to fix a
value of alpha but vary the amount of training data available. For
Figure 2-13, we subsampled the Boston Housing dataset and evaluated
LinearRegression and Ridge(alpha=1) on subsets of increasing size (plots that show model performance as a function of dataset size are
called learning curves):


In[35]:


mglearn.plots.plot_ridge_n_samples()
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Figure 2-13. Learning curves for ridge regression and linear regression on the Boston Housing dataset




As one would expect, the training score is higher than the test score
for all dataset sizes, for both ridge and linear regression. Because
ridge is regularized, the training score of ridge is lower than the
training score for linear regression across the board. However, the test
score for ridge is better, particularly for small subsets of the data.
For less than 400 data points, linear regression is not able to learn
anything. As more and more data becomes available to the model, both
models improve, and linear regression catches up with ridge in the end.
The lesson here is that with enough training data, regularization
becomes less important, and given enough data, ridge and linear
regression will have the same performance (the fact that this happens
here when using the full dataset is just by chance). Another interesting
aspect of Figure 2-13 is the decrease
in training performance for linear regression. If more data is added, it
becomes harder for a model to overfit, or memorize the data.

















Lasso


An alternative to Ridge for regularizing linear regression is Lasso. As with ridge regression, using the lasso also restricts coefficients
to be close to zero, but in a slightly different way, called L1 regularization.8 The consequence of L1 regularization is that when
using the lasso, some coefficients are exactly zero. This means some
features are entirely ignored by the model. This can be seen as a form
of automatic feature selection. Having some coefficients be exactly
zero often makes a model easier to interpret, and can reveal the most
important features of your model.


Let’s apply the lasso to the extended Boston Housing dataset:


In[36]:


from sklearn.linear_model import Lasso

lasso = Lasso().fit(X_train, y_train)
print("Training set score: {:.2f}".format(lasso.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lasso.score(X_test, y_test)))
print("Number of features used: {}".format(np.sum(lasso.coef_ != 0)))


Out[36]:


Training set score: 0.29
Test set score: 0.21
Number of features used: 4


As you can see, Lasso does quite badly, both on the training and the
test set. This indicates that we are underfitting, and we find that it used only 4 of the 105 features. Similarly to Ridge, the Lasso also has a
regularization parameter, alpha, that controls how strongly coefficients
are pushed toward zero. In the previous example, we used the default of alpha=1.0. To
reduce underfitting, let’s try decreasing alpha. When we do this, we also need to increase the default setting of max_iter (the maximum number of iterations to run):


In[37]:


# we increase the default setting of "max_iter",
# otherwise the model would warn us that we should increase max_iter.
lasso001 = Lasso(alpha=0.01, max_iter=100000).fit(X_train, y_train)
print("Training set score: {:.2f}".format(lasso001.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lasso001.score(X_test, y_test)))
print("Number of features used: {}".format(np.sum(lasso001.coef_ != 0)))


Out[37]:


Training set score: 0.90
Test set score: 0.77
Number of features used: 33


A lower alpha allowed us to fit a more complex model, which worked
better on the training and test data. The performance is slightly
better than using Ridge, and we are using only 33 of the 105 features.
This makes this model potentially easier to understand.


If we set alpha too low, however, we again remove the effect of regularization
and end up overfitting, with a result similar to LinearRegression:


In[38]:


lasso00001 = Lasso(alpha=0.0001, max_iter=100000).fit(X_train, y_train)
print("Training set score: {:.2f}".format(lasso00001.score(X_train, y_train)))
print("Test set score: {:.2f}".format(lasso00001.score(X_test, y_test)))
print("Number of features used: {}".format(np.sum(lasso00001.coef_ != 0)))


Out[38]:


Training set score: 0.95
Test set score: 0.64
Number of features used: 94


Again, we can plot the coefficients of the different models, similarly
to Figure 2-12.  The result is shown in Figure 2-14:


In[39]:


plt.plot(lasso.coef_, 's', label="Lasso alpha=1")
plt.plot(lasso001.coef_, '^', label="Lasso alpha=0.01")
plt.plot(lasso00001.coef_, 'v', label="Lasso alpha=0.0001")

plt.plot(ridge01.coef_, 'o', label="Ridge alpha=0.1")
plt.legend(ncol=2, loc=(0, 1.05))
plt.ylim(-25, 25)
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
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Figure 2-14. Comparing coefficient magnitudes for lasso regression with different values of alpha and ridge regression




For alpha=1,
we not only see that most of the coefficients are zero (which we already
knew), but that the remaining coefficients are also small in magnitude.
Decreasing alpha to 0.01, we obtain the solution shown as the green dots,
which causes most features to be exactly zero. Using alpha=0.00001, we get
a model that is quite unregularized, with most coefficients nonzero and
of large magnitude. For comparison, the best Ridge solution is shown in
teal. The Ridge model with alpha=0.1 has similar predictive performance
as the lasso model with alpha=0.01, but using Ridge, all coefficients
are nonzero.


In practice, ridge regression is usually the first choice between these
two models. However, if you have a large amount of features and expect
only a few of them to be important, Lasso might be a better choice.
Similarly, if you would like to have a model that is easy to interpret,
Lasso will provide a model that is easier to understand, as it will
select only a subset of the input features. scikit-learn also provides
the ElasticNet class, which combines the penalties of Lasso and
Ridge. In practice, this combination works best, though at the price of
having two parameters to adjust: one for the L1 regularization, and one
for the L2 regularization.

















Linear models for classification


Linear models are also extensively used for classification. Let’s look
at binary classification first. In this case, a prediction is made using
the following formula:


  	ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b  > 0




The formula looks very similar to the one for linear regression, but
instead of just returning the weighted sum of the features, we threshold
the predicted value at zero. If the function is smaller than zero, we
predict the class –1; if it is larger than zero, we predict the class
+1. This prediction rule is common to all linear models for
classification. Again, there are many different ways to find the
coefficients (w) and the intercept (b).


For linear models for regression, the output, ŷ, is a linear function
of the features: a line, plane, or hyperplane (in higher dimensions).
For linear models for classification, the decision boundary is a
linear function of the input. In other words, a (binary) linear
classifier is a classifier that separates two classes using a line, a
plane, or a hyperplane. We will see examples of that in this section.


There are many algorithms for learning linear models. These algorithms
all differ in the following two ways:



	
The way in which they measure how well a particular combination of coefficients and intercept fits the training data



	
If and what kind of regularization they use






Different algorithms choose different ways to measure what “fitting the
training set well” means. For technical mathematical reasons, it is
not possible to adjust w and b to minimize the number of
misclassifications the algorithms produce, as one might hope. For our
purposes, and many applications, the different choices for item 1 in the
preceding list (called loss functions) are of little significance.


The two most common linear classification algorithms are logistic
regression, implemented in linear_model.LogisticRegression, and linear
support vector machines (linear SVMs), implemented in svm.LinearSVC
(SVC stands for support vector classifier). Despite its name,
LogisticRegression is a classification algorithm and not a regression
algorithm, and it should not be confused with LinearRegression.


We can apply the LogisticRegression and LinearSVC models to the
forge dataset, and visualize the decision boundary as found by the
linear models (Figure 2-15):


In[40]:

from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC

X, y = mglearn.datasets.make_forge()

fig, axes = plt.subplots(1, 2, figsize=(10, 3))

for model, ax in zip([LinearSVC(), LogisticRegression()], axes):
    clf = model.fit(X, y)
    mglearn.plots.plot_2d_separator(clf, X, fill=False, eps=0.5,
                                    ax=ax, alpha=.7)
    mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)
    ax.set_title("{}".format(clf.__class__.__name__))
    ax.set_xlabel("Feature 0")
    ax.set_ylabel("Feature 1")
axes[0].legend()




[image: malp 0214]
Figure 2-15. Decision boundaries of a linear SVM and logistic regression on the forge dataset with the default parameters




In this figure, we have the first feature of the forge dataset on the x-axis and the second feature on the y-axis, as before. We display the
decision boundaries found by LinearSVC and LogisticRegression
respectively as straight lines, separating the area classified as class
1 on the top from the area classified as class 0 on the bottom. In other
words, any new data point that lies above the black line will be
classified as class 1 by the respective classifier, while any point that
lies below the black line will be classified as class 0.


The two models come up with similar decision boundaries. Note that both
misclassify two of the points. By default, both models apply an L2 regularization, in the same way that Ridge does for regression.


For LogisticRegression and LinearSVC the trade-off parameter that
determines the strength of the regularization is called C, and higher
values of C correspond to less regularization. In other words, when
you use a high value for the parameter C, LogisticRegression and
LinearSVC try to fit the training set as best as possible, while with
low values of the parameter C, the models put more emphasis on finding
a coefficient vector (w) that is close to zero.


There is another interesting aspect of how the parameter C acts. Using
low values of C will cause the algorithms to try to adjust to the
“majority” of data points, while using a higher value of C stresses
the importance that each individual data point be classified correctly.
Here is an illustration using LinearSVC (Figure 2-16):


In[41]:


mglearn.plots.plot_linear_svc_regularization()
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Figure 2-16. Decision boundaries of a linear SVM on the forge dataset for different values of C




On the lefthand side, we have a very small C corresponding to a lot
of regularization. Most of the points in class 0 are at the top, and
most of the points in class 1 are at the bottom. The strongly regularized
model chooses a relatively horizontal line, misclassifying two points.
In the center plot, C is slightly higher, and the model focuses more
on the two misclassified samples, tilting the decision boundary.
Finally, on the righthand side, the very high value of C in the model
tilts the decision boundary a lot, now correctly classifying all points
in class 0. One of the points in class 1 is still misclassified, as it
is not possible to correctly classify all points in this dataset using a
straight line. The model illustrated on the righthand side tries hard
to correctly classify all points, but might not capture the overall
layout of the classes well. In other words, this model is likely
overfitting.


Similarly to the case of regression, linear models for classification
might seem very restrictive in low-dimensional spaces, only allowing for
decision boundaries that are straight lines or planes. Again, in high
dimensions, linear models for classification become very powerful, and
guarding against overfitting becomes increasingly important when
considering more features.


Let’s analyze LinearLogistic in more detail on the Breast Cancer dataset:


In[42]:


from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=42)
logreg = LogisticRegression().fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg.score(X_train, y_train)))
print("Test set score: {:.3f}".format(logreg.score(X_test, y_test)))


Out[42]:


Training set score: 0.953
Test set score: 0.958


The default value of C=1 provides quite good performance, with 95%
accuracy on both the training and the test set. But as training and test set
performance are very close, it is likely that we are underfitting. Let’s
try to increase C to fit a more flexible model:


In[43]:


logreg100 = LogisticRegression(C=100).fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg100.score(X_train, y_train)))
print("Test set score: {:.3f}".format(logreg100.score(X_test, y_test)))


Out[43]:


Training set score: 0.972
Test set score: 0.965


Using C=100 results in higher training set accuracy, and also a
slightly increased test set accuracy, confirming our intuition that a
more complex model should perform better.


We can also investigate what happens if we use an even more regularized
model than the default of C=1, by setting C=0.01:


In[44]:


logreg001 = LogisticRegression(C=0.01).fit(X_train, y_train)
print("Training set score: {:.3f}".format(logreg001.score(X_train, y_train)))
print("Test set score: {:.3f}".format(logreg001.score(X_test, y_test)))


Out[44]:


Training set score: 0.934
Test set score: 0.930


As expected, when moving more to the left along the scale shown in Figure 2-1
from an already underfit model, both training and test set accuracy
decrease relative to the default parameters.


Finally, let’s look at the coefficients learned by the models with the
three different settings of the regularization parameter C (Figure 2-17):


In[45]:


plt.plot(logreg.coef_.T, 'o', label="C=1")
plt.plot(logreg100.coef_.T, '^', label="C=100")
plt.plot(logreg001.coef_.T, 'v', label="C=0.001")
plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1])
plt.ylim(-5, 5)
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")
plt.legend()

Warning

As LogisticRegression applies an L2 regularization by default, the
result looks similar to  that produced by Ridge in Figure 2-12. Stronger
regularization pushes coefficients more and more toward zero, though
coefficients never become exactly zero. Inspecting the plot more
closely, we can also see an interesting effect in the third coefficient,
for “mean perimeter.” For C=100 and C=1, the coefficient is negative,
while for C=0.001, the coefficient is positive, with a magnitude that is
even larger than for C=1. Interpreting a model like this, one might
think the coefficient tells us which class a feature is associated with.
For example, one might think that a high “texture error” feature is
related to a sample being “malignant.” However, the change of sign in
the coefficient for “mean perimeter” means that depending on which model
we look at, a high “mean perimeter” could be taken as being either
indicative of “benign” or indicative of “malignant.” This illustrates
that interpretations of coefficients of linear models should always be
taken with a grain of salt.
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Figure 2-17. Coefficients learned by logistic regression on the Breast Cancer dataset for different values of C




If we desire a more interpretable model, using L1 regularization might
help, as it limits the model to using only a few features. Here is the
coefficient plot and classification accuracies for L1 regularization (Figure 2-18):


In[46]:


for C, marker in zip([0.001, 1, 100], ['o', '^', 'v']):
    lr_l1 = LogisticRegression(C=C, penalty="l1").fit(X_train, y_train)
    print("Training accuracy of l1 logreg with C={:.3f}: {:.2f}".format(
          C, lr_l1.score(X_train, y_train)))
    print("Test accuracy of l1 logreg with C={:.3f}: {:.2f}".format(
          C, lr_l1.score(X_test, y_test)))
    plt.plot(lr_l1.coef_.T, marker, label="C={:.3f}".format(C))

plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)
plt.hlines(0, 0, cancer.data.shape[1])
plt.xlabel("Coefficient index")
plt.ylabel("Coefficient magnitude")

plt.ylim(-5, 5)
plt.legend(loc=3)


Out[46]:


Training accuracy of l1 logreg with C=0.001: 0.91
Test accuracy of l1 logreg with C=0.001: 0.92
Training accuracy of l1 logreg with C=1.000: 0.96
Test accuracy of l1 logreg with C=1.000: 0.96
Training accuracy of l1 logreg with C=100.000: 0.99
Test accuracy of l1 logreg with C=100.000: 0.98


As you can see, there are many parallels between linear models for
binary classification and linear models for regression. As in
regression, the main difference between the models is the penalty parameter, which
influences the regularization and whether the model will use all
available features or select only a subset.
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Figure 2-18. Coefficients learned by logistic regression with L1 penalty on the Breast Cancer dataset for different values of C



















Linear models for multiclass classification


Many linear classification models are for binary classification only,
and don’t extend naturally to the multiclass case (with the exception
of logistic regression). A common technique to extend a binary
classification algorithm to a multiclass classification algorithm is
the one-vs.-rest approach. In the one-vs.-rest approach, a binary model
is learned for each class that tries to separate that class from all
of the other classes, resulting in as many binary models as there are
classes. To make a prediction, all binary classifiers are run on a test
point. The classifier that has the highest score on its single class
“wins,” and this class label is returned as the prediction.


Having one binary classifier per class results in having one vector of
coefficients (w) and one intercept (b) for each
class. The class for which the result of the classification confidence formula given here is highest is the assigned class label:


  	w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b




The mathematics behind multiclass logistic regression differ somewhat from the one-vs.-rest approach, but they also result in one
coefficient vector and intercept per class, and the same method of
making a prediction is applied.


Let’s apply the one-vs.-rest method to a simple three-class
classification dataset. We use a two-dimensional dataset, where each
class is given by data sampled from a Gaussian distribution (see Figure 2-19):


In[47]:


from sklearn.datasets import make_blobs

X, y = make_blobs(random_state=42)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
plt.legend(["Class 0", "Class 1", "Class 2"])
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Figure 2-19. Two-dimensional toy dataset containing three classes




Now, we train a LinearSVC classifier on the dataset:


In[48]:


linear_svm = LinearSVC().fit(X, y)
print("Coefficient shape: ", linear_svm.coef_.shape)
print("Intercept shape: ", linear_svm.intercept_.shape)


Out[48]:


Coefficient shape:  (3, 2)
Intercept shape:  (3,)


We see that the shape of the coef_ is (3, 2), meaning that each row
of coef_ contains the coefficient vector for one of the three classes
and each column holds the coefficient value for a specific feature
(there are two in this dataset). The intercept_ is now a
one-dimensional array, storing the intercepts for each class.


Let’s visualize the lines given by the three binary classifiers (Figure 2-20):


In[49]:


mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
line = np.linspace(-15, 15)
for coef, intercept, color in zip(linear_svm.coef_, linear_svm.intercept_,
                                  ['b', 'r', 'g']):
    plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)
plt.ylim(-10, 15)
plt.xlim(-10, 8)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1',
            'Line class 2'], loc=(1.01, 0.3))


You can see that all the points belonging to class 0 in the training
data are above the line corresponding to class 0, which means they are
on the “class 0” side of this binary classifier. The points in class 0
are above the line corresponding to class 2, which means they are
classified as “rest” by the binary classifier for class 2. The points
belonging to class 0 are to the left of the line corresponding to class 1,
which means the binary classifier for class 1 also classifies them
as “rest.” Therefore, any point in this area will be classified as class
0 by the final classifier (the result of the classification confidence formula for classifier 0 is greater than
zero, while it is smaller than zero for the other two classes).


But what about the triangle in the middle of the plot? All three binary
classifiers classify points there as “rest.” Which class would a point
there be assigned to? The answer is the one with the highest value for the classification formula: the class of the closest line.



[image: malp 0219]
Figure 2-20. Decision boundaries learned by the three one-vs.-rest classifiers




The following example (Figure 2-21) shows the predictions for all regions of the
2D space:


In[50]:


mglearn.plots.plot_2d_classification(linear_svm, X, fill=True, alpha=.7)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
line = np.linspace(-15, 15)
for coef, intercept, color in zip(linear_svm.coef_, linear_svm.intercept_,
                                  ['b', 'r', 'g']):
    plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)
plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1',
            'Line class 2'], loc=(1.01, 0.3))
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")



[image: malp 0220]
Figure 2-21. Multiclass decision boundaries derived from the three one-vs.-rest classifiers



















Strengths, weaknesses, and parameters


The main parameter of linear models is the regularization parameter,
called alpha in the regression models and C in LinearSVC and
LogisticRegression. Large values for alpha or small values for C mean simple models. In
particular for the regression models, tuning these parameters is quite
important. Usually C and alpha are searched for on a logarithmic
scale. The other decision you have to make is whether you want to use L1
regularization or L2 regularization. If you assume that only a few of your
features are actually important, you should use L1. Otherwise, you
should default to L2. L1 can also be useful if interpretability of the
model is important. As L1 will use only a few features, it is easier to
explain which features are important to the model, and what the effects
of these features are.


Linear models are very fast to train, and also fast to predict. They
scale to very large datasets and work well with sparse data. If your
data consists of hundreds of thousands or millions of samples, you might
want to investigate using the solver='sag' option in
LogisticRegression and Ridge, which can be faster than the default
on large datasets. Other options are the SGDClassifier class and the
SGDRegressor class, which implement even more scalable versions of the
linear models described here.


Another strength of linear models is that they make it relatively easy
to understand how a prediction is made, using the formulas we saw earlier for regression
and classification. Unfortunately, it is often not
entirely clear why coefficients are the way they are. This is
particularly true if your dataset has highly correlated features; in
these cases, the coefficients might be hard to interpret.


Linear models often perform well when the number of features is large
compared to the number of samples. They are also often used on very
large datasets, simply because it’s not feasible to train other models.
However, in lower-dimensional spaces, other models might yield better
generalization performance. We will look at some examples in which linear
models fail in “Kernelized Support Vector Machines”.


Method Chaining

The fit method of all scikit-learn models
returns self. This allows you to write code like the following, which
we’ve already used extensively in this chapter:


In[51]:


# instantiate model and fit it in one line
logreg = LogisticRegression().fit(X_train, y_train)


Here, we used the return value of fit (which is self) to assign the
trained model to the variable logreg. This concatenation of method
calls (here __init__ and then fit) is known as method chaining.
Another common application of method chaining in scikit-learn is to
fit and predict in one line:


In[52]:


logreg = LogisticRegression()
y_pred = logreg.fit(X_train, y_train).predict(X_test)


Finally, you can even do model instantiation, fitting, and predicting in
one line:


In[53]:


y_pred = LogisticRegression().fit(X_train, y_train).predict(X_test)


This very short variant is not ideal, though. A lot is happening in a
single line, which might make the code hard to read. Additionally, the
fitted logistic regression model isn’t stored in any variable, so we
can’t inspect it or use it to predict on any other data.
























Naive Bayes Classifiers


Naive Bayes classifiers are a family of classifiers that are quite
similar to the linear models discussed in the previous section. However, they tend to be
even faster in training. The price paid for this efficiency is that
naive Bayes models often provide generalization performance that is
slightly worse than that of linear classifiers like LogisticRegression and
LinearSVC.


The reason that naive Bayes models are so efficient is that they learn
parameters by looking at each feature individually and collect simple
per-class statistics from each feature. There are three kinds of naive
Bayes classifiers implemented in scikit-learn: GaussianNB,
BernoulliNB, and MultinomialNB. GaussianNB can be applied to any
continuous data, while BernoulliNB assumes binary data and
MultinomialNB assumes count data (that is, that each feature represents an
integer count of something, like how often a word appears in a
sentence). BernoulliNB and MultinomialNB are mostly used in text
data classification.


The BernoulliNB classifier counts how often every feature of each
class is not zero. This is most easily understood with an example:


In[54]:


X = np.array([[0, 1, 0, 1],
              [1, 0, 1, 1],
              [0, 0, 0, 1],
              [1, 0, 1, 0]])
y = np.array([0, 1, 0, 1])


Here, we have four data points, with four binary features each. There
are two classes, 0 and 1. For class 0 (the first and third data points),
the first feature is zero two times and nonzero zero times, the second
feature is zero one time and nonzero one time, and so on. These same
counts are then calculated for the data points in the second class.
Counting the nonzero entries per class in essence looks like this:


In[55]:


counts = {}
for label in np.unique(y):
    # iterate over each class
    # count (sum) entries of 1 per feature
    counts[label] = X[y == label].sum(axis=0)
print("Feature counts:\n{}".format(counts))


Out[55]:


Feature counts:
{0: array([0, 1, 0, 2]), 1: array([2, 0, 2, 1])}


The other two naive Bayes models, MultinomialNB and GaussianNB, are
slightly different in what kinds of statistics they compute.
MultinomialNB takes into account the average value of each feature for
each class, while GaussianNB stores the average value as well as the
standard deviation of each feature for each class.


To make a prediction, a data point is compared to the statistics for
each of the classes, and the best matching class is predicted.
Interestingly, for both MultinomialNB and BernoulliNB, this leads to a
prediction formula that is of the same form as in the linear models
(see “Linear models for classification”). Unfortunately, coef_ for the naive Bayes models has a
somewhat different meaning than in the linear models, in that coef_ is
not the same as w.












Strengths, weaknesses, and parameters


MultinomialNB and BernoulliNB have a single parameter, alpha,
which controls model complexity. The way alpha works is that the
algorithm adds  to the data alpha many virtual data points that have
positive values for all the features. This results in a “smoothing” of
the statistics. A large alpha means more smoothing, resulting in less
complex models. The algorithm’s performance is relatively robust to the
setting of alpha, meaning that setting alpha is not critical for good
performance. However, tuning it usually improves accuracy somewhat.


GaussianNB is mostly used on very high-dimensional data, while the
other two variants of naive Bayes are widely used for sparse count data
such as text. MultinomialNB usually performs better than BinaryNB, particularly on datasets with a relatively large number of nonzero
features (i.e., large documents).


The naive Bayes models share many of the strengths and weaknesses of the
linear models. They are very fast to train and to predict, and the
training procedure is easy to understand. The models work very well with
high-dimensional sparse data and are relatively robust to the
parameters. Naive Bayes models are great baseline models and are often
used on very large datasets, where training even a linear model might
take too long.






















Decision Trees


Decision trees are widely used models for classification and
regression tasks. Essentially, they learn a hierarchy of if/else
questions, leading to a decision.


These questions are similar to the questions you might ask in a game of
20 Questions. Imagine you want to distinguish between the following
four animals: bears, hawks, penguins, and dolphins. Your goal is to get
to the right answer by asking as few if/else questions as possible. You
might start off by asking whether the animal has feathers, a question
that narrows down your possible animals to just two. If the
answer is “yes,” you can ask another question that could help you
distinguish between hawks and penguins. For example, you could ask
whether the animal can fly. If the animal doesn’t have feathers,
your possible animal choices are dolphins and bears, and you will need
to ask a question to distinguish between these two animals—for example,
asking whether the animal has fins.


This series of questions can be expressed as a decision tree, as shown
in Figure 2-22.


In[56]:


mglearn.plots.plot_animal_tree()



[image: malp 0221]
Figure 2-22. A decision tree to distinguish among several animals




In this illustration, each node in the tree
either represents a question or a terminal node (also called a leaf)
that contains the answer. The edges connect the answers to a question
with the next question you would ask.


In machine learning parlance, we built a model to distinguish between
four classes of animals (hawks, penguins, dolphins, and bears) using the
three features “has feathers,” “can fly,” and “has fins.” Instead of
building these models by hand, we can learn them from data using
supervised learning.












Building decision trees


Let’s go through the process of building a decision tree for the 2D
classification dataset shown in Figure 2-23. The
dataset consists of two half-moon shapes, with each class consisting of
75 data points. We will refer to this dataset as two_moons.


Learning a decision tree means learning the sequence of if/else questions
that gets us to the true answer most quickly. In the machine learning
setting, these questions are called tests (not to be confused with the
test set, which is the data we use to test to see how generalizable our
model is). Usually data does not come in the form of binary yes/no
features as in the animal example, but is instead represented as
continuous features such as in the 2D dataset shown in Figure 2-23. The
tests that are used on continuous data are of the form “Is feature i
larger than value a?”



[image: malp 0222a]
Figure 2-23. Two-moons dataset on which the decision tree will be built




To build a tree, the algorithm searches over all possible tests and
finds the one that is most informative about the target variable. Figure 2-24 shows the first
test that is picked. Splitting the dataset vertically at x[1]=0.0596
yields the most information; it best separates the points in class 1
from the points in class 2. The top node, also called the root,
represents the whole dataset, consisting of 75 points belonging to class
0 and 75 points belonging to class 1. The split is done by testing whether
x[1] <= 0.0596, indicated by a black line. If the test is true, a
point is assigned to the left node, which contains 2 points belonging to
class 0 and 32 points belonging to class 1. Otherwise the point is
assigned to the right node, which contains 48 points belonging to class
0 and 18 points belonging to class 1. These two nodes correspond to the
top and bottom regions shown in Figure 2-24. Even though the first
split did a good job of separating the two classes, the bottom region still
 contains points belonging to class 0, and the top region still contains
points belonging to class 1.
We can build a more accurate model by repeating the process of looking
for the best test in both regions. Figure 2-25 shows that the most informative next split for the left
and the right region is based on x[0].



[image: malp 0222b]
Figure 2-24. Decision boundary of tree with depth 1 (left) and corresponding tree (right)





[image: malp 0222c]
Figure 2-25. Decision boundary of tree with depth 2 (left) and corresponding decision tree (right)




This recursive process yields a binary tree of decisions, with each node
containing a test. Alternatively, you can think of each test as
splitting the part of the data that is currently being considered along one
axis. This yields a view of the algorithm as building a hierarchical
partition. As each test concerns only a single feature, the regions in
the resulting partition always have axis-parallel boundaries.


The recursive partitioning of the data is repeated until each region in
the partition (each leaf in the decision tree) only contains a single
target value (a single class or a single regression value). A leaf of
the tree that contains data points that all share the same target value
is called pure. The final partitioning for this dataset is shown in Figure 2-26.



[image: malp 0222d]
Figure 2-26. Decision boundary of tree with depth 9 (left) and part of the corresponding tree (right); the full tree is quite large and hard to visualize




A prediction on a new data point is made by checking which region of the
partition of the feature space the point lies in, and then predicting
the majority target (or the single target in the case of pure leaves) in
that region. The region can be found by traversing the tree from the
root and going left or right, depending on whether the test is fulfilled
or not.


It is also possible to use trees for regression tasks, using exactly the
same technique. To make a prediction, we traverse the tree based on the
tests in each node and find the leaf the new data point falls into. The
output for this data point is the mean target of the training points in
this leaf.

















Controlling complexity of decision trees


Typically, building a tree as described here and continuing until all
leaves are pure leads to models that are very complex and highly overfit
to the training data. The presence of pure leaves mean that a tree is
100% accurate on the training set; each data point in the training set
is in a leaf that has the correct majority class. The overfitting can be
seen on the left of Figure 2-26. You can see the regions determined to belong to class 1
in the middle of all the points belonging to class 0. On the other hand,
there is a small strip predicted as class 0 around the point belonging
to class 0 to the very right. This is not how one would imagine the
decision boundary to look, and the decision boundary focuses a lot on
single outlier points that are far away from the other points in that
class.


There are two common strategies to prevent overfitting: stopping the
creation of the tree early (also called pre-pruning), or building the
tree but then removing or collapsing nodes that contain little
information (also called post-pruning or just pruning). Possible
criteria for pre-pruning include limiting the maximum depth of the tree,
limiting the maximum number of leaves, or requiring a minimum number of
points in a node to keep splitting it.


Decision trees in scikit-learn are implemented in the
DecisionTreeRegressor and DecisionTreeClassifier classes.
scikit-learn only implements pre-pruning, not post-pruning.


Let’s look at the effect of pre-pruning in more detail on the Breast
Cancer dataset. As always, we import the dataset and split it into a
training and a test part. Then we build a model using the default setting
of fully developing the tree (growing the tree until all leaves are
pure). We fix the random_state in the tree, which is used for
tie-breaking internally:


In[58]:


from sklearn.tree import DecisionTreeClassifier

cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=42)
tree = DecisionTreeClassifier(random_state=0)
tree.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))


Out[58]:


Accuracy on training set: 1.000
Accuracy on test set: 0.937


As expected, the accuracy on the training set is 100%—because the leaves are
pure, the tree was grown deep enough that it could perfectly
memorize all the labels on the training data. The test set accuracy is
slightly worse than for the linear models we looked at previously, which had around 95%
accuracy.


If we don’t restrict the depth of a decision tree, the tree
can become arbitrarily deep and complex. Unpruned trees are therefore
prone to overfitting and not generalizing well to new data. Now let’s
apply pre-pruning to the tree, which will stop developing the tree
before we perfectly fit to the training data. One option is to
stop building the tree after a certain depth has been reached. Here we
set max_depth=4, meaning only four consecutive questions can be asked
(cf. Figures 2-24 and
2-26). Limiting the depth of the tree decreases overfitting. This leads to a
lower accuracy on the training set, but an improvement on the test set:


In[59]:


tree = DecisionTreeClassifier(max_depth=4, random_state=0)
tree.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))


Out[59]:


Accuracy on training set: 0.988
Accuracy on test set: 0.951

















Analyzing decision trees


We can visualize the tree using the export_graphviz function from the
tree module. This writes a file in the .dot file format, which is a
text file format for storing graphs. We set an option to color the nodes
to reflect the majority class in each node and pass the class and
features names so the tree can be properly labeled:


In[61]:


from sklearn.tree import export_graphviz
export_graphviz(tree, out_file="tree.dot", class_names=["malignant", "benign"],
                feature_names=cancer.feature_names, impurity=False, filled=True)


We can read this file and visualize it, as seen in Figure 2-27, using the graphviz module (or you
can use any program that can read .dot files):


In[61]:


import graphviz

with open("tree.dot") as f:
    dot_graph = f.read()
graphviz.Source(dot_graph)



[image: svg]
Figure 2-27. Visualization of the decision tree built on the Breast Cancer dataset




The visualization of the tree provides a great in-depth view of how the
algorithm makes predictions, and is a good example of a machine learning
algorithm that is easily explained to nonexperts. However, even with a
tree of depth four, as seen here, the tree can become a bit
overwhelming. Deeper trees (a depth of 10 is not uncommon) are even harder
to grasp. One method of inspecting the tree that may be helpful is to
find out which path most of the data actually takes. The n_samples
shown in each node in Figure 2-27 gives the number of samples in that
node, while value provides the number of samples per class. Following
the branches to the right, we see that worst radius <= 16.795 creates
a node that contains only 8 benign but 134 malignant samples. The rest
of this side of the tree then uses some finer distinctions to split off
these 8 remaining benign samples. Of the 142 samples that went to the
right in the initial split, nearly all of them (132) end up in the leaf
to the very right.


Taking a left at the root, for worst radius > 16.795 we end up with
25 malignant and 259 benign samples. Nearly all of the benign samples
end up in the second leaf from the right, with most of the other leaves containing very few samples.

















Feature importance in trees


Instead of looking at the whole tree, which can be taxing, there are
some useful properties that we can derive to summarize the workings of
the tree. The most commonly used summary is feature importance, which
rates how important each feature is for the decision a tree makes. It is
a number between 0 and 1 for each feature, where 0 means “not used at
all” and 1 means “perfectly predicts the target.” The feature
importances always sum to 1:


In[62]:


print("Feature importances:\n{}".format(tree.feature_importances_))


Out[62]:


Feature importances:
[ 0.     0.     0.     0.     0.     0.     0.     0.     0.     0.     0.01
  0.048  0.     0.     0.002  0.     0.     0.     0.     0.     0.727  0.046
  0.     0.     0.014  0.     0.018  0.122  0.012  0.   ]


We can visualize the feature importances in a way that is similar to the
way we visualize the coefficients in the linear model (Figure 2-28):


In[63]:


def plot_feature_importances_cancer(model):
    n_features = cancer.data.shape[1]
    plt.barh(range(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), cancer.feature_names)
    plt.xlabel("Feature importance")
    plt.ylabel("Feature")

plot_feature_importances_cancer(tree)
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Figure 2-28. Feature importances computed from a decision tree learned on the Breast Cancer dataset




Here we see that the feature used in the top split (“worst radius”) is
by far the most important feature. This confirms our observation in
analyzing the tree that the first level already separates the two
classes fairly well.


However, if a feature has a low feature_importance, it doesn’t mean
that this feature is uninformative. It only means that the feature was
not picked by the tree, likely because another feature encodes the same
information.


In contrast to the coefficients in linear models, feature importances
are always positive, and don’t encode which class a feature is
indicative of. The feature importances tell us that “worst radius” is
important, but not whether a high radius is indicative
of a sample being benign or malignant. In fact, there might not be
such a simple relationship between features and class, as you can see in the following example (Figures 2-29 and 2-30):


In[64]:


tree = mglearn.plots.plot_tree_not_monotone()
display(tree)


Out[64]:


Feature importances: [ 0.  1.]



[image: malp 0225]
Figure 2-29. A two-dimensional dataset in which the feature on the y-axis has a nonmonotonous relationship with the class label, and the decision boundaries found by a decision tree





[image: malp 0224]
Figure 2-30. Decision tree learned on the data shown in Figure 2-29




The plot shows a dataset with two features and two classes. Here, all
the information is contained in X[1], and X[0] is not used at all.
But the relation between X[1] and the output class is not monotonous,
meaning we cannot say “a high value of X[0] means class 0, and a low
value means class 1” (or vice versa).


While we focused our discussion here on decision trees for
classification, all that was said is similarly true for decision trees
for regression, as implemented in DecisionTreeRegressor. The usage and analysis of regression trees is very similar to that of classification
trees. There is one particular property of using tree-based models for
regression that we want to point out, though. The
DecisionTreeRegressor (and all other tree-based regression models) is
not able to extrapolate, or make predictions outside of the
range of the training data.


Let’s look into this in more detail, using a dataset of historical computer
memory (RAM) prices. Figure 2-31 shows the dataset, with the date
on the x-axis and the price of one megabyte of RAM in that year on the
y-axis:


In[65]:


import pandas as pd
ram_prices = pd.read_csv("data/ram_price.csv")

plt.semilogy(ram_prices.date, ram_prices.price)
plt.xlabel("Year")
plt.ylabel("Price in $/Mbyte")



[image: malp 0226]
Figure 2-31. Historical development of the price of RAM, plotted on a log scale




Note the logarithmic scale of the y-axis. When plotting
logarithmically, the relation seems to be quite linear and so should be
relatively easy to predict, apart from some bumps.


We will make a forecast for the years after 2000 using the historical
data up to that point, with the date as our only feature. We will
compare two simple models: a DecisionTreeRegressor and
LinearRegression. We rescale the prices using a logarithm, so that the
relationship is relatively linear. This doesn’t make a difference for
the DecisionTreeRegressor, but it makes a big difference for
LinearRegression (we will discuss this in more depth in Chapter 4).
After training the models and making predictions, we apply the
exponential map to undo the logarithm transform. We make predictions on
the whole dataset for visualization purposes here, but for a quantitative
evaluation we would only consider the test dataset:


In[66]:


from sklearn.tree import DecisionTreeRegressor
# use historical data to forecast prices after the year 2000
data_train = ram_prices[ram_prices.date < 2000]
data_test = ram_prices[ram_prices.date >= 2000]

# predict prices based on date
X_train = data_train.date[:, np.newaxis]
# we use a log-transform to get a simpler relationship of data to target
y_train = np.log(data_train.price)

tree = DecisionTreeRegressor().fit(X_train, y_train)
linear_reg = LinearRegression().fit(X_train, y_train)

# predict on all data
X_all = ram_prices.date[:, np.newaxis]

pred_tree = tree.predict(X_all)
pred_lr = linear_reg.predict(X_all)

# undo log-transform
price_tree = np.exp(pred_tree)
price_lr = np.exp(pred_lr)


Figure 2-32, created here, compares the predictions of the decision
tree and the linear regression model with the ground truth:


In[67]:


plt.semilogy(data_train.date, data_train.price, label="Training data")
plt.semilogy(data_test.date, data_test.price, label="Test data")
plt.semilogy(ram_prices.date, price_tree, label="Tree prediction")
plt.semilogy(ram_prices.date, price_lr, label="Linear prediction")
plt.legend()
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Figure 2-32. Comparison of predictions made by a linear model and predictions made by a regression tree on the RAM price data




The
difference between the models is quite striking. The linear model approximates the data with a line, as we knew it would.
This line provides quite a good forecast for the test data (the years
after 2000), while glossing over some of the finer variations in both
the training and the test data. The tree model, on the other hand, makes
perfect predictions on the training data; we did not restrict the complexity
of the tree, so it learned the whole dataset by heart. However, once we
leave the data range for which the model has data, the model simply
keeps predicting the last known point. The tree has no ability to
generate “new” responses, outside of what was seen in the training data.
This shortcoming applies to all models based on trees.9

















Strengths, weaknesses, and parameters


As discussed earlier, the parameters that control model complexity in
decision trees are the pre-pruning parameters that stop the building of
the tree before it is fully developed. Usually, picking one of the
pre-pruning strategies—setting either max_depth, max_leaf_nodes, or
min_samples_leaf—is sufficient to prevent overfitting.


Decision trees have two advantages over many of the algorithms we’ve
discussed so far: the resulting model can easily be visualized and
understood by nonexperts (at least for smaller trees), and the
algorithms are completely invariant to scaling of the data. As each
feature is processed separately, and the possible splits of the data
don’t depend on scaling, no preprocessing like normalization or
standardization of features is needed for decision tree algorithms. In
particular, decision trees work well when you have features that are on
completely different scales, or a mix of binary and continuous features.


The main downside of decision trees is that even with the use of
pre-pruning, they tend to overfit and provide poor
generalization performance. Therefore, in most applications, the
ensemble methods we discuss next are usually used in place of a single
decision tree.






















Ensembles of Decision Trees


Ensembles are methods that combine multiple machine learning models to
create more powerful models. There are many models in the machine
learning literature that belong to this category, but there are two
ensemble models that have proven to be effective on a wide range of
datasets for classification and regression, both of which use decision
trees as their building blocks: random forests and gradient boosted
decision trees.












Random forests


As we just observed, a main drawback of decision trees is that they tend
to overfit the training data. Random forests are one way to address this
problem. A random forest is essentially a collection of decision trees,
where each tree is slightly different from the others. The idea behind
random forests is that each tree might do a relatively good job of
predicting, but will likely overfit on part of the data. If we build
many trees, all of which work well and overfit in different ways, we can
reduce the amount of overfitting by averaging their results. This
reduction in overfitting, while retaining the predictive power of the
trees, can be shown using rigorous mathematics.


To implement this strategy, we need to build many decision trees. Each
tree should do an acceptable job of predicting the target, and should
also be different from the other trees. Random forests get their name
from injecting randomness into the tree building to ensure each tree is
different. There are two ways in which the trees in a random forest are
randomized: by selecting the data points used to build a tree and by
selecting the features in each split test. Let’s go into this process in
more detail.














Building random forests


To build a random forest model, you need to decide on the number of
trees to build (the n_estimators parameter of RandomForestRegressor
or RandomForestClassifier). Let’s say we want to build 10 trees. These
trees will be built completely independently from each other, and the
algorithm will make different random choices for each tree to make sure
the trees are distinct. To build a tree, we first take what is called a
bootstrap sample of our data. That is, from our
n_samples data points, we repeatedly draw an example randomly with
replacement (meaning the same sample can be picked multiple times),
n_samples times. This will create a dataset that is as big as the
original dataset, but some data points will be missing from it
(approximately one third), and some will be repeated.


To illustrate, let’s say we want to create a bootstrap sample of the list
['a', 'b', 'c', 'd']. A possible bootstrap sample would be
['b', 'd', 'd', 'c']. Another possible sample would be
['d', 'a', 'd', 'a'].


Next, a decision tree is built based on this newly created dataset.
However, the algorithm we described for the decision tree is slightly
modified. Instead of looking for the best test for each node, in each
node the algorithm randomly selects a subset of the features, and it looks
for the best possible test involving one of these features. The number
of features that are selected is controlled by the max_features
parameter. This selection of a subset of features is repeated separately
in each node, so that each node in a tree can make a decision using a
different subset of the features.


The bootstrap sampling leads to each decision tree in the random forest
being built on a slightly different dataset. Because of the selection of
features in each node, each split in each tree operates on a different
subset of features. Together, these two mechanisms ensure that all the
trees in the random forest are different.


A critical parameter in this process is max_features. If we set
max_features to n_features, that means that each split can look at
all features in the dataset, and no randomness will be injected in the
feature selection (the randomness due to the bootstrapping remains,
though). If we set max_features to 1, that means that the splits
have no choice at all on which feature to test, and can only search over
different thresholds for the feature that was selected randomly.
Therefore, a high max_features means that the trees in the random
forest will be quite similar, and they will be able to fit the data
easily, using the most distinctive features. A low max_features means
that the trees in the random forest will be quite different, and that
each tree might need to be very deep in order to fit the data well.


To make a prediction using the random forest, the algorithm first makes
a prediction for every tree in the forest. For regression, we can
average these results to get our final prediction. For classification, a
“soft voting” strategy is used. This means each algorithm makes a “soft”
prediction, providing a probability for each possible output label. The
probabilities predicted by all the trees are averaged, and the class
with the highest probability is predicted.

















Analyzing random forests


Let’s apply a random forest consisting of five trees to the two_moons
dataset we studied earlier:


In[68]:


from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=100, noise=0.25, random_state=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
                                                    random_state=42)

forest = RandomForestClassifier(n_estimators=5, random_state=2)
forest.fit(X_train, y_train)


The trees that are built as part of the random forest are stored in the
estimator_ attribute. Let’s visualize the decision boundaries learned
by each tree, together with their aggregate prediction as made by the
forest (Figure 2-33):


In[69]:


fig, axes = plt.subplots(2, 3, figsize=(20, 10))
for i, (ax, tree) in enumerate(zip(axes.ravel(), forest.estimators_)):
    ax.set_title("Tree {}".format(i))
    mglearn.plots.plot_tree_partition(X_train, y_train, tree, ax=ax)

mglearn.plots.plot_2d_separator(forest, X_train, fill=True, ax=axes[-1, -1],
                                alpha=.4)
axes[-1, -1].set_title("Random Forest")
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)


You can clearly see that the decision boundaries learned by the five trees are
quite different. Each of them makes some mistakes, as some of the
training points that are plotted here were not actually included in the
training sets of the trees, due to the bootstrap sampling.


The random forest overfits less than any of the trees individually, and
provides a much more intuitive decision boundary. In any real
application, we would use many more trees (often hundreds or thousands),
leading to even smoother boundaries.



[image: malp 0228]
Figure 2-33. Decision boundaries found by five randomized decision trees and the decision boundary obtained by averaging their predicted probabilities




As another example, let’s apply a random forest consisting of 100 trees on the Breast Cancer
dataset:


In[70]:


X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)
forest = RandomForestClassifier(n_estimators=100, random_state=0)
forest.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(forest.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(forest.score(X_test, y_test)))


Out[70]:


Accuracy on training set: 1.000
Accuracy on test set: 0.972


The random forest gives us an accuracy of 97%, better than the linear
models or a single decision tree, without tuning any parameters. We
could adjust the max_features setting, or apply pre-pruning as we did
for the single decision tree. However, often the default parameters of
the random forest already work quite well.


Similarly to the decision tree, the random forest provides feature
importances, which are computed by aggregating the feature importances
over the trees in the forest. Typically, the feature importances provided
by the random forest are more reliable than the ones provided by a
single tree. Take a look at Figure 2-34.


In[71]:


plot_feature_importances_cancer(forest)



[image: malp 0229]
Figure 2-34. Feature importances computed from a random forest that was fit to the Breast Cancer dataset




As you can see, the random forest gives nonzero importance to many more
features than the single tree. Similarly to the single decision tree, the
random forest also gives a lot of importance to the “worst radius” feature, but
it actually chooses “worst perimeter” to be the most informative feature
overall. The randomness in building the random forest forces the
algorithm to consider many possible explanations, the result being that the random forest captures a much broader picture of the data
than a single tree.

















Strengths, weaknesses, and parameters


Random forests for regression and classification are currently among the
most widely used machine learning methods. They are very powerful, often
work well without heavy tuning of the parameters, and don’t require
scaling of the data.


Essentially, random forests share all of the benefits of decision trees,
while making up for some of their deficiencies. One reason to still use
decision trees is if you need a compact representation of the decision-making process. It is basically impossible to interpret tens or hundreds
of trees in detail, and trees in random forests tend to be deeper than
decision trees (because of the use of feature subsets). Therefore, if
you need to summarize the prediction making in a visual way to
nonexperts, a single decision tree might be a better choice. While
building random forests on large datasets might be somewhat
time consuming, it can be parallelized across multiple CPU cores within a
computer easily. If you are using a multi-core processor (as nearly all
modern computers do), you can use the n_jobs parameter to adjust the
number of cores to use. Using more CPU cores will result in linear
speed-ups (using two cores, the training of the random forest will be
twice as fast), but specifying n_jobs larger than the number of cores
will not help. You can set n_jobs=-1 to use all the cores in your
computer.


You should keep in mind that random forests, by their nature, are
random, and setting different random states (or not setting the
random_state at all) can drastically change the model that is built.
The more trees there are in the forest, the more robust it will be
against the choice of random state. If you want to have reproducible
results, it is important to fix the random_state.


Random forests don’t tend to perform well on very high dimensional,
sparse data, such as text data. For this kind of data, linear models
might be more appropriate. Random forests usually work well even on very
large datasets, and training can easily be parallelized over many CPU
cores within a powerful computer. However, random forests require more
memory and are slower to train and to predict than linear models. If
time and memory are important in an application, it might make sense to
use a linear model instead.


The important parameters to adjust are n_estimators, max_features,
and possibly pre-pruning options like max_depth. For n_estimators,
larger is always better. Averaging more trees will yield a more robust
ensemble by reducing overfitting. However, there are diminishing
returns, and more trees need more memory and more time to train. A
common rule of thumb is to build “as many as you have time/memory
for.”


As described earlier, max_features determines how random each tree is,
and a smaller max_features reduces overfitting. In general, it’s a good rule of thumb to use the default values: max_features=sqrt(n_features) for classification and max_features=log2(n_features) for regression. Adding max_features or max_leaf_nodes might sometimes improve performance. It can also drastically reduce space and time requirements for training and prediction.




















Gradient boosted regression trees (gradient boosting machines)


The gradient boosted regression tree is another ensemble method that
combines multiple decision trees to create a more powerful model. Despite the
“regression” in the name, these models can be used for regression and
classification. In contrast to the random forest approach, gradient boosting works
by building trees in a serial manner, where each tree tries to correct
the mistakes of the previous one. By default, there is no randomization
in gradient boosted regression trees; instead, strong pre-pruning is
used. Gradient boosted trees often use very shallow trees, of depth one
to five, which makes the model smaller in terms of memory and makes
predictions faster. The main idea behind gradient boosting is to combine
many simple models (in this context known as weak learners), like
shallow trees. Each tree can only provide good predictions on part of
the data, and so more and more trees are added to iteratively improve
performance.


Gradient boosted trees are frequently the winning entries in machine
learning competitions, and are widely used in industry. They are
generally a bit more sensitive to parameter settings than random
forests, but can provide better accuracy if the parameters are set
correctly.


Apart from the pre-pruning and the number of trees in the ensemble,
another important parameter of gradient boosting is the learning_rate,
which controls how strongly each tree tries to correct the mistakes of
the previous trees. A higher learning rate means each tree can make
stronger corrections, allowing for more complex models. Adding more trees to the ensemble, which can be accomplished by increasing
n_estimators, also increases the model complexity, as the model has
more chances to correct mistakes on the training set.


Here is an example of using GradientBoostingClassifier on the Breast
Cancer dataset. By default, 100 trees of maximum depth 3 and a learning rate of 0.1 are used:


In[72]:


from sklearn.ensemble import GradientBoostingClassifier

X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)

gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))


Out[72]:


Accuracy on training set: 1.000
Accuracy on test set: 0.958


As the training set accuracy is 100%, we are likely to be overfitting.
To reduce overfitting, we could either apply stronger pre-pruning by
limiting the maximum depth or lower the learning rate:


In[73]:


gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))


Out[73]:


Accuracy on training set: 0.991
Accuracy on test set: 0.972


In[74]:


gbrt = GradientBoostingClassifier(random_state=0, learning_rate=0.01)
gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))


Out[74]:


Accuracy on training set: 0.988
Accuracy on test set: 0.965


Both methods of decreasing the model complexity reduced the training
set accuracy, as expected. In this case, lowering the maximum depth of
the trees provided a significant improvement of the model, while
lowering the learning rate only increased the generalization performance
slightly.


As for the other decision tree–based models, we can again visualize the
feature importances to get more insight into our model (Figure 2-35). As we used 100
trees, it is impractical to inspect them all, even if they are all of
depth 1:


In[75]:


gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)

plot_feature_importances_cancer(gbrt)
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Figure 2-35. Feature importances computed from a gradient boosting classifier that was fit to the Breast Cancer dataset




We can see that the feature importances of the gradient boosted trees
are somewhat similar to the feature importances of the random forests,
though the gradient boosting completely ignored some of the features.


As both gradient boosting and random forests perform well on similar kinds of
data, a common approach is to first try random forests, which work quite
robustly. If random forests work well but prediction time is at a
premium, or it is important to squeeze out the last percentage of
accuracy from the machine learning model, moving to gradient boosting
often helps.


If you want to apply gradient boosting to a large-scale problem, it
might be worth looking into the xgboost package and its Python
interface, which at the time of writing is faster (and sometimes easier
to tune) than the scikit-learn implementation of gradient boosting on
many datasets.














Strengths, weaknesses, and parameters


Gradient boosted decision trees are among the most powerful and widely
used models for supervised learning. Their main drawback is that they
require careful tuning of the parameters and may take a long time to
train. Similarly to other tree-based models, the algorithm works well
without scaling and on a mixture of binary and continuous features. As
with other tree-based models, it also often does not work well on
high-dimensional sparse data.


The main parameters of gradient boosted tree models are the number
of trees, n_estimators, and the learning_rate, which controls the degree to which each tree is allowed to correct the mistakes of the previous trees.
These two parameters are highly interconnected, as a lower
learning_rate means that more trees are needed to build a model of
similar complexity. In contrast to random forests, where a higher
n_estimators value is always better, increasing n_estimators in gradient
boosting leads to a more complex model, which may lead to overfitting. A
common practice is to fit n_estimators depending on the time and
memory budget, and then search over different learning_rates.


Another important parameter is max_depth (or alternatively
max_leaf_nodes), to reduce the complexity of each tree. Usually
max_depth is set very low for gradient boosted models, often not
deeper than five splits.

























Kernelized Support Vector Machines


The next type of supervised model we will discuss is kernelized support
vector machines. We explored the use of linear support vector machines
for classification in “Linear models for classification”. Kernelized support
vector machines (often just referred to as SVMs) are an extension that
allows for more complex models that are not defined simply by
hyperplanes in the input space. While there are support vector machines
for classification and regression, we will restrict ourselves to the
classification case, as implemented in SVC. Similar concepts apply to
support vector regression, as implemented in SVR.


The math behind kernelized support vector machines is a bit involved,
and is beyond the scope of this book. You can find the details in
Chapter 1 of Hastie, Tibshirani, and Friedman’s The Elements of Statistical Learning. However, we will try to
give you some sense of the idea behind the method.












Linear models and nonlinear features


As you saw in Figure 2-15,
linear models can be quite limiting in low-dimensional spaces, as lines
and hyperplanes have limited flexibility. One way to make a linear model
more flexible is by adding more features—for example, by adding
interactions or polynomials of the input features.


Let’s look at the synthetic dataset we used in “Feature importance in trees” (see Figure 2-29):


In[76]:


X, y = make_blobs(centers=4, random_state=8)
y = y % 2

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")



[image: malp 0231]
Figure 2-36. Two-class classification dataset in which classes are not linearly separable




A linear model for classification can only separate points using a line,
and will not be able to do a very good job on this dataset (see Figure 2-37):


In[77]:


from sklearn.svm import LinearSVC
linear_svm = LinearSVC().fit(X, y)

mglearn.plots.plot_2d_separator(linear_svm, X)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")


Now let’s expand the set of input features, say by also adding
feature1 ** 2, the square of the second feature, as a new feature.
Instead of representing each data point as a two-dimensional point,
(feature0, feature1), we now represent it as a three-dimensional point, (feature0, feature1, feature1 ** 2).10 This new representation is illustrated in Figure 2-38 in
a three-dimensional scatter plot:
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Figure 2-37. Decision boundary found by a linear SVM




In[78]:


# add the squared first feature
X_new = np.hstack([X, X[:, 1:] ** 2])

from mpl_toolkits.mplot3d import Axes3D, axes3d
figure = plt.figure()
# visualize in 3D
ax = Axes3D(figure, elev=-152, azim=-26)
# plot first all the points with y == 0, then all with y == 1
mask = y == 0
ax.scatter(X_new[mask, 0], X_new[mask, 1], X_new[mask, 2], c='b',
           cmap=mglearn.cm2, s=60)
ax.scatter(X_new[~mask, 0], X_new[~mask, 1], X_new[~mask, 2], c='r', marker='^',
           cmap=mglearn.cm2, s=60)
ax.set_xlabel("feature0")
ax.set_ylabel("feature1")
ax.set_zlabel("feature1 ** 2")



[image: malp 0233]
Figure 2-38. Expansion of the dataset shown in Figure 2-37, created by adding a third feature derived from feature1




In the new representation of the data, it is now
indeed possible to separate the two classes using a linear model, a
plane in three dimensions. We can confirm this by fitting a linear model
to the augmented data (see Figure 2-39):


In[79]:


linear_svm_3d = LinearSVC().fit(X_new, y)
coef, intercept = linear_svm_3d.coef_.ravel(), linear_svm_3d.intercept_

# show linear decision boundary
figure = plt.figure()
ax = Axes3D(figure, elev=-152, azim=-26)
xx = np.linspace(X_new[:, 0].min() - 2, X_new[:, 0].max() + 2, 50)
yy = np.linspace(X_new[:, 1].min() - 2, X_new[:, 1].max() + 2, 50)

XX, YY = np.meshgrid(xx, yy)
ZZ = (coef[0] * XX + coef[1] * YY + intercept) / -coef[2]
ax.plot_surface(XX, YY, ZZ, rstride=8, cstride=8, alpha=0.3)
ax.scatter(X_new[mask, 0], X_new[mask, 1], X_new[mask, 2], c='b',
           cmap=mglearn.cm2, s=60)
ax.scatter(X_new[~mask, 0], X_new[~mask, 1], X_new[~mask, 2], c='r', marker='^',
           cmap=mglearn.cm2, s=60)

ax.set_xlabel("feature0")
ax.set_ylabel("feature1")
ax.set_zlabel("feature0 ** 2")



[image: malp 0234]
Figure 2-39. Decision boundary found by a linear SVM on the expanded three-dimensional dataset




As a function of the original features, the linear SVM model is not
actually linear anymore. It is not a line, but more of an ellipse, as you can see from the plot created here (Figure 2-40):


In[80]:


ZZ = YY ** 2
dec = linear_svm_3d.decision_function(np.c_[XX.ravel(), YY.ravel(), ZZ.ravel()])
plt.contourf(XX, YY, dec.reshape(XX.shape), levels=[dec.min(), 0, dec.max()],
             cmap=mglearn.cm2, alpha=0.5)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 2-40. The decision boundary from Figure 2-39 as a function of the original two features



















The kernel trick


The lesson here is that adding nonlinear features to the representation
of our data can make linear models much more powerful. However, often we
don’t know which features to add, and adding many features (like all
possible interactions in a 100-dimensional feature space) might make
computation very expensive. Luckily, there is a clever mathematical
trick that allows us to learn a classifier in a higher-dimensional space
without actually computing the new, possibly very large representation.
This is known as the kernel trick, and it works by directly
computing the distance (more precisely, the scalar products) of the data
points for the expanded feature representation, without ever actually
computing the expansion.


There are two ways to map your data into a higher-dimensional space that
are commonly used with support vector machines: the polynomial kernel,
which computes all possible polynomials up to a certain degree of the
original features (like feature1 ** 2 * feature2 ** 5); and the radial
basis function (RBF) kernel, also known as the Gaussian kernel. The Gaussian
kernel is a bit harder to explain, as it corresponds to an infinite-dimensional feature space. One way to explain the Gaussian kernel is
that it considers all possible polynomials of all degrees, but the
importance of the features decreases for higher degrees.11


In practice, the mathematical details behind the kernel SVM are not that
important, though, and how an SVM with an RBF kernel makes a decision can
be summarized quite easily—we’ll do so in the next section.

















Understanding SVMs


During training, the SVM learns how important each of the training data
points is to represent the decision boundary between the two classes.
Typically only a subset of the training points matter for defining the
decision boundary: the ones that lie on the border between the classes.
These are called support vectors and give the support vector machine
its name.


To make a prediction for a new point, the distance to each of the support
vectors is measured. A classification decision is made based on the
distances to the support vector, and the importance of the support
vectors that was learned during training (stored in the dual_coef_
attribute of SVC).


The distance between data points is measured by the Gaussian kernel:


  	krbf(x1, x2) = exp (ɣǁx1 - x2ǁ2)




Here, x1 and x2 are data points,
ǁ x1 - x2 ǁ denotes Euclidean distance, and
ɣ (gamma) is a parameter that controls the width of the
Gaussian kernel.


Figure 2-41 shows the result of training a support vector machine on a
two-dimensional two-class dataset. The decision boundary is shown in
black, and the support vectors are larger points with the wide outline. The following code creates this plot by training an SVM on the forge dataset:


In[81]:


from sklearn.svm import SVC
X, y = mglearn.tools.make_handcrafted_dataset()
svm = SVC(kernel='rbf', C=10, gamma=0.1).fit(X, y)
mglearn.plots.plot_2d_separator(svm, X, eps=.5)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
# plot support vectors
sv = svm.support_vectors_
# class labels of support vectors are given by the sign of the dual coefficients
sv_labels = svm.dual_coef_.ravel() > 0
mglearn.discrete_scatter(sv[:, 0], sv[:, 1], sv_labels, s=15, markeredgewidth=3)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 2-41. Decision boundary and support vectors found by an SVM with RBF kernel




In this case, the SVM yields a very smooth and nonlinear (not a
straight line) boundary. We adjusted two parameters here: the
C parameter and the gamma parameter, which we will now discuss in
detail.

















Tuning SVM parameters


The gamma parameter is the one shown in the formula given in the previous section, which controls
the width of the Gaussian kernel. It determines the scale of what it
means for points to be close together. The C parameter is a
regularization parameter, similar to that used in the linear models. It limits the
importance of each point (or more precisely, their dual_coef_).


Let’s have a look at what happens when we vary these parameters (Figure 2-42):


In[82]:


fig, axes = plt.subplots(3, 3, figsize=(15, 10))

for ax, C in zip(axes, [-1, 0, 3]):
    for a, gamma in zip(ax, range(-1, 2)):
        mglearn.plots.plot_svm(log_C=C, log_gamma=gamma, ax=a)

axes[0, 0].legend(["class 0", "class 1", "sv class 0", "sv class 1"],
                  ncol=4, loc=(.9, 1.2))
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Figure 2-42. Decision boundaries and support vectors for different settings of the parameters C and gamma




Going from left to right, we increase the value of the parameter gamma from 0.1 to
10. A small gamma means a large radius for the Gaussian kernel, which
means that many points are considered close by. This is reflected in
very smooth decision boundaries on the left, and boundaries that focus
more on single points further to the right. A low value of gamma means
that the decision boundary will vary slowly, which yields a model of low
complexity, while a high value of gamma yields a more complex model.


Going from top to bottom, we increase the C parameter from 0.1 to
1000. As with the linear models, a small C means a very restricted
model, where each data point can only have very limited influence. You
can see that at the top left the decision boundary looks nearly linear,
with the misclassified points barely having any influence on the line. Increasing C, as shown on the bottom right, allows these
points to have a stronger influence on the model and makes the decision
boundary bend to correctly classify them.


Let’s apply the RBF kernel SVM to the Breast Cancer dataset. By default,
C=1 and gamma=1/n_features:


In[83]:


X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)

svc = SVC()
svc.fit(X_train, y_train)

print("Accuracy on training set: {:.2f}".format(svc.score(X_train, y_train)))
print("Accuracy on test set: {:.2f}".format(svc.score(X_test, y_test)))


Out[83]:


Accuracy on training set: 1.00
Accuracy on test set: 0.63


The model overfits quite substantially, with a perfect score on the
training set and only 63% accuracy on the test set. While SVMs often
perform quite well, they are very sensitive to the settings of the
parameters and to the scaling of the data. In particular, they require
all the features to vary on a similar scale. Let’s look at the minimum
and maximum values for each feature, plotted in log-space (Figure 2-43):


In[84]:


plt.plot(X_train.min(axis=0), 'o', label="min")
plt.plot(X_train.max(axis=0), '^', label="max")
plt.legend(loc=4)
plt.xlabel("Feature index")
plt.ylabel("Feature magnitude")
plt.yscale("log")


From this plot we can determine that features in the Breast Cancer
dataset are of completely different orders of magnitude. This can be
somewhat of a problem for other models (like linear models), but it has
devastating effects for the kernel SVM. Let’s examine some ways to deal
with this issue.
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Figure 2-43. Feature ranges for the Breast Cancer dataset (note that the y axis has a logarithmic scale)



















Preprocessing data for SVMs


One way to resolve this problem is by rescaling each feature so that
they are all approximately on the same scale. A common rescaling method for
kernel SVMs is to scale the data such that all features are between 0
and 1. We will see how to do this using the MinMaxScaler
preprocessing method in Chapter 3, where we’ll
give more details. For now, let’s do this “by hand”:


In[85]:


# compute the minimum value per feature on the training set
min_on_training = X_train.min(axis=0)
# compute the range of each feature (max - min) on the training set
range_on_training = (X_train - min_on_training).max(axis=0)

# subtract the min, and divide by range
# afterward, min=0 and max=1 for each feature
X_train_scaled = (X_train - min_on_training) / range_on_training
print("Minimum for each feature\n{}".format(X_train_scaled.min(axis=0)))
print("Maximum for each feature\n {}".format(X_train_scaled.max(axis=0)))


Out[85]:


Minimum for each feature
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
Maximum for each feature
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]


In[86]:


# use THE SAME transformation on the test set,
# using min and range of the training set (see Chapter 3 for details)
X_test_scaled = (X_test - min_on_training) / range_on_training


In[87]:


svc = SVC()
svc.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    svc.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(svc.score(X_test_scaled, y_test)))


Out[87]:


Accuracy on training set: 0.948
Accuracy on test set: 0.951


Scaling the data made a huge difference! Now we are actually in an
underfitting regime, where training and test set performance are quite
similar but less close to 100% accuracy. From here, we can try
increasing either C or gamma to fit a more complex model. For example:


In[88]:


svc = SVC(C=1000)
svc.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    svc.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(svc.score(X_test_scaled, y_test)))


Out[88]:


Accuracy on training set: 0.988
Accuracy on test set: 0.972


Here, increasing C allows us to improve the model significantly,
resulting in 97.2% accuracy.

















Strengths, weaknesses, and parameters


Kernelized support vector machines are powerful models and perform well
on a variety of datasets. SVMs allow for complex decision boundaries,
even if the data has only a few features. They work well on
low-dimensional and high-dimensional data (i.e., few and many features),
but don’t scale very well with the number of samples. Running an SVM on data
with up to 10,000 samples might work well, but working with datasets of
size 100,000 or more can become challenging in terms of runtime and
memory usage.


Another downside of SVMs is that they require careful preprocessing of
the data and tuning of the parameters. This is why, these days, most
people instead use tree-based models such as random forests or gradient
boosting (which require little or no preprocessing) in many applications.
Furthermore, SVM models are hard to inspect; it can be difficult to
understand why a particular prediction was made, and it might be tricky
to explain the model to a nonexpert.


Still, it might be worth trying SVMs, particularly if all of your
features represent measurements in similar units (e.g., all are pixel
intensities) and they are on similar scales.


The important parameters in kernel SVMs are the regularization parameter
C, the choice of the kernel, and the kernel-specific parameters. Although we primarily focused on the RBF kernel, other choices are
available in scikit-learn. The RBF kernel has only one parameter,
gamma, which is the inverse of the width of the Gaussian kernel.
gamma and C both control the complexity of the model, with large
values in either resulting in a more complex model. Therefore, good
settings for the two parameters are usually strongly correlated, and C
and gamma should be adjusted together.






















Neural Networks (Deep Learning)


A family of algorithms known as neural networks has recently seen a
revival under the name “deep learning.” While deep learning shows great
promise in many machine learning applications, deep learning
algorithms are often tailored very carefully to a specific use case. Here, we
will only discuss some relatively simple methods, namely multilayer
perceptrons for classification and regression, that can serve as a
starting point for more involved deep learning methods. Multilayer
perceptrons (MLPs) are also known as (vanilla) feed-forward neural
networks, or sometimes just neural networks.












The neural network model


MLPs can be viewed as generalizations of linear models that perform
multiple stages of processing to come to a decision.


Remember that the prediction by a linear regressor is given as:


  	ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b




In plain English, ŷ is a weighted sum of the input features x[0] to x[p],
weighted by the learned coefficients w[0] to w[p]. We could
visualize this graphically as shown in Figure 2-44:


In[89]:


display(mglearn.plots.plot_logistic_regression_graph())



[image: svg]
Figure 2-44. Visualization of logistic regression, where input features and predictions are shown as nodes, and the coefficients are connections between the nodes




Here, each node on the left represents an input feature, the connecting
lines represent the learned coefficients, and the node on the right
represents the output, which is a weighted sum of the inputs.


In an MLP this process of computing weighted sums is repeated multiple
times, first computing hidden units that represent an intermediate
processing step, which are again combined using weighted sums to yield
the final result (Figure 2-45):


In[90]:


display(mglearn.plots.plot_single_hidden_layer_graph())



[image: svg]
Figure 2-45. Illustration of a multilayer perceptron with a single hidden layer




This model has a lot more coefficients (also called weights) to learn:
there is one between every input and every hidden unit (which make up
the hidden layer), and one between every unit in the hidden layer and
the output.


Computing a series of weighted sums is mathematically the same as
computing just one weighted sum, so to make this model truly more
powerful than a linear model, we need one extra trick. After
computing a weighted sum for each hidden unit, a nonlinear function is
applied to the result—usually the rectifying nonlinearity (also known
as rectified linear unit or relu) or the tangens hyperbolicus (tanh).
The result of this function is then used in the weighted sum that
computes the output, ŷ. The two functions are visualized in Figure 2-46. The relu cuts off values below zero, while tanh
saturates to –1 for low input values and +1 for high input values.
Either nonlinear function allows the neural network to learn much more
complicated functions than a linear model could:


In[91]:


line = np.linspace(-3, 3, 100)
plt.plot(line, np.tanh(line), label="tanh")
plt.plot(line, np.maximum(line, 0), label="relu")
plt.legend(loc="best")
plt.xlabel("x")
plt.ylabel("relu(x), tanh(x)")



[image: malp 0240]
Figure 2-46. The  hyperbolic tangent activation function and the rectified linear activation function




For the small neural network pictured in Figure 2-45, the full formula for computing ŷ in the case of regression would
be (when using a tanh nonlinearity):


  	h[0] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])

  	h[1] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])

  	h[2] = tanh(w[0, 0] * x[0] + w[1, 0] * x[1] + w[2, 0] * x[2] + w[3, 0] * x[3])

  	ŷ = v[0] * h[0] + v[1] * h[1] + v[2] * h[2]




Here, w are the weights between the input x and the hidden layer
h, and v are the weights between the hidden layer h and the output
ŷ. The weights v and w are learned from data, x are the input
features, ŷ is the computed output, and h are intermediate
computations.

An important parameter that needs to be set by the user is the number of
nodes in the hidden layer. This can be as small as 10 for very small or
simple datasets and as big as 10,000 for very complex data. It is
also possible to add additional hidden layers, as shown in
Figure 2-47:


In[92]:


mglearn.plots.plot_two_hidden_layer_graph()



[image: svg]
Figure 2-47. A multilayer perceptron with two hidden layers




Having large neural networks made up of many of
these layers of computation is what inspired the term “deep learning.”

















Tuning neural networks


Let’s look into the workings of the MLP by applying the MLPClassifier
to the two_moons dataset we used earlier in this chapter. The results are shown in Figure 2-48:


In[93]:


from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=100, noise=0.25, random_state=3)

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
                                                    random_state=42)

mlp = MLPClassifier(algorithm='l-bfgs', random_state=0).fit(X_train, y_train)
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")



[image: malp 0242]
Figure 2-48. Decision boundary learned by a neural network with 100 hidden units on the two_moons dataset




As you can see, the neural network learned a very nonlinear but
relatively smooth decision boundary. We used algorithm='l-bfgs', which
we will discuss later.


By default, the MLP uses 100 hidden nodes, which is quite a lot for this
small dataset. We can reduce the number (which reduces the complexity of
the model) and still get a good result (Figure 2-49):


In[94]:


mlp = MLPClassifier(algorithm='l-bfgs', random_state=0, hidden_layer_sizes=[10])
mlp.fit(X_train, y_train)
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")



[image: malp 0243]
Figure 2-49. Decision boundary learned by a neural network with 10 hidden units on the two_moons dataset




With only 10 hidden units, the decision boundary looks somewhat more
ragged. The default nonlinearity is relu, shown in
Figure 2-46. With a single hidden layer, this means the decision
function will be made up of 10 straight line segments. If we want a
smoother decision boundary, we could add more hidden units (as in
Figure 2-49), add a second hidden layer (Figure 2-50), or use the tanh
nonlinearity (Figure 2-51):


In[95]:


# using two hidden layers, with 10 units each
mlp = MLPClassifier(algorithm='l-bfgs', random_state=0,
                    hidden_layer_sizes=[10, 10])
mlp.fit(X_train, y_train)
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")


In[96]:


# using two hidden layers, with 10 units each, now with tanh nonlinearity
mlp = MLPClassifier(algorithm='l-bfgs', activation='tanh',
                    random_state=0, hidden_layer_sizes=[10, 10])
mlp.fit(X_train, y_train)
mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")



[image: malp 0244]
Figure 2-50. Decision boundary learned using 2 hidden layers with 10 hidden units each, with rect activation function





[image: malp 0245]
Figure 2-51. Decision boundary learned using 2 hidden layers with 10 hidden units each, with tanh activation function




Finally, we can also control the complexity of a neural network by using
an l2 penalty to shrink the weights toward zero, as we did in ridge
regression and the linear classifiers. The parameter for this in the
MLPClassifier is alpha (as in the linear regression models), and it’s
set to a very low value (little regularization) by default. Figure 2-52 shows the
effect of different values of alpha on the two_moons dataset, using
two hidden layers of 10 or 100 units each:


In[97]:


fig, axes = plt.subplots(2, 4, figsize=(20, 8))
for axx, n_hidden_nodes in zip(axes, [10, 100]):
    for ax, alpha in zip(axx, [0.0001, 0.01, 0.1, 1]):
        mlp = MLPClassifier(algorithm='l-bfgs', random_state=0,
                            hidden_layer_sizes=[n_hidden_nodes, n_hidden_nodes],
                            alpha=alpha)
        mlp.fit(X_train, y_train)
        mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3, ax=ax)
        mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, ax=ax)
        ax.set_title("n_hidden=[{}, {}]\nalpha={:.4f}".format(
                      n_hidden_nodes, n_hidden_nodes, alpha))



[image: malp 0246]
Figure 2-52. Decision functions for different numbers of hidden units and different settings of the alpha parameter




As you probably have realized by now, there are many ways to control the
complexity of a neural network: the number of hidden layers, the number
of units in each hidden layer, and the regularization (alpha). There are
actually even more, which we won’t go into here.


An important property of neural networks is that their weights are set
randomly before learning is started, and this random initialization
affects the model that is learned. That means that even when using
exactly the same parameters, we can obtain very different models when
using different random seeds. If the networks are large, and their
complexity is chosen properly, this should not affect accuracy too much,
but it is worth keeping in mind (particularly for smaller networks).
Figure 2-53 shows plots of several models, all learned with the same settings of
the parameters:


In[98]:


fig, axes = plt.subplots(2, 4, figsize=(20, 8))
for i, ax in enumerate(axes.ravel()):
    mlp = MLPClassifier(algorithm='l-bfgs', random_state=i,
                        hidden_layer_sizes=[100, 100])
    mlp.fit(X_train, y_train)
    mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3, ax=ax)
    mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, ax=ax)



[image: malp 0247]
Figure 2-53. Decision functions learned with the same parameters but different random initializations




To get a better understanding of neural networks on real-world data,
let’s apply the MLPClassifier to the Breast Cancer dataset. We start
with the default parameters:


In[99]:


print("Cancer data per-feature maxima:\n{}".format(cancer.data.max(axis=0)))


Out[99]:


Cancer data per-feature maxima:
[   28.110    39.280   188.500  2501.000     0.163     0.345     0.427
     0.201     0.304     0.097     2.873     4.885    21.980   542.200
     0.031     0.135     0.396     0.053     0.079     0.030    36.040
    49.540   251.200  4254.000     0.223     1.058     1.252     0.291
     0.664     0.207]


In[100]:


X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)

mlp = MLPClassifier(random_state=42)
mlp.fit(X_train, y_train)

print("Accuracy on training set: {:.2f}".format(mlp.score(X_train, y_train)))
print("Accuracy on test set: {:.2f}".format(mlp.score(X_test, y_test)))


Out[100]:


Accuracy on training set: 0.92
Accuracy on test set: 0.90


The accuracy of the MLP is quite good, but not as good as the other
models. As in the earlier SVC example, this is likely due to scaling of
the data. Neural networks also expect all input features to vary in a
similar way, and ideally to have a mean of 0, and a variance of
1. We must rescale our data so that it fulfills these requirements.
Again, we will do this by hand here, but we’ll introduce the
StandardScaler to do this automatically in Chapter 3:


In[101]:


# compute the mean value per feature on the training set
mean_on_train = X_train.mean(axis=0)
# compute the standard deviation of each feature on the training set
std_on_train = X_train.std(axis=0)

# subtract the mean, and scale by inverse standard deviation
# afterward, mean=0 and std=1
X_train_scaled = (X_train - mean_on_train) / std_on_train
# use THE SAME transformation (using training mean and std) on the test set
X_test_scaled = (X_test - mean_on_train) / std_on_train

mlp = MLPClassifier(random_state=0)
mlp.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    mlp.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(X_test_scaled, y_test)))


Out[101]:


Accuracy on training set: 0.991
Accuracy on test set: 0.965

ConvergenceWarning:
    Stochastic Optimizer: Maximum iterations reached and the optimization
    hasn't converged yet.


The results are much better after scaling, and already quite
competitive. We got a warning from the model, though, that tells us that
the maximum number of iterations has been reached. This is part of the
adam algorithm for learning the model, and tells us that we should
increase the number of iterations:


In[102]:


mlp = MLPClassifier(max_iter=1000, random_state=0)
mlp.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    mlp.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(X_test_scaled, y_test)))


Out[102]:


Accuracy on training set: 0.995
Accuracy on test set: 0.965


Increasing the number of iterations only increased the training set
performance, not the generalization performance. Still, the model is
performing quite well. As there is some gap between the training and the
test performance, we might try to decrease the model’s complexity to get
better generalization performance. Here, we choose to increase the alpha
parameter (quite aggressively, from 0.0001 to 1) to add stronger
regularization of the weights:


In[103]:


mlp = MLPClassifier(max_iter=1000, alpha=1, random_state=0)
mlp.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(
    mlp.score(X_train_scaled, y_train)))
print("Accuracy on test set: {:.3f}".format(mlp.score(X_test_scaled, y_test)))


Out[103]:


Accuracy on training set: 0.988
Accuracy on test set: 0.972


This leads to a performance on par with the best models so far.12


While it is possible to analyze what a neural network has learned, this is
usually much trickier than analyzing a linear model or a tree-based
model. One way to introspect what was learned is to look at the weights
in the model. You can see an example of this in the scikit-learn example gallery. For the Breast Cancer dataset, this might be a
bit hard to understand. The following plot (Figure 2-54) shows the weights that were
learned connecting the input to the first hidden layer. The rows in this
plot correspond to the 30 input features, while the columns correspond
to the 100 hidden units. Light colors represent large positive values,
while dark colors represent negative values:


In[104]:


plt.figure(figsize=(20, 5))
plt.imshow(mlp.coefs_[0], interpolation='none', cmap='viridis')
plt.yticks(range(30), cancer.feature_names)
plt.xlabel("Columns in weight matrix")
plt.ylabel("Input feature")
plt.colorbar()



[image: malp 0248]
Figure 2-54. Heat map of the first layer weights in a neural network learned on the Breast Cancer dataset




One possible inference we can make is that features that have very small
weights for all of the hidden units are “less important” to the model.
We can see that “mean smoothness” and “mean compactness,” in addition to
the features found between “smoothness error” and “fractal dimension
error,” have relatively low weights compared to other features. This
could mean that these are less important features or possibly that we
didn’t represent them in a way that the neural network could use.


We could also visualize the weights connecting the hidden layer to the
output layer, but those are even harder to interpret.


While the MLPClassifier and MLPRegressor provide easy-to-use
interfaces for the most common neural network architectures, they only
capture a small subset of what is possible with neural networks. If you
are interested in working with more flexible or larger models, we
encourage you to look beyond scikit-learn into the fantastic deep
learning libraries that are out there. For Python users, the most
well-established are keras, lasagna, and tensor-flow. lasagna builds on
the theano library, while keras can use either tensor-flow or theano.
These libraries provide a much more flexible interface to build neural
networks and track the rapid progress in deep learning research. All of
the popular deep learning libraries also allow the use of
high-performance graphics processing units (GPUs), which scikit-learn
does not support. Using GPUs allows us to accelerate computations by
factors of 10x to 100x, and they are essential for applying deep learning
methods to large-scale datasets.

















Strengths, weaknesses, and parameters


Neural networks have reemerged as state-of-the-art models in many
applications of machine learning. One of their main advantages is that
they are able to capture information contained in large amounts of data
and build incredibly complex models. Given enough computation time,
data, and careful tuning of the parameters, neural networks often beat
other machine learning algorithms (for classification and regression
tasks).


This brings us to the downsides. Neural networks—particularly the
large and powerful ones—often take a long time to train. They also
require careful preprocessing of the data, as we saw here. Similarly to
SVMs, they work best with “homogeneous” data, where all the features
have similar meanings. For data that has very different kinds of
features, tree-based models might work better. Tuning neural network
parameters is also an art unto itself. In our experiments, we
barely scratched the surface of possible ways to adjust neural network
models and how to train them.














Estimating complexity in neural networks


The most important parameters are the number of layers and the number of
hidden units per layer. You should start with one or two hidden layers,
and possibly expand from there. The number of nodes per hidden layer is
often similar to the number of input features, but rarely higher than
in the low to mid-thousands.


A helpful measure when thinking about the model
complexity of a neural network is the number of weights or coefficients
that are learned. If you have a binary classification dataset with 100
features, and you have 100 hidden units, then there are
100 * 100 = 10,000 weights between the input and the first hidden
layer. There are also 100 * 1 = 100 weights between the hidden layer
and the output layer, for a total of around 10,100 weights. If you add
a second hidden layer with 100 hidden units, there will be another
100 * 100 = 10,000 weights from the first hidden layer to the second
hidden layer, resulting in a total of 20,100 weights. If instead you
use one layer with 1,000 hidden units, you are learning
100 * 1,000 = 100,000 weights from the input to the hidden layer and
1,000 x 1 weights from the hidden layer to the output layer, for a total of
101,000. If you add a second hidden layer you add
1,000 * 1,000 = 1,000,000 weights, for a whopping total of 1,101,000—50 times larger than the model with two hidden layers of size 100.


A
common way to adjust parameters in a neural network is to first create a
network that is large enough to overfit, making sure that the task can
actually be learned by the network. Then, once you know the training data can
be learned, either shrink the network or increase alpha to add
regularization, which will improve generalization performance.


In our experiments, we focused mostly on the definition of the
model: the number of layers and nodes per layer, the regularization, and
the nonlinearity. These define the model we want to learn. There is also
the question of how to learn the model, or the algorithm that is used
for learning the parameters, which is set using the algorithm
parameter. There are two easy-to-use choices for algorithm. The
default is 'adam', which works well in most situations but is quite
sensitive to the scaling of the data (so it is important to always scale
your data to 0 mean and unit variance). The other one is 'l-bfgs',
which is quite robust but might take a long time on larger models or
larger datasets. There is also the more advanced 'sgd' option, which
is what many deep learning researchers use. The 'sgd' option comes
with many additional parameters that need to be tuned for best results.
You can find all of these parameters and their definitions in the
user guide. When starting to work with MLPs, we recommend sticking to
'adam' and 'l-bfgs'.

fit Resets a Model

An important property of scikit-learn models
is that calling fit will always reset everything a model previously
learned. So if you build a model on one dataset, and then call fit
again on a different dataset, the model will “forget” everything it
learned from the first dataset. You can call fit as often as you like on
a model, and the outcome will be the same as calling fit on a “new”
model.


































Uncertainty Estimates from Classifiers


Another useful part of the scikit-learn interface that we haven’t talked
about yet is the ability of classifiers to provide uncertainty estimates
of predictions. Often, you are not only interested in which class a
classifier predicts for a certain test point, but also how certain it is
that this is the right class. In practice, different kinds of mistakes
lead to very different outcomes in real-world applications. Imagine a
medical application testing for cancer. Making a false positive
prediction might lead to a patient undergoing additional tests, while a
false negative prediction might lead to a serious disease not being
treated. We will go into this topic in more detail in Chapter 6.


There are two different functions in scikit-learn that can be used to
obtain uncertainty estimates from classifiers: decision_function and
predict_proba. Most (but not all) classifiers have at least one of
them, and many classifiers have both. Let’s look at what these two
functions do on a synthetic two-dimensional dataset, when building a
GradientBoostingClassifier classifier, which has both a decision_function and a predict_proba method:


In[105]:


from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import make_blobs, make_circles
X, y = make_circles(noise=0.25, factor=0.5, random_state=1)

# we rename the classes "blue" and "red" for illustration purposes
y_named = np.array(["blue", "red"])[y]

# we can call train_test_split with arbitrarily many arrays;
# all will be split in a consistent manner
X_train, X_test, y_train_named, y_test_named, y_train, y_test = \
    train_test_split(X, y_named, y, random_state=0)

# build the gradient boosting model
gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train_named)










The Decision Function


In the binary classification case, the return value of
decision_function is of shape (n_samples,), and it returns one
floating-point number for each sample:


In[106]:


print("X_test.shape: {}".format(X_test.shape))
print("Decision function shape: {}".format(
    gbrt.decision_function(X_test).shape))


Out[106]:


X_test.shape: (25, 2)
Decision function shape: (25,)


This value encodes how strongly the model believes a data point to
belong to the “positive” class, in this case class 1. Positive values
indicate a preference for the positive class, and negative values indicate
a preference for the “negative” (other) class:


In[107]:


# show the first few entries of decision_function
print("Decision function:\n{}".format(gbrt.decision_function(X_test)[:6]))


Out[107]:


Decision function:
[ 4.136 -1.683 -3.951 -3.626  4.29   3.662]


We can recover the prediction by looking only at the sign of the
decision function:


In[108]:


print("Thresholded decision function:\n{}".format(
    gbrt.decision_function(X_test) > 0))
print("Predictions:\n{}".format(gbrt.predict(X_test)))


Out[108]:


Thresholded decision function:
[ True False False False  True  True False  True  True  True False  True
  True False  True False False False  True  True  True  True  True False
  False]
Predictions:
['red' 'blue' 'blue' 'blue' 'red' 'red' 'blue' 'red' 'red' 'red' 'blue'
 'red' 'red' 'blue' 'red' 'blue' 'blue' 'blue' 'red' 'red' 'red' 'red'
 'red' 'blue' 'blue']


For binary classification, the “negative” class is always the first
entry of the classes_ attribute, and the “positive” class is the
second entry of classes_. So if you want to fully recover the output
of predict, you need to make use of the classes_ attribute:


In[109]:


# make the boolean True/False into 0 and 1
greater_zero = (gbrt.decision_function(X_test) > 0).astype(int)
# use 0 and 1 as indices into classes_
pred = gbrt.classes_[greater_zero]
# pred is the same as the output of gbrt.predict
print("pred is equal to predictions: {}".format(
    np.all(pred == gbrt.predict(X_test))))


Out[109]:


pred is equal to predictions: True


The range of decision_function can be arbitrary, and depends on the
data and the model parameters:


In[110]:


decision_function = gbrt.decision_function(X_test)
print("Decision function minimum: {:.2f} maximum: {:.2f}".format(
    np.min(decision_function), np.max(decision_function)))


Out[110]:


Decision function minimum: -7.69 maximum: 4.29


This arbitrary scaling makes the output of decision_function often
hard to interpret.


In the following example we plot the decision_function for all points in the 2D plane
using a color coding, next to a visualization of the decision boundary,
as we saw earlier. We show training points as circles and test data as
triangles (Figure 2-55):


In[111]:


fig, axes = plt.subplots(1, 2, figsize=(13, 5))
mglearn.tools.plot_2d_separator(gbrt, X, ax=axes[0], alpha=.4,
                                fill=True, cm=mglearn.cm2)
scores_image = mglearn.tools.plot_2d_scores(gbrt, X, ax=axes[1],
                                            alpha=.4, cm=mglearn.ReBl)

for ax in axes:
    # plot training and test points
    mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test,
                             markers='^', ax=ax)
    mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train,
                             markers='o', ax=ax)
    ax.set_xlabel("Feature 0")
    ax.set_ylabel("Feature 1")
cbar = plt.colorbar(scores_image, ax=axes.tolist())
axes[0].legend(["Test class 0", "Test class 1", "Train class 0",
                "Train class 1"], ncol=4, loc=(.1, 1.1))



[image: malp 0249]
Figure 2-55. Decision boundary (left) and decision function (right) for a gradient boosting model on a two-dimensional toy dataset




Encoding not only the predicted outcome but also how certain the
classifier is provides additional information. However, in this
visualization, it is hard to make out the boundary between the two
classes.

















Predicting Probabilities


The output of predict_proba is a probability for each class, and is
often more easily understood than the output of decision_function. It is always of
shape (n_samples, 2) for binary classification:


In[112]:


print("Shape of probabilities: {}".format(gbrt.predict_proba(X_test).shape))


Out[112]:


Shape of probabilities: (25, 2)


The first entry in each row is the estimated probability of the first
class, and the second entry is the estimated probability of the second
class. Because it is a probability, the output of predict_proba is
always between 0 and 1, and the sum of the entries for both classes
is always 1:


In[113]:


# show the first few entries of predict_proba
print("Predicted probabilities:\n{}".format(
    gbrt.predict_proba(X_test[:6])))


Out[113]:


Predicted probabilities:
[[ 0.016  0.984]
 [ 0.843  0.157]
 [ 0.981  0.019]
 [ 0.974  0.026]
 [ 0.014  0.986]
 [ 0.025  0.975]]


Because the probabilities for the two classes sum to 1, exactly one of
the classes will be above 50% certainty. That class is the one that is
predicted.13


You can see in the previous output that the classifier is relatively
certain for most points. How well the uncertainty actually reflects
uncertainty in the data depends on the model and the parameters. A model
that is more overfitted tends to make more certain predictions, even if
they might be wrong. A model with less complexity usually has more
uncertainty in its predictions. A model is called calibrated if the
reported uncertainty actually matches how correct it is—in a
calibrated model, a prediction made with 70% certainty would be correct
70% of the time.


In the following example (Figure 2-56) we again show the decision boundary on the dataset, next to the
class probabilities for the class 1:


In[114]:


fig, axes = plt.subplots(1, 2, figsize=(13, 5))

mglearn.tools.plot_2d_separator(
    gbrt, X, ax=axes[0], alpha=.4, fill=True, cm=mglearn.cm2)
scores_image = mglearn.tools.plot_2d_scores(
    gbrt, X, ax=axes[1], alpha=.5, cm=mglearn.ReBl, function='predict_proba')

for ax in axes:
    # plot training and test points
    mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test,
                             markers='^', ax=ax)
    mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train,
                             markers='o', ax=ax)
    ax.set_xlabel("Feature 0")
    ax.set_ylabel("Feature 1")
cbar = plt.colorbar(scores_image, ax=axes.tolist())
axes[0].legend(["Test class 0", "Test class 1", "Train class 0",
                "Train class 1"], ncol=4, loc=(.1, 1.1))



[image: malp 0250]
Figure 2-56. Decision boundary (left) and predicted probabilities for the gradient boosting model shown in Figure 2-55




The boundaries in this plot are much more well-defined, and the small
areas of uncertainty are clearly visible.


The scikit-learn website
has a great comparison of many models and what their uncertainty
estimates look like. We’ve reproduced this in Figure 2-57, and we encourage you
to go though the example there.



[image: classifier_comparison]
Figure 2-57. Comparison of several classifiers in scikit-learn on synthetic datasets (image courtesy http://scikit-learn.org)



















Uncertainty in Multiclass Classification


So far, we’ve only talked about uncertainty estimates in binary
classification. But the decision_function and predict_proba methods
also work in the multiclass setting. Let’s apply them on the Iris dataset, which is a three-class classification dataset:


In[115]:


from sklearn.datasets import load_iris

iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, random_state=42)

gbrt = GradientBoostingClassifier(learning_rate=0.01, random_state=0)
gbrt.fit(X_train, y_train)


In[116]:


print("Decision function shape: {}".format(gbrt.decision_function(X_test).shape))
# plot the first few entries of the decision function
print("Decision function:\n{}".format(gbrt.decision_function(X_test)[:6, :]))


Out[116]:


Decision function shape: (38, 3)
Decision function:
[[-0.529  1.466 -0.504]
 [ 1.512 -0.496 -0.503]
 [-0.524 -0.468  1.52 ]
 [-0.529  1.466 -0.504]
 [-0.531  1.282  0.215]
 [ 1.512 -0.496 -0.503]]


In the multiclass case, the decision_function has the shape
(n_samples, n_classes) and each column provides a “certainty score”
for each class, where a large score means that a class is more likely
and a small score means the class is less likely. You can recover the
predictions from these scores by finding the maximum entry for each data
point:


In[117]:


print("Argmax of decision function:\n{}".format(
      np.argmax(gbrt.decision_function(X_test), axis=1)))
print("Predictions:\n{}".format(gbrt.predict(X_test)))


Out[117]:


Argmax of decision function:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0 0 0 1 0 0 2 1 0]
Predictions:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0 0 0 1 0 0 2 1 0]


The output of predict_proba has the same shape,
(n_samples, n_classes). Again, the probabilities for the possible
classes for each data point sum to 1:


In[118]:


# show the first few entries of predict_proba
print("Predicted probabilities:\n{}".format(gbrt.predict_proba(X_test)[:6]))
# show that sums across rows are one
print("Sums: {}".format(gbrt.predict_proba(X_test)[:6].sum(axis=1)))


Out[118]:


Predicted probabilities:
[[ 0.107  0.784  0.109]
 [ 0.789  0.106  0.105]
 [ 0.102  0.108  0.789]
 [ 0.107  0.784  0.109]
 [ 0.108  0.663  0.228]
 [ 0.789  0.106  0.105]]
Sums: [ 1.  1.  1.  1.  1.  1.]


We can again recover the predictions by computing the argmax of
predict_proba:


In[119]:


print("Argmax of predicted probabilities:\n{}".format(
    np.argmax(gbrt.predict_proba(X_test), axis=1)))
print("Predictions:\n{}".format(gbrt.predict(X_test)))


Out[119]:


Argmax of predicted probabilities:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0 0 0 1 0 0 2 1 0]
Predictions:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0 0 0 1 0 0 2 1 0]


To summarize, predict_proba and decision_function always have shape
(n_samples, n_classes)—apart from decision_function in the special binary case. In the binary case,
decision_function only has one column, corresponding to the “positive”
class classes_[1]. This is mostly for historical reasons.


You can recover the prediction when there are n_classes many columns
by computing the argmax across columns. Be careful, though, if your
classes are strings, or you use integers but they are not consecutive
and starting from 0. If you want to compare results obtained with
predict to results obtained via decision_function or predict_proba,
make sure to use the classes_ attribute of the classifier to get the
actual class names:


In[120]:


logreg = LogisticRegression()

# represent each target by its class name in the iris dataset
named_target = iris.target_names[y_train]
logreg.fit(X_train, named_target)
print("unique classes in training data: {}".format(logreg.classes_))
print("predictions: {}".format(logreg.predict(X_test)[:10]))
argmax_dec_func = np.argmax(logreg.decision_function(X_test), axis=1)
print("argmax of decision function: {}".format(argmax_dec_func[:10]))
print("argmax combined with classes_: {}".format(
        logreg.classes_[argmax_dec_func][:10]))


Out[120]:


unique classes in training data: ['setosa' 'versicolor' 'virginica']
predictions: ['versicolor' 'setosa' 'virginica' 'versicolor' 'versicolor'
 'setosa' 'versicolor' 'virginica' 'versicolor' 'versicolor']
argmax of decision function: [1 0 2 1 1 0 1 2 1 1]
argmax combined with classes_: ['versicolor' 'setosa' 'virginica' 'versicolor'
 'versicolor' 'setosa' 'versicolor' 'virginica' 'versicolor' 'versicolor']
























Summary and Outlook


We started this chapter with a discussion of model complexity, then
discussed generalization, or learning a model that is able to perform
well on new, previously unseen data. This led us to the concepts of underfitting,
which describes a model that cannot capture the variations present in
the training data, and overfitting, which describes a model that focuses
too much on the training data and is not able to generalize to new data
very well.


We then discussed a wide array of machine learning models for
classification and regression, what their advantages and disadvantages
are, and how to control model complexity for each of them. We saw that
for many of the algorithms, setting the right parameters is important
for good performance. Some of the algorithms are also sensitive to how
we represent the input data, and in particular to how the features are
scaled. Therefore, blindly applying an algorithm to a dataset without
understanding the assumptions the model makes and the meanings of the
parameter settings will rarely lead to an accurate model.


This chapter contains a lot of information about the algorithms, and it
is not necessary for you to remember all of these details for the
following chapters. However, some knowledge of the models described here—and which to use in a specific situation—is important for
successfully applying machine learning in practice. Here is a quick
summary of when to use each model:


	Nearest neighbors

	
For small datasets, good as a baseline, easy to
explain.



	Linear models

	
Go-to as a first algorithm to try, good for very large
datasets, good for very high-dimensional data.



	Naive Bayes

	
Only for classification. Even faster than linear models,
good for very large datasets and high-dimensional data. Often less accurate than
linear models.



	Decision trees

	
Very fast, don’t need scaling of the data, can be
visualized and easily explained.



	Random forests

	
Nearly always perform better than a single decision
tree, very robust and powerful. Don’t need scaling of data. Not good for
very high-dimensional sparse data.



	Gradient boosted decision trees

	
Often slightly more accurate than
random forests. Slower to train but faster to predict than random forests,
and smaller in memory. Need more parameter tuning than random forests.



	Support vector machines

	
Powerful for medium-sized datasets of
features with similar meaning. Require scaling of data, sensitive to
parameters.



	Neural networks

	
Can build very complex models, particularly for
large datasets. Sensitive to scaling of the data and to the choice of
parameters. Large models need a long time to train.






When working with a new dataset, it is in general a good idea to start
with a simple model, such as a linear model or a naive Bayes or nearest
neighbors classifier, and see how far you can get. After understanding more about
the data, you can consider moving to an algorithm that can build more
complex models, such as random forests, gradient boosted decision trees, SVMs, or neural networks.


You should now be in a position where you have some idea of how to apply,
tune, and analyze the models we discussed here. In this chapter, we
focused on the binary classification case, as this is usually easiest to
understand. Most of the algorithms presented have classification
and regression variants, however, and all of the classification
algorithms support both binary and multiclass classification. Try
applying any of these algorithms to the built-in datasets in
scikit-learn, like the boston_housing or diabetes datasets for
regression, or the digits dataset for multiclass classification.
Playing around with the algorithms on different datasets will give you a
better feel for how long they need to train, how easy it is to analyze
the models, and how sensitive they are to the representation of the data.


While we analyzed the consequences of different parameter settings for
the algorithms we investigated, building a model that actually
generalizes well to new data in production is a bit trickier than that.
We will see how to properly adjust parameters and how to find good
parameters automatically in Chapter 6.


First, though, we will dive in more detail into unsupervised learning and preprocessing in the next chapter.










1 We ask linguists to excuse the simplified presentation of languages as distinct and fixed entities.
2 In the real world, this is actually a tricky problem. While we know that the other customers haven’t bought a boat from us yet, they might have bought one from someone else, or they may still be saving and plan to buy one in the future.
3 And also provably, with the right math.
4 Discussing all of them is beyond the scope of the book, and we refer you to the scikit-learn documentation for more details.
5 This is called the binomial coefficient, which is the number of combinations of k elements that can be selected from a set of n elements. Often this is written as [image: left-parenthesis StartFraction n Over k EndFraction right-parenthesis] and spoken as “n choose k”—in this case, “13 choose 2.”
6 This is easy to see if you know some linear algebra.
7 Mathematically, Ridge penalizes the L2 norm of the coefficients, or the Euclidean length of w.
8 The lasso penalizes the L1 norm of the coefficient vector—or in other words, the sum of the absolute values of the coefficients.
9 It is actually possible to make very good forecasts with tree-based models (for example, when trying to predict whether a price will go up or down). The point of this example was not to show that trees are a bad model for time series, but to illustrate a particular property of how trees make predictions.
10 We picked this particular feature to add for illustration purposes. The choice is not particularly important.
11 This follows from the Taylor expansion of the exponential map.
12 You might have noticed at this point that many of the well-performing models achieved exactly the same accuracy of 0.972. This means that all of the models make exactly the same number of mistakes, which is four. If you compare the actual predictions, you can even see that they make exactly the same mistakes! This might be a consequence of the dataset being very small, or it may be because these points are really different from the rest.
13 Because the probabilities are floating-point numbers, it is unlikely that they will both be exactly 0.500. However, if that happens, the prediction is made at random.



Chapter 3. Unsupervised Learning and Preprocessing



The second family of machine learning algorithms that we will discuss is
unsupervised learning algorithms. Unsupervised learning subsumes all kinds of
machine learning where there is no known output, no teacher to instruct
the learning algorithm. In unsupervised learning, the learning algorithm
is just shown the input data and asked to extract knowledge from this
data.








Types of Unsupervised Learning


We will look into two kinds of unsupervised learning in this chapter:
transformations of the dataset and clustering.


Unsupervised transformations of a dataset are algorithms that create a
new representation of the data which might be easier for humans or other
machine learning algorithms to understand compared to the original
representation of the data. A common application of unsupervised
transformations is dimensionality reduction, which takes a
high-dimensional representation of the data, consisting of many
features, and finds a new way to represent this data that summarizes
the essential characteristics with fewer features. A common application
for dimensionality reduction is reduction to two dimensions for
visualization purposes.


Another application for unsupervised transformations is finding the
parts or components that “make up” the data. An example of this is topic
extraction on collections of text documents. Here, the task is to find
the unknown topics that are talked about in each document, and to
learn what topics appear in each document. This can be useful for
tracking the discussion of themes like elections, gun control, or
pop stars on social media.


Clustering algorithms, on the other hand, partition data into distinct
groups of similar items. Consider the example of uploading photos to a
social media site. To allow you to organize your pictures, the site
might want to group together pictures that show the same person.
However, the site doesn’t know which pictures show whom, and it doesn’t
know how many different people appear in your photo collection. A
sensible approach would be to extract all the faces and divide them into
groups of faces that look similar. Hopefully, these correspond to the
same person, and the images can be grouped together for you.

















Challenges in Unsupervised Learning


A major challenge in unsupervised learning is evaluating whether the
algorithm learned something useful. Unsupervised learning algorithms are
usually applied to data that does not contain any label information, so
we don’t know what the right output should be. Therefore, it is very hard
to say whether a model “did well.” For example, our hypothetical clustering algorithm
could have grouped together all the pictures that show faces in profile and all the full-face pictures. This would certainly be a possible way to divide a collection
of pictures of people’s faces, but it’s not the one we were looking for. However, there is
no way for us to “tell” the algorithm what we are looking for, and often
the only way to evaluate the result of an unsupervised algorithm is to
inspect it manually.


As a consequence, unsupervised algorithms are used often in an
exploratory setting, when a data scientist wants to understand the data
better, rather than as part of a larger automatic system. Another common
application for unsupervised algorithms is as a preprocessing step for
supervised algorithms. Learning a new representation of the data can
sometimes improve the accuracy of supervised algorithms, or can lead to
reduced memory and time consumption.


Before we start with “real” unsupervised algorithms, we will briefly
discuss some simple preprocessing methods that often come in handy. Even
though preprocessing and scaling are often used in tandem with
supervised learning algorithms, scaling methods don’t make use of the
supervised information, making them unsupervised.

















Preprocessing and Scaling


In the previous chapter we saw that some algorithms, like neural networks
and SVMs, are very sensitive to the scaling of the data. Therefore, a
common practice is to adjust the features so that the data
representation is more suitable for these algorithms. Often, this is a
simple per-feature rescaling and shift of the data. The following code (Figure 3-1) shows a simple example:


In[2]:


mglearn.plots.plot_scaling()



[image: malp 0301]
Figure 3-1. Different ways to rescale and preprocess a dataset












Different Kinds of Preprocessing


The first plot in Figure 3-1 shows a synthetic two-class classification dataset with
two features. The first feature (the x-axis value) is between 10 and 15.
The second feature (the y-axis value) is between around 1 and 9.


The following four plots show four different ways to transform the data
that yield more standard ranges. The StandardScaler in scikit-learn
ensures that for each feature the mean is 0 and the variance is
1, bringing all features to the same magnitude. However, this scaling
does not ensure any particular minimum and maximum values for the
features. The RobustScaler works similarly to the StandardScaler in
that it ensures statistical properties for each feature that guarantee
that they are on the same scale. However, the RobustScaler uses the
median and quartiles,1 instead of mean and
variance. This makes the RobustScaler ignore data points that are very
different from the rest (like measurement errors). These odd data points
are also called outliers, and can lead to trouble for other scaling
techniques.


The MinMaxScaler, on the other hand, shifts the data such that all
features are exactly between 0 and 1. For the two-dimensional dataset
this means all of the data is contained within the rectangle created by
the x-axis between 0 and 1 and the y-axis between 0 and 1.


Finally, the Normalizer does a very different kind of rescaling. It
scales each data point such that the feature vector has a Euclidean
length of 1. In other words, it projects a data point on the circle
(or sphere, in the case of higher dimensions) with a radius of 1. This
means every data point is scaled by a different number (by the inverse
of its length). This normalization is often used when only the
direction (or angle) of the data matters, not the length of the feature
vector.

















Applying Data Transformations


Now that we’ve seen what the different kinds of transformations do, let’s
apply them using scikit-learn. We will use the cancer dataset that we
saw in Chapter 2. Preprocessing methods like the scalers are usually
applied before applying a supervised machine learning algorithm. As an
example, say we want to apply the kernel SVM (SVC) to the cancer
dataset, and use MinMaxScaler for preprocessing the data. We start by
loading our dataset and splitting it into a training set and a test set (we
need separate training and test sets to evaluate the supervised model
we will build after the preprocessing):


In[3]:


from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target,
                                                    random_state=1)
print(X_train.shape)
print(X_test.shape)


Out[3]:


(426, 30)
(143, 30)


As a reminder, the dataset contains 569 data points, each represented by 30
measurements. We split the dataset into 426 samples for the training set
and 143 samples for the test set.


As with the supervised models we built earlier, we first import the
class that implements the preprocessing, and then instantiate it:


In[4]:


from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()


We then fit the scaler using the fit method, applied to the training
data. For the MinMaxScaler, the fit method computes the minimum and
maximum value of each feature on the training set. In contrast to the
classifiers and regressors of Chapter 2, the scaler is only provided
with the data (X_train) when fit is called, and y_train is not used:


In[5]:


scaler.fit(X_train)


Out[5]:


MinMaxScaler(copy=True, feature_range=(0, 1))


To apply the transformation that we just learned—that is, to actually
scale the training data—we use the transform method of the scaler.
The transform method is used in scikit-learn whenever a model returns
a new representation of the data:


In[6]:


# transform data
X_train_scaled = scaler.transform(X_train)
# print dataset properties before and after scaling
print("transformed shape: {}".format(X_train_scaled.shape))
print("per-feature minimum before scaling:\n {}".format(X_train.min(axis=0)))
print("per-feature maximum before scaling:\n {}".format(X_train.max(axis=0)))
print("per-feature minimum after scaling:\n {}".format(
    X_train_scaled.min(axis=0)))
print("per-feature maximum after scaling:\n {}".format(
    X_train_scaled.max(axis=0)))


Out[6]:


transformed shape: (426, 30)
per-feature minimum before scaling:
 [   6.98    9.71   43.79  143.50    0.05    0.02    0.      0.      0.11
     0.05    0.12    0.36    0.76    6.80    0.      0.      0.      0.
     0.01    0.      7.93   12.02   50.41  185.20    0.07    0.03    0.
     0.      0.16    0.06]
per-feature maximum before scaling:
 [   28.11    39.28   188.5   2501.0     0.16     0.29     0.43     0.2
     0.300    0.100    2.87     4.88    21.98   542.20     0.03     0.14
     0.400    0.050    0.06     0.03    36.04    49.54   251.20  4254.00
     0.220    0.940    1.17     0.29     0.58     0.15]
per-feature minimum after scaling:
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
per-feature maximum after scaling:
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.
   1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]


The transformed data has the same shape as the original data—the
features are simply shifted and scaled. You can see that all of the
features are now between 0 and 1, as desired.


To apply the SVM to the scaled data, we also need to transform the test
set. This is again done by calling the transform method, this time on
X_test:


In[7]:


# transform test data
X_test_scaled = scaler.transform(X_test)
# print test data properties after scaling
print("per-feature minimum after scaling:\n{}".format(X_test_scaled.min(axis=0)))
print("per-feature maximum after scaling:\n{}".format(X_test_scaled.max(axis=0)))


Out[7]:


per-feature minimum after scaling:
[ 0.034  0.023  0.031  0.011  0.141  0.044  0.     0.     0.154 -0.006
 -0.001  0.006  0.004  0.001  0.039  0.011  0.     0.    -0.032  0.007
  0.027  0.058  0.02   0.009  0.109  0.026  0.     0.    -0.    -0.002]
per-feature maximum after scaling:
[ 0.958  0.815  0.956  0.894  0.811  1.22   0.88   0.933  0.932  1.037
  0.427  0.498  0.441  0.284  0.487  0.739  0.767  0.629  1.337  0.391
  0.896  0.793  0.849  0.745  0.915  1.132  1.07   0.924  1.205  1.631]


Maybe somewhat surprisingly, you can see that for the test set, after
scaling, the minimum and maximum are not 0 and 1. Some of the
features are even outside the 0–1 range! The explanation is that the
MinMaxScaler (and all the other scalers) always applies exactly the
same transformation to the training and the test set. This means the transform
method always subtracts the training set minimum and divides by the
training set range, which might be different from the minimum and range
for the test set.

















Scaling Training and Test Data the Same Way


It is important to apply exactly the same transformation to the training
set and the test set for the supervised model to work on the test set.
The following example (Figure 3-2) illustrates what would happen if we were to use the
minimum and range of the test set instead:


In[8]:


from sklearn.datasets import make_blobs
# make synthetic data
X, _ = make_blobs(n_samples=50, centers=5, random_state=4, cluster_std=2)
# split it into training and test sets
X_train, X_test = train_test_split(X, random_state=5, test_size=.1)

# plot the training and test sets
fig, axes = plt.subplots(1, 3, figsize=(13, 4))
axes[0].scatter(X_train[:, 0], X_train[:, 1],
                c=mglearn.cm2(0), label="Training set", s=60)
axes[0].scatter(X_test[:, 0], X_test[:, 1], marker='^',
                c=mglearn.cm2(1), label="Test set", s=60)
axes[0].legend(loc='upper left')
axes[0].set_title("Original Data")

# scale the data using MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# visualize the properly scaled data
axes[1].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1],
                c=mglearn.cm2(0), label="Training set", s=60)
axes[1].scatter(X_test_scaled[:, 0], X_test_scaled[:, 1], marker='^',
                c=mglearn.cm2(1), label="Test set", s=60)
axes[1].set_title("Scaled Data")

# rescale the test set separately
# so test set min is 0 and test set max is 1
# DO NOT DO THIS! For illustration purposes only.
test_scaler = MinMaxScaler()
test_scaler.fit(X_test)
X_test_scaled_badly = test_scaler.transform(X_test)

# visualize wrongly scaled data
axes[2].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1],
                c=mglearn.cm2(0), label="training set", s=60)
axes[2].scatter(X_test_scaled_badly[:, 0], X_test_scaled_badly[:, 1],
                marker='^', c=mglearn.cm2(1), label="test set", s=60)
axes[2].set_title("Improperly Scaled Data")

for ax in axes:
    ax.set_xlabel("Feature 0")
    ax.set_ylabel("Feature 1")
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Figure 3-2. Effect of scaling training and test data shown on the left together (center) and separately (right)




The first panel is an unscaled two-dimensional dataset, with the
training set shown as circles and the test set shown as triangles. The
second panel is the same data, but scaled using the MinMaxScaler.
Here, we called fit on the training set, and then called transform on the
training and test sets. You can see that the dataset in the second
panel looks identical to the first; only the ticks on the axes have changed.
Now all the features are between 0 and 1. You can also see that the
minimum and maximum feature values for the test data (the triangles) are
not 0 and 1.


The third panel shows what would happen if we scaled the training set and
test set separately. In this case, the minimum and maximum feature
values for both the training and the test set are 0 and 1. But now the
dataset looks different. The test points moved incongruously to the
training set, as they were scaled differently. We changed the
arrangement of the data in an arbitrary way. Clearly this is not what we
want to do.


As another way to think about this, imagine your test set is a
single point. There is no way to scale a single point correctly, to
fulfill the minimum and maximum requirements of the MinMaxScaler. But
the size of your test set should not change your processing.


Shortcuts and Efficient Alternatives

Often, you want to fit a model on some dataset, and then transform
it. This is a very common task, which can often be computed more
efficiently than by simply calling fit and then transform. For this
use case, all models that have a transform method also have a
fit_transform method. Here is an example using StandardScaler:


In[9]:


from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
# calling fit and transform in sequence (using method chaining)
X_scaled = scaler.fit(X).transform(X)
# same result, but more efficient computation
X_scaled_d = scaler.fit_transform(X)


While fit_transform is not necessarily more efficient for all models,
it is still good practice to use this method when trying to transform the training
set.



















The Effect of Preprocessing on Supervised Learning


Now let’s go back to the cancer dataset and see the effect of using the
MinMaxScaler on learning the SVC (this is a different way of doing
the same scaling we did in Chapter 2). First, let’s fit the SVC on the
original data again for comparison:


In[10]:


from sklearn.svm import SVC

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target,
                                                    random_state=0)

svm = SVC(C=100)
svm.fit(X_train, y_train)
print("Test set accuracy: {:.2f}".format(svm.score(X_test, y_test)))


Out[10]:


Test set accuracy: 0.63


Now, let’s scale the data using MinMaxScaler before fitting the SVC:


In[11]:


# preprocessing using 0-1 scaling
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# learning an SVM on the scaled training data
svm.fit(X_train_scaled, y_train)

# scoring on the scaled test set
print("Scaled test set accuracy: {:.2f}".format(
    svm.score(X_test_scaled, y_test)))


Out[11]:


Scaled test set accuracy: 0.97


As we saw before, the effect of scaling the data is quite significant.
Even though scaling the data doesn’t involve any complicated math, it is
good practice to use the scaling mechanisms provided by scikit-learn
instead of reimplementing them yourself, as it’s easy to make mistakes
even in these simple computations.


You can also easily replace one preprocessing algorithm with another by
changing the class you use, as all of the preprocessing classes have the
same interface, consisting of the fit and transform methods:


In[12]:


# preprocessing using zero mean and unit variance scaling
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# learning an SVM on the scaled training data
svm.fit(X_train_scaled, y_train)

# scoring on the scaled test set
print("SVM test accuracy: {:.2f}".format(svm.score(X_test_scaled, y_test)))


Out[12]:


SVM test accuracy: 0.96


Now that we’ve seen how simple data transformations for preprocessing
work, let’s move on to more interesting transformations using
unsupervised learning.
























Dimensionality Reduction, Feature Extraction, and Manifold Learning


As we discussed earlier, transforming data using unsupervised learning
can have many motivations. The most common motivations are
visualization, compressing the data, and finding a representation that
is more informative for further processing.


One of the simplest and most widely used algorithms for all of these is
principal component analysis. We’ll also look at two other algorithms: non-negative matrix factorization (NMF), which is commonly used for feature extraction, and t-SNE, which is commonly used for visualization using two-dimensional scatter plots.










Principal Component Analysis (PCA)


Principal component analysis is a method that rotates the dataset
in a way such that the rotated features are statistically uncorrelated.
This rotation is often followed by selecting only a subset of the new
features, according to how important they are for explaining the data.
The following example (Figure 3-3) illustrates the effect of PCA on a synthetic
two-dimensional dataset:


In[13]:


mglearn.plots.plot_pca_illustration()


The first plot (top left) shows the original data points, colored to distinguish
among them. The algorithm proceeds by first finding the direction of
maximum variance, labeled “Component 1.” This is the direction (or
vector) in the data that contains most of the information, or in other
words, the direction along which the features are most correlated with
each other. Then, the algorithm finds the direction that contains the
most information while being orthogonal (at a right angle) to the
first direction. In two dimensions, there is only one possible
orientation that is at a right angle, but in higher-dimensional spaces
there would be (infinitely) many orthogonal directions. Although the two
components are drawn as arrows, it doesn’t really matter where the head
and the tail are; we could have drawn the first component from the center
up to the top left instead of down to the bottom right. The directions found
using this process are called principal components, as they are the
main directions of variance in the data. In general, there are as many
principal components as original features.
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Figure 3-3. Transformation of data with PCA




The second plot (top right) shows the same data, but now rotated so that the first
principal component aligns with the x-axis and the second principal
component aligns with the y-axis. Before the rotation, the mean was
subtracted from the data, so that the transformed data is centered
around zero. In the rotated representation found by PCA, the two axes
are uncorrelated, meaning that the correlation matrix of the data in
this representation is zero except for the diagonal.


We can use PCA for dimensionality reduction by retaining only some of
the principal components. In this example, we might keep only the first
principal component, as shown in the third panel in Figure 3-3 (bottom left). This
reduces the data from a two-dimensional dataset to a one-dimensional
dataset. Note, however, that instead of keeping only one of the original features, we
found the most interesting direction (top left to bottom right in the
first panel) and kept this direction, the first principal component.


Finally, we can undo the rotation and add the mean back to the data.
This will result in the data shown in the last panel in Figure 3-3. These points are
in the original feature space, but we kept only the information
contained in the first principal component. This transformation is
sometimes used to remove noise effects from the data or visualize what
part of the information is retained using the principal components.












Applying PCA to the cancer dataset for visualization


One of the most common applications of PCA is visualizing
high-dimensional datasets. As we saw in Chapter 1, it is hard to create
scatter plots of data that has more than two features. For the Iris
dataset, we were able to create a pair plot (Figure 1-3 in Chapter 1) that gave us a partial picture of the data by showing us all the possible combinations of two features. But if we want to look at the Breast
Cancer dataset, even using a pair plot is tricky. This
dataset has 30 features, which would result in 30 * 14 = 420 scatter
plots! We’d never be able to look at all these plots in detail, let
alone try to understand them.


There is an even simpler visualization we can use, though—computing
histograms of each of the features for the two classes, benign and
malignant cancer (Figure 3-4):


In[14]:


fig, axes = plt.subplots(15, 2, figsize=(10, 20))
malignant = cancer.data[cancer.target == 0]
benign = cancer.data[cancer.target == 1]

ax = axes.ravel()

for i in range(30):
    _, bins = np.histogram(cancer.data[:, i], bins=50)
    ax[i].hist(malignant[:, i], bins=bins, color=mglearn.cm3(0), alpha=.5)
    ax[i].hist(benign[:, i], bins=bins, color=mglearn.cm3(2), alpha=.5)
    ax[i].set_title(cancer.feature_names[i])
    ax[i].set_yticks(())
ax[0].set_xlabel("Feature magnitude")
ax[0].set_ylabel("Frequency")
ax[0].legend(["malignant", "benign"], loc="best")
fig.tight_layout()
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Figure 3-4. Per-class feature histograms on the Breast Cancer dataset




Here we create a histogram for each of the features, counting how often
a data point appears with a feature in a certain range (called a bin).
Each plot overlays two histograms, one for all of the points in the
benign class (blue) and one for all the points in the malignant class
(red). This gives us some idea of how each feature is distributed across
the two classes, and allows us to venture a guess as to which features
are better at distinguishing malignant and benign samples. For example,
the feature “smoothness error” seems quite uninformative, because the
two histograms mostly overlap, while the feature “worst concave points”
seems quite informative, because the histograms are quite disjoint.


However, this plot doesn’t show us anything about the interactions
between variables and how these relate to the classes. Using PCA, we
can capture the main interactions and get a slightly more complete
picture. We can find the first two principal components, and visualize
the data in this new two-dimensional space with a single scatter plot.


Before we apply PCA, we scale our data so that each feature has unit
variance using StandardScaler:


In[15]:


from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()

scaler = StandardScaler()
scaler.fit(cancer.data)
X_scaled = scaler.transform(cancer.data)


Learning the PCA transformation and applying it is as simple as applying
a preprocessing transformation. We instantiate the PCA object, find the
principal components by calling the fit method, and then apply the
rotation and dimensionality reduction by calling transform. By
default, PCA only rotates (and shifts) the data, but keeps all
principal components. To reduce the dimensionality of the data, we need
to specify how many components we want to keep when creating the PCA
object:


In[16]:


from sklearn.decomposition import PCA
# keep the first two principal components of the data
pca = PCA(n_components=2)
# fit PCA model to breast cancer data
pca.fit(X_scaled)

# transform data onto the first two principal components
X_pca = pca.transform(X_scaled)
print("Original shape: {}".format(str(X_scaled.shape)))
print("Reduced shape: {}".format(str(X_pca.shape)))


Out[16]:


Original shape: (569, 30)
Reduced shape: (569, 2)


We can now plot the first two principal components (Figure 3-5):


In[17]:


# plot first vs. second principal component, colored by class
plt.figure(figsize=(8, 8))
mglearn.discrete_scatter(X_pca[:, 0], X_pca[:, 1], cancer.target)
plt.legend(cancer.target_names, loc="best")
plt.gca().set_aspect("equal")
plt.xlabel("First principal component")
plt.ylabel("Second principal component")
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Figure 3-5. Two-dimensional scatter plot of the Breast Cancer dataset using the first two principal components




It is important to note that PCA is an unsupervised method, and
does not use any class information when finding the rotation. It simply
looks at the correlations in the data. For the scatter plot shown here, we
plotted the first principal component against the second principal
component, and then used the class information to color the points. You
can see that the two classes separate quite well in this two-dimensional
space. This leads us to believe that even a linear classifier (that
would learn a line in this space) could do a reasonably good job at
distinguishing the two classes. We can also see that the malignant (red)
points are more spread out than the benign (blue) points—something that
we could already see a bit from the histograms in
Figure 3-4.


A downside of PCA is that the two axes in the plot are often not
very easy to interpret. The principal components correspond to
directions in the original data, so they are combinations of the
original features. However, these combinations are usually very complex,
as we’ll see shortly. The principal components themselves are stored in
the components_ attribute of the PCA object during fitting:


In[18]:


print("PCA component shape: {}".format(pca.components_.shape))


Out[18]:


PCA component shape: (2, 30)


Each row in components_ corresponds to one principal component, and they are sorted
by their importance (the first principal component comes first, etc.).
The columns correspond to the original features attribute of the PCA in this example, “mean
radius,” “mean texture,” and so on. Let’s have a look at the content of
components_:


In[19]:


print("PCA components:\n{}".format(pca.components_))


Out[19]:


PCA components:
[[ 0.219  0.104  0.228  0.221  0.143  0.239  0.258  0.261  0.138  0.064
   0.206  0.017  0.211  0.203  0.015  0.17   0.154  0.183  0.042  0.103
   0.228  0.104  0.237  0.225  0.128  0.21   0.229  0.251  0.123  0.132]
 [-0.234 -0.06  -0.215 -0.231  0.186  0.152  0.06  -0.035  0.19   0.367
  -0.106  0.09  -0.089 -0.152  0.204  0.233  0.197  0.13   0.184  0.28
  -0.22  -0.045 -0.2   -0.219  0.172  0.144  0.098 -0.008  0.142  0.275]]


We can also visualize the coefficients using a heat map (Figure 3-6), which might be
easier to understand:


In[20]:


plt.matshow(pca.components_, cmap='viridis')
plt.yticks([0, 1], ["First component", "Second component"])
plt.colorbar()
plt.xticks(range(len(cancer.feature_names)),
           cancer.feature_names, rotation=60, ha='left')
plt.xlabel("Feature")
plt.ylabel("Principal components")
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Figure 3-6. Heat map of the first two principal components on the Breast Cancer dataset




You can see that in the first component, all features have the same sign
(it’s negative, but as we mentioned earlier, it doesn’t matter which
direction the arrow points in). That means that there is a general
correlation between all features. As one measurement is high, the others
are likely to be high as well. The second component has mixed signs, and
both of the components involve all of the 30 features. This mixing of
all features is what makes explaining the axes in
Figure 3-6 so tricky.

















Eigenfaces for feature extraction


Another application of PCA that we mentioned earlier is feature
extraction. The idea behind feature extraction is that it is possible to
find a representation of your data that is better suited to analysis
than the raw representation you were given. A great example of an
application where feature extraction is helpful is with images. Images
are made up of pixels, usually stored as red, green, and blue (RGB) intensities. Objects in images are usually made up of thousands of
pixels, and only together are they meaningful.


We will give a very simple application of feature extraction on images
using PCA, by working with face images from the Labeled Faces in the Wild
dataset. This dataset contains face images of celebrities downloaded
from the Internet, and it includes faces of politicians, singers, actors,
and athletes from the early 2000s. We use grayscale versions of these
images, and scale them down for faster processing. You can see some of
the images in Figure 3-7:


In[21]:


from sklearn.datasets import fetch_lfw_people
people = fetch_lfw_people(min_faces_per_person=20, resize=0.7)
image_shape = people.images[0].shape

fix, axes = plt.subplots(2, 5, figsize=(15, 8),
                         subplot_kw={'xticks': (), 'yticks': ()})
for target, image, ax in zip(people.target, people.images, axes.ravel()):
    ax.imshow(image)
    ax.set_title(people.target_names[target])
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Figure 3-7. Some images from the Labeled Faces in the Wild dataset




There are 3,023 images, each 87×65 pixels large, belonging to 62
different people:


In[22]:


print("people.images.shape: {}".format(people.images.shape))
print("Number of classes: {}".format(len(people.target_names)))


Out[22]:


people.images.shape: (3023, 87, 65)
Number of classes: 62


The dataset is a bit skewed, however, containing a lot of images of
George W. Bush and Colin Powell, as you can see here:


In[23]:


# count how often each target appears
counts = np.bincount(people.target)
# print counts next to target names
for i, (count, name) in enumerate(zip(counts, people.target_names)):
    print("{0:25} {1:3}".format(name, count), end='   ')
    if (i + 1) % 3 == 0:
        print()


Out[23]:


Alejandro Toledo           39   Alvaro Uribe               35
Amelie Mauresmo            21   Andre Agassi               36
Angelina Jolie             20   Arnold Schwarzenegger      42
Atal Bihari Vajpayee       24   Bill Clinton               29
Carlos Menem               21   Colin Powell              236
David Beckham              31   Donald Rumsfeld           121
George W Bush             530   George Robertson           22
Gerhard Schroeder         109   Gloria Macapagal Arroyo    44
Gray Davis                 26   Guillermo Coria            30
Hamid Karzai               22   Hans Blix                  39
Hugo Chavez                71   Igor Ivanov                20
[...]                           [...]
Laura Bush                 41   Lindsay Davenport          22
Lleyton Hewitt             41   Luiz Inacio Lula da Silva  48
Mahmoud Abbas              29   Megawati Sukarnoputri      33
Michael Bloomberg          20   Naomi Watts                22
Nestor Kirchner            37   Paul Bremer                20
Pete Sampras               22   Recep Tayyip Erdogan       30
Ricardo Lagos              27   Roh Moo-hyun               32
Rudolph Giuliani           26   Saddam Hussein             23
Serena Williams            52   Silvio Berlusconi          33
Tiger Woods                23   Tom Daschle                25
Tom Ridge                  33   Tony Blair                144
Vicente Fox                32   Vladimir Putin             49
Winona Ryder               24


To make the data less skewed, we will only take up to 50 images of each
person (otherwise, the feature extraction would be overwhelmed by the
likelihood of George W. Bush):


In[24]:


mask = np.zeros(people.target.shape, dtype=np.bool)
for target in np.unique(people.target):
    mask[np.where(people.target == target)[0][:50]] = 1

X_people = people.data[mask]
y_people = people.target[mask]

# scale the grayscale values to be between 0 and 1
# instead of 0 and 255 for better numeric stability
X_people = X_people / 255.


A common task in face recognition is to ask if a previously unseen face
belongs to a known person from a database. This has applications in
photo collection, social media, and security applications. One way to solve this
problem would be to build a classifier where each person is a separate
class. However, there are usually many different people in face
databases, and very few images of the same person (i.e., very few
training examples per class). That makes it hard to train most
classifiers. Additionally, you often want to be able to add new people easily, without needing to retrain a large model.


A simple solution is to use a one-nearest-neighbor classifier that
looks for the most similar face image to the face you are classifying. This classifier could in principle work with only a single training
example per class. Let’s take a look at how well KNeighborsClassifier does here:


In[25]:


from sklearn.neighbors import KNeighborsClassifier
# split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(
    X_people, y_people, stratify=y_people, random_state=0)
# build a KNeighborsClassifier using one neighbor
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
print("Test set score of 1-nn: {:.2f}".format(knn.score(X_test, y_test)))


Out[25]:


Test set score of 1-nn: 0.27


We obtain an accuracy of 26.6%, which is not actually that bad for a 62-class classification problem (random guessing would give you around 1/62
= 1.5% accuracy), but is also not great. We only correctly identify a
person every fourth time.


This is where PCA comes in. Computing distances in the original pixel
space is quite a bad way to measure similarity between faces. When using
a pixel representation to compare two images, we compare the grayscale
value of each individual pixel to the value of the pixel in the
corresponding position in the other image. This representation is quite
different from how humans would interpret the image of a face, and it is
hard to capture the facial features using this raw representation. For
example, using pixel distances means that shifting a face by one pixel to
the right corresponds to a drastic change, with a completely different
representation. We hope that using distances along principal components
can improve our accuracy. Here, we enable the whitening option of PCA,
which rescales the principal components to have the same scale. This is
the same as using StandardScaler after the transformation. Reusing the
data from Figure 3-3 again, whitening corresponds to not
only rotating the data, but also rescaling it so that the center panel
is a circle instead of an ellipse (see Figure 3-8):


In[26]:


mglearn.plots.plot_pca_whitening()
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Figure 3-8. Transformation of data with PCA using whitening




We fit the PCA object to the training data and extract the first 100
principal components. Then we transform the training and test data:


In[27]:


pca = PCA(n_components=100, whiten=True, random_state=0).fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)

print("X_train_pca.shape: {}".format(X_train_pca.shape))


Out[27]:


X_train_pca.shape: (1537, 100)


The new data has 100 features, the first 100 principal components. Now,
we can use the new representation to classify our images using
a one-nearest-neighbors classifier:


In[28]:


knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train_pca, y_train)
print("Test set accuracy: {:.2f}".format(knn.score(X_test_pca, y_test)))


Out[28]:


Test set accuracy: 0.36


Our accuracy improved quite significantly, from 26.6% to 35.7%,
confirming our intuition that the principal components might provide a
better representation of the data.


For image data, we can also easily visualize the principal components
that are found. Remember that components correspond to directions in the
input space. The input space here is 50×37-pixel grayscale images, so
directions within this space are also 50×37-pixel grayscale images.


Let’s
look at the first couple of principal components (Figure 3-9):


In[29]:


print("pca.components_.shape: {}".format(pca.components_.shape))


Out[29]:


pca.components_.shape: (100, 5655)


In[30]:


fix, axes = plt.subplots(3, 5, figsize=(15, 12),
                         subplot_kw={'xticks': (), 'yticks': ()})
for i, (component, ax) in enumerate(zip(pca.components_, axes.ravel())):
    ax.imshow(component.reshape(image_shape),
              cmap='viridis')
    ax.set_title("{}. component".format((i + 1)))


While we certainly cannot understand all aspects of these components,
we can guess which aspects of the face images some of the components are
capturing. The first component seems to mostly encode the contrast
between the face and the background, the second component encodes
differences in lighting between the right and the left half of the face,
and so on. While this representation is slightly more semantic than the
raw pixel values, it is still quite far from how a human might perceive
a face. As the PCA model is based on pixels, the alignment of the face (the
position of eyes, chin, and nose) and the lighting both have a
strong influence on how similar two images are in their pixel
representation. But alignment and lighting are probably not what a human
would perceive first. When asking people to rate similarity of faces,
they are more likely to use attributes like age, gender, facial
expression, and hair style, which are attributes that are hard to infer
from the pixel intensities. It’s important to keep in mind that
algorithms often interpret data (particularly visual data, such as images, which humans are very familiar with) quite differently from how a human would.
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Figure 3-9. Component vectors of the first 15 principal components of the faces dataset




Let’s come back to the specific case of PCA, though. We introduced the
PCA transformation as rotating the data and then dropping the
components with low variance. Another useful interpretation is to try to
find some numbers (the new feature values after the PCA rotation) so
that we can express the test points as a weighted sum of the principal
components (see Figure 3-10).
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Figure 3-10. Schematic view of PCA as decomposing an image into a weighted sum of components




Here, x0, x1, and so on are the
coefficients of the principal components for this data point; in other
words, they are the representation of the image in the rotated space.


Another way we can try to understand what a PCA model is doing is by
looking at the reconstructions of the original data using only some
components. In Figure 3-3, after dropping the second
component and arriving at the third panel, we undid the rotation and
added the mean back to obtain new points in the original space with the
second component removed, as shown in the last panel. We can do a
similar transformation for the faces by reducing the data to only some
principal components and then rotating back into the original space.
This return to the original feature space can be done using the
inverse_transform method. Here, we visualize the reconstruction of some
faces using 10, 50, 100, 500, or 2,000 components (Figure 3-11):


In[32]:


mglearn.plots.plot_pca_faces(X_train, X_test, image_shape)
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Figure 3-11. Reconstructing three face images using increasing numbers of principal components




You can see that when we use only the first 10 principal components, only the
essence of the picture, like the face orientation and lighting, is
captured. By using more and more principal components, more and more
details in the image are preserved. This corresponds to extending the
sum in Figure 3-10 to include more and more terms. Using as
many components as there are pixels would mean that we would not discard
any information after the rotation, and we would reconstruct the image
perfectly.


We can also try to use PCA to visualize all the faces in the dataset in
a scatter plot using the first two principal components (Figure 3-12), with classes
given by who is shown in the image, similarly to what we did for the
cancer dataset:


In[33]:


mglearn.discrete_scatter(X_train_pca[:, 0], X_train_pca[:, 1], y_train)
plt.xlabel("First principal component")
plt.ylabel("Second principal component")



[image: malp 0312]
Figure 3-12. Scatter plot of the faces dataset using the first two principal components (see Figure 3-5 for the corresponding image for the cancer dataset)




As you can see, when we use only the first two principal components the
whole data is just a big blob, with no separation of classes visible.
This is not very surprising, given that even with 10 components, as
shown earlier in Figure 3-11, PCA only captures very
rough characteristics of the faces.






















Non-Negative Matrix Factorization (NMF)


Non-negative matrix factorization is another unsupervised learning
algorithm that aims to extract useful features. It works similarly to
PCA and can also be used for dimensionality reduction. As in PCA, we are
trying to write each data point as a weighted sum of some components, as
illustrated in Figure 3-10. But whereas in PCA we wanted components that
were orthogonal and that explained as much variance of the data as
possible, in NMF, we want the components and the coefficients to be
non-negative; that is, we want both the components and the coefficients
to be greater than or equal to zero. Consequently, this method can only
be applied to data where each feature is non-negative, as a non-negative
sum of non-negative components cannot become negative.


The process of decomposing data into a non-negative weighted sum is
particularly helpful for data that is created as the addition (or
overlay) of several independent sources, such as an audio track of
multiple people speaking, or music with many instruments. In these
situations, NMF can identify the original components that make up the
combined data. Overall, NMF leads to more interpretable components than
PCA, as negative components and coefficients can lead to hard-to-interpret
cancellation effects. The eigenfaces in Figure 3-9, for
example, contain both positive and negative parts, and as we mentioned in
the description of PCA, the sign is actually arbitrary. Before we apply
NMF to the face dataset, let’s briefly revisit the synthetic data.












Applying NMF to synthetic data


In contrast to when using PCA, we need to ensure that our data is positive for NMF
to be able to operate on the data. This means where the data lies
relative to the origin (0, 0) actually matters for NMF. Therefore, you
can think of the non-negative components that are extracted as
directions from (0, 0) toward the data.


The following example (Figure 3-13) shows the results of NMF on the
two-dimensional toy data:


In[34]:


mglearn.plots.plot_nmf_illustration()



[image: malp 0313]
Figure 3-13. Components found by non-negative matrix factorization with two components (left) and one component (right)




For NMF with two components, as shown on the
left, it is clear that all points in the data can be written as a
positive combination of the two components. If there are enough
components to perfectly reconstruct the data (as many components as
there are features), the algorithm will choose directions that point
toward the extremes of the data.


If we only use a single component, NMF creates a component that points
toward the mean, as pointing there best explains the data. You can see that
in contrast with PCA, reducing the number of components not only removes some directions, but creates an entirely different set of components! Components in NMF are
also not ordered in any specific way, so there is no “first non-negative
component”: all components play an equal part.


NMF uses a random initialization, which might lead to different results
depending on the random seed. In relatively simple cases such as the
synthetic data with two components, where all the data can be explained
perfectly, the randomness has little effect (though it might change the
order or scale of the components). In more complex situations, there
might be more drastic changes.

















Applying NMF to face images


Now, let’s apply NMF to the Labeled Faces in the Wild dataset we used
earlier. The main parameter of NMF is how many components we want to
extract. Usually this is lower than the number of input features
(otherwise, the data could be explained by making each pixel a separate
component).


First, let’s inspect how the number of components impacts how well the
data can be reconstructed using NMF (Figure 3-14):


In[35]:


mglearn.plots.plot_nmf_faces(X_train, X_test, image_shape)



[image: malp 0314]
Figure 3-14. Reconstructing three face images using increasing numbers of components found by NMF




The quality of the back-transformed data is similar to when using PCA, but slightly
worse. This is expected, as PCA finds the optimum directions in terms of
reconstruction. NMF is usually not used for its ability to reconstruct
or encode data, but rather for finding interesting patterns within the
data.


As a first look into the data, let’s try extracting only a few
components (say, 15). Figure 3-15 shows the result:


In[36]:


from sklearn.decomposition import NMF
nmf = NMF(n_components=15, random_state=0)
nmf.fit(X_train)
X_train_nmf = nmf.transform(X_train)
X_test_nmf = nmf.transform(X_test)

fix, axes = plt.subplots(3, 5, figsize=(15, 12),
                         subplot_kw={'xticks': (), 'yticks': ()})
for i, (component, ax) in enumerate(zip(nmf.components_, axes.ravel())):
    ax.imshow(component.reshape(image_shape))
    ax.set_title("{}. component".format(i))



[image: malp 0315]
Figure 3-15. The components found by NMF on the faces dataset when using 15 components




These components are all positive, and so resemble prototypes of faces
much more so than the components shown for PCA in Figure 3-9.
For example, one can clearly see that component 3 shows a face rotated
somewhat to the right, while component 7 shows a face somewhat rotated
to the left. Let’s look at the images for which these components are
particularly strong, shown in Figures 3-16 and
3-17:


In[37]:


compn = 3
# sort by 3rd component, plot first 10 images
inds = np.argsort(X_train_nmf[:, compn])[::-1]
fig, axes = plt.subplots(2, 5, figsize=(15, 8),
                         subplot_kw={'xticks': (), 'yticks': ()})
for i, (ind, ax) in enumerate(zip(inds, axes.ravel())):
    ax.imshow(X_train[ind].reshape(image_shape))

compn = 7
# sort by 7th component, plot first 10 images
inds = np.argsort(X_train_nmf[:, compn])[::-1]
fig, axes = plt.subplots(2, 5, figsize=(15, 8),
                         subplot_kw={'xticks': (), 'yticks': ()})
for i, (ind, ax) in enumerate(zip(inds, axes.ravel())):
    ax.imshow(X_train[ind].reshape(image_shape))



[image: malp 0316]
Figure 3-16. Faces that have a large coefficient for component 3





[image: malp 0317]
Figure 3-17. Faces that have a large coefficient for component 7




As expected, faces that have a high coefficient for component 3 are
faces looking to the right (Figure 3-16), while faces with a high coefficient for component 7 are looking to the left (Figure 3-17). As mentioned earlier, extracting patterns like
these works best for data with additive structure, including audio, gene
expression, and text data. Let’s walk through one example on
synthetic data to see what this might look like.


Let’s say we are interested in a signal that is a combination of three
different sources (Figure 3-18):


In[38]:


S = mglearn.datasets.make_signals()
plt.figure(figsize=(6, 1))
plt.plot(S, '-')
plt.xlabel("Time")
plt.ylabel("Signal")



[image: malp 0318]
Figure 3-18. Original signal sources




Unfortunately we cannot observe the original signals, but only an
additive mixture of all three of them. We want to recover the
decomposition of the mixed signal into the original components. We
assume that we have many different ways to observe the mixture (say 100
measurement devices), each of which provides us with a series of
measurements:


In[39]:


# mix data into a 100-dimensional state
A = np.random.RandomState(0).uniform(size=(100, 3))
X = np.dot(S, A.T)
print("Shape of measurements: {}".format(X.shape))


Out[39]:


Shape of measurements: (2000, 100)


We can use NMF to recover the three signals:


In[40]:


nmf = NMF(n_components=3, random_state=42)
S_ = nmf.fit_transform(X)
print("Recovered signal shape: {}".format(S_.shape))


Out[40]:


Recovered signal shape: (2000, 3)


For comparison, we also apply PCA:


In[41]:


pca = PCA(n_components=3)
H = pca.fit_transform(X)


Figure 3-19 shows the signal activity that was discovered by NMF and PCA:


In[42]:


models = [X, S, S_, H]
names = ['Observations (first three measurements)',
         'True sources',
         'NMF recovered signals',
         'PCA recovered signals']

fig, axes = plt.subplots(4, figsize=(8, 4), gridspec_kw={'hspace': .5},
                         subplot_kw={'xticks': (), 'yticks': ()})

for model, name, ax in zip(models, names, axes):
    ax.set_title(name)
    ax.plot(model[:, :3], '-')



[image: malp 0319]
Figure 3-19. Recovering mixed sources using NMF and PCA




The figure includes 3 of the 100 measurements
from X for reference. As you can see, NMF did a reasonable job of
discovering the original sources, while PCA failed and used the first
component to explain the majority of the variation in the data. Keep in
mind that the components produced by NMF have no natural ordering. In
this example, the ordering of the NMF components is the same as in the
original signal (see the shading of the three curves), but this is purely
accidental.


There are many other algorithms that can be used to decompose each data
point into a weighted sum of a fixed set of components, as PCA and NMF
do. Discussing all of them is beyond the scope of this book, and
describing the constraints made on the components and coefficients often
involves probability theory. If you are interested in this kind of
pattern extraction, we recommend that you study the sections of the scikit_learn user guide on independent component analysis (ICA), factor analysis (FA), and sparse
coding (dictionary learning), all of which you can find on the page about decomposition methods.






















Manifold Learning with t-SNE


While PCA is often a good first approach for transforming your data so
that you might be able to visualize it using a scatter plot, the nature
of the method (applying a rotation and then dropping directions) limits
its usefulness, as we saw with the scatter plot of the Labeled Faces in
the Wild dataset. There is a class of algorithms for visualization called
manifold learning algorithms that allow for much more complex
mappings, and often provide better visualizations. A particularly useful
one is the t-SNE algorithm.


Manifold learning algorithms are mainly aimed at visualization, and so
are rarely used to generate more than two new features. Some of them,
including t-SNE, compute a new representation of the training data, but
don’t allow transformations of new data. This means these algorithms cannot be applied to a test set: rather, they can only transform the data
they were trained for. Manifold learning can be useful for exploratory
data analysis, but is rarely used if the final goal is supervised
learning. The idea behind t-SNE is to find a two-dimensional
representation of the data that preserves the distances between points as
best as possible. t-SNE starts with a random two-dimensional
representation for each data point, and then tries to make points that are close in the original feature space closer, and points that
are far apart in the original feature space farther apart. t-SNE puts more emphasis on
points that are close by, rather than preserving distances between far-apart points. In other words, it tries to preserve the information indicating which
points are neighbors to each other.


We will apply the t-SNE manifold learning algorithm on a dataset of
handwritten digits that is included in scikit-learn.2 Each data point in this
dataset is an 8×8 grayscale image of a handwritten digit between 0 and
1. Figure 3-20 shows an example image for each class:


In[43]:


from sklearn.datasets import load_digits
digits = load_digits()

fig, axes = plt.subplots(2, 5, figsize=(10, 5),
                         subplot_kw={'xticks':(), 'yticks': ()})
for ax, img in zip(axes.ravel(), digits.images):
    ax.imshow(img)



[image: malp 0320]
Figure 3-20. Example images from the digits dataset




Let’s use PCA to visualize the data reduced to two dimensions. We plot
the first two principal components, and color each dot by its class (see Figure 3-21):


In[44]:


# build a PCA model
pca = PCA(n_components=2)
pca.fit(digits.data)
# transform the digits data onto the first two principal components
digits_pca = pca.transform(digits.data)
colors = ["#476A2A", "#7851B8", "#BD3430", "#4A2D4E", "#875525",
          "#A83683", "#4E655E", "#853541", "#3A3120", "#535D8E"]
plt.figure(figsize=(10, 10))
plt.xlim(digits_pca[:, 0].min(), digits_pca[:, 0].max())
plt.ylim(digits_pca[:, 1].min(), digits_pca[:, 1].max())
for i in range(len(digits.data)):
    # actually plot the digits as text instead of using scatter
    plt.text(digits_pca[i, 0], digits_pca[i, 1], str(digits.target[i]),
             color = colors[digits.target[i]],
             fontdict={'weight': 'bold', 'size': 9})
plt.xlabel("First principal component")
plt.ylabel("Second principal component")


Here, we actually used the true digit classes as glyphs, to show which
class is where. The digits zero, six, and four are relatively
well separated using the first two principal components, though they
still overlap. Most of the other digits overlap significantly.



[image: malp 0321]
Figure 3-21. Scatter plot of the digits dataset using the first two principal components




Let’s apply t-SNE to the same dataset, and compare the results. As t-SNE
does not support transforming new data, the TSNE class has no
transform method. Instead, we can call the fit_transform method,
which will build the model and immediately return the transformed data (see Figure 3-22):


In[45]:


from sklearn.manifold import TSNE
tsne = TSNE(random_state=42)
# use fit_transform instead of fit, as TSNE has no transform method
digits_tsne = tsne.fit_transform(digits.data)


In[46]:


plt.figure(figsize=(10, 10))
plt.xlim(digits_tsne[:, 0].min(), digits_tsne[:, 0].max() + 1)
plt.ylim(digits_tsne[:, 1].min(), digits_tsne[:, 1].max() + 1)
for i in range(len(digits.data)):
    # actually plot the digits as text instead of using scatter
    plt.text(digits_tsne[i, 0], digits_tsne[i, 1], str(digits.target[i]),
             color = colors[digits.target[i]],
             fontdict={'weight': 'bold', 'size': 9})
plt.xlabel("t-SNE feature 0")
plt.xlabel("t-SNE feature 1")



[image: malp 0322]
Figure 3-22. Scatter plot of the digits dataset using two components found by t-SNE




The result of t-SNE is quite remarkable. All the classes are quite
clearly separated. The ones and nines are somewhat split up, but most of
the classes form a single dense group. Keep in mind that this method has
no knowledge of the class labels: it is completely unsupervised. Still,
it can find a representation of the data in two dimensions that clearly
separates the classes, based solely on how close points are in the
original space.


The t-SNE algorithm has some tuning parameters, though it often works well with the
default settings. You can try playing with perplexity and
early_exaggeration, but the effects are usually minor.
























Clustering


As we described earlier, clustering is the task of partitioning the
dataset into groups, called clusters. The goal is to split up the data
in such a way that points within a single cluster are very similar and
points in different clusters are different. Similarly to classification
algorithms, clustering algorithms assign (or predict) a number to each
data point, indicating which cluster a particular point belongs to.










k-Means Clustering


k-means clustering is one of the simplest and most commonly used
clustering algorithms. It tries to find cluster centers that are
representative of certain regions of the data. The algorithm alternates
between two steps: assigning each data point to the closest cluster
center, and then setting each cluster center as the mean of the data
points that are assigned to it. The algorithm is finished when the
assignment of instances to clusters no longer changes.
The following example (Figure 3-23) illustrates the algorithm on a synthetic dataset:


In[47]:


mglearn.plots.plot_kmeans_algorithm()



[image: malp 0323]
Figure 3-23. Input data and three steps of the k-means algorithm




Cluster centers are shown as triangles, while data points are shown as
circles. Colors indicate cluster membership. We specified that we are
looking for three clusters, so the algorithm was initialized by
declaring three data points randomly as cluster centers (see
“Initialization”). Then the iterative algorithm starts. First, each data point
is assigned to the cluster center it is closest to (see “Assign Points
(1)”). Next, the cluster centers are updated to be the mean of the
assigned points (see “Recompute Centers (1)”). Then the process is
repeated two more times. After the third iteration, the assignment of
points to cluster centers remained unchanged, so the algorithm stops.


Given new data points, k-means will assign each to the closest cluster
center. The next example (Figure 3-24) shows the boundaries of the cluster centers that were learned
in Figure 3-23:


In[48]:


mglearn.plots.plot_kmeans_boundaries()



[image: malp 0324]
Figure 3-24. Cluster centers and cluster boundaries found by the k-means algorithm




Applying k-means with scikit-learn is quite straightforward. Here, we
apply it to the synthetic data that we used for the preceding plots. We
instantiate the KMeans class, and set the number of clusters we are
looking for.3 Then we call the fit method with the data:


In[49]:


from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

# generate synthetic two-dimensional data
X, y = make_blobs(random_state=1)

# build the clustering model
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)


During the algorithm, each training data point in X is assigned a
cluster label. You can find these labels in the kmeans.labels_
attribute:


In[50]:


print("Cluster memberships:\n{}".format(kmeans.labels_))


Out[50]:


Cluster memberships:
[1 2 2 2 0 0 0 2 1 1 2 2 0 1 0 0 0 1 2 2 0 2 0 1 2 0 0 1 1 0 1 1 0 1 2 0 2
 2 2 0 0 2 1 2 2 0 1 1 1 1 2 0 0 0 1 0 2 2 1 1 2 0 0 2 2 0 1 0 1 2 2 2 0 1
 1 2 0 0 1 2 1 2 2 0 1 1 1 1 2 1 0 1 1 2 2 0 0 1 0 1]


As we asked for three clusters, the clusters are numbered 0 to 2.


You can also assign cluster labels to new points, using the predict
method. Each new point is assigned to the closest cluster center when
predicting, but the existing model is not changed. Running predict on
the training set returns the same result as labels_:


In[51]:


print(kmeans.predict(X))


Out[51]:


[1 2 2 2 0 0 0 2 1 1 2 2 0 1 0 0 0 1 2 2 0 2 0 1 2 0 0 1 1 0 1 1 0 1 2 0 2
 2 2 0 0 2 1 2 2 0 1 1 1 1 2 0 0 0 1 0 2 2 1 1 2 0 0 2 2 0 1 0 1 2 2 2 0 1
 1 2 0 0 1 2 1 2 2 0 1 1 1 1 2 1 0 1 1 2 2 0 0 1 0 1]


You can see that clustering is somewhat similar to classification, in
that each item gets a label. However, there is no ground truth, and
consequently the labels themselves have no a priori meaning. Let’s go
back to the example of clustering face images that we discussed before.
It might be that the cluster 3 found by the algorithm contains only
faces of your friend Bela. You can only know that after you look at
the pictures, though, and the number 3 is arbitrary. The only
information the algorithm gives you is that all faces labeled as 3 are
similar.


For the clustering we just computed on the two-dimensional toy dataset,
that means that we should not assign any significance to the fact that
one group was labeled 0 and another one was labeled 1. Running the
algorithm again might result in a different numbering of clusters
because of the random nature of the initialization.


Here is a plot of this data again (Figure 3-25). The cluster centers are stored in the
cluster_centers_ attribute, and we plot them as triangles:


In[52]:


mglearn.discrete_scatter(X[:, 0], X[:, 1], kmeans.labels_, markers='o')
mglearn.discrete_scatter(
    kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], [0, 1, 2],
    markers='^', markeredgewidth=2)



[image: malp 0325]
Figure 3-25. Cluster assignments and cluster centers found by k-means with three clusters




We can also use more or fewer cluster centers (Figure 3-26):


In[53]:


fig, axes = plt.subplots(1, 2, figsize=(10, 5))

# using two cluster centers:
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)
assignments = kmeans.labels_

mglearn.discrete_scatter(X[:, 0], X[:, 1], assignments, ax=axes[0])

# using five cluster centers:
kmeans = KMeans(n_clusters=5)
kmeans.fit(X)
assignments = kmeans.labels_

mglearn.discrete_scatter(X[:, 0], X[:, 1], assignments, ax=axes[1])
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Figure 3-26. Cluster assignments found by k-means using two clusters (left) and five clusters (right)














Failure cases of k-means


Even if you know the “right” number of clusters for a given dataset,
k-means might not always be able to recover them. Each cluster is
defined solely by its center, which means that each cluster is a convex
shape. As a result of this, k-means can only capture relatively simple
shapes. k-means also assumes that all clusters have the same “diameter”
in some sense; it always draws the boundary between clusters to be
exactly in the middle between the cluster centers. That can sometimes
lead to surprising results, as shown in Figure 3-27:


In[54]:


X_varied, y_varied = make_blobs(n_samples=200,
                                cluster_std=[1.0, 2.5, 0.5],
                                random_state=170)
y_pred = KMeans(n_clusters=3, random_state=0).fit_predict(X_varied)

mglearn.discrete_scatter(X_varied[:, 0], X_varied[:, 1], y_pred)
plt.legend(["cluster 0", "cluster 1", "cluster 2"], loc='best')
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")



[image: malp 0327]
Figure 3-27. Cluster assignments found by k-means when clusters have different densities




One might have expected the dense region in the lower left to be the first
cluster, the dense region in the upper right to be the second, and the
less dense region in the center to be the third. Instead, both cluster 0
and cluster 1 have some points that are far away from all the other
points in these clusters that “reach” toward the center.


k-means also assumes that all directions are equally important for each
cluster. The following plot (Figure 3-28) shows a two-dimensional dataset where there are
three clearly separated parts in the data. However, these groups are
stretched toward the diagonal. As k-means only considers the distance
to the nearest cluster center, it can’t handle this kind of data:


In[55]:


# generate some random cluster data
X, y = make_blobs(random_state=170, n_samples=600)
rng = np.random.RandomState(74)

# transform the data to be stretched
transformation = rng.normal(size=(2, 2))
X = np.dot(X, transformation)

# cluster the data into three clusters
kmeans = KMeans(n_clusters=3)
kmeans.fit(X)
y_pred = kmeans.predict(X)

# plot the cluster assignments and cluster centers
plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap=mglearn.cm3)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
            marker='^', c=[0, 1, 2], s=100, linewidth=2, cmap=mglearn.cm3)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")



[image: malp 0328]
Figure 3-28. k-means fails to identify nonspherical clusters




k-means also performs poorly if the clusters have more complex shapes,
like the two_moons data we encountered in Chapter 2 (see Figure 3-29):


In[56]:


# generate synthetic two_moons data (with less noise this time)
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

# cluster the data into two clusters
kmeans = KMeans(n_clusters=2)
kmeans.fit(X)
y_pred = kmeans.predict(X)

# plot the cluster assignments and cluster centers
plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap=mglearn.cm2, s=60)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
            marker='^', c=[mglearn.cm2(0), mglearn.cm2(1)], s=100, linewidth=2)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 3-29. k-means fails to identify clusters with complex shapes




Here, we would hope that the clustering algorithm can discover the two
half-moon shapes. However, this is not possible using the k-means
algorithm.

















Vector quantization, or seeing k-means as decomposition


Even though k-means is a clustering algorithm, there are interesting
parallels between k-means and the decomposition methods like PCA and NMF
that we discussed earlier. You might remember that PCA tries to find
directions of maximum variance in the data, while NMF tries to find
additive components, which often correspond to “extremes” or “parts” of
the data (see Figure 3-13). Both methods tried to express
the data points as a sum over some components. k-means, on the other hand,
tries to represent each data point using a cluster center. You can think
of that as each point being represented using only a single component,
which is given by the cluster center. This view of k-means as a
decomposition method, where each point is represented using a single
component, is called vector quantization.


Let’s do a side-by-side comparison of PCA, NMF, and k-means, showing the
components extracted (Figure 3-30), as well as reconstructions of faces from the test
set using 100 components (Figure 3-31). For k-means, the reconstruction is the closest
cluster center found on the training set:


In[57]:


X_train, X_test, y_train, y_test = train_test_split(
    X_people, y_people, stratify=y_people, random_state=0)
nmf = NMF(n_components=100, random_state=0)
nmf.fit(X_train)
pca = PCA(n_components=100, random_state=0)
pca.fit(X_train)
kmeans = KMeans(n_clusters=100, random_state=0)
kmeans.fit(X_train)

X_reconstructed_pca = pca.inverse_transform(pca.transform(X_test))
X_reconstructed_kmeans = kmeans.cluster_centers_[kmeans.predict(X_test)]
X_reconstructed_nmf = np.dot(nmf.transform(X_test), nmf.components_)


In[58]:


fig, axes = plt.subplots(3, 5, figsize=(8, 8),
                         subplot_kw={'xticks': (), 'yticks': ()})
fig.suptitle("Extracted Components")
for ax, comp_kmeans, comp_pca, comp_nmf in zip(
        axes.T, kmeans.cluster_centers_, pca.components_, nmf.components_):
    ax[0].imshow(comp_kmeans.reshape(image_shape))
    ax[1].imshow(comp_pca.reshape(image_shape), cmap='viridis')
    ax[2].imshow(comp_nmf.reshape(image_shape))

axes[0, 0].set_ylabel("kmeans")
axes[1, 0].set_ylabel("pca")
axes[2, 0].set_ylabel("nmf")

fig, axes = plt.subplots(4, 5, subplot_kw={'xticks': (), 'yticks': ()},
                         figsize=(8, 8))
fig.suptitle("Reconstructions")
for ax, orig, rec_kmeans, rec_pca, rec_nmf in zip(
        axes.T, X_test, X_reconstructed_kmeans, X_reconstructed_pca,
        X_reconstructed_nmf):

    ax[0].imshow(orig.reshape(image_shape))
    ax[1].imshow(rec_kmeans.reshape(image_shape))
    ax[2].imshow(rec_pca.reshape(image_shape))
    ax[3].imshow(rec_nmf.reshape(image_shape))

axes[0, 0].set_ylabel("original")
axes[1, 0].set_ylabel("kmeans")
axes[2, 0].set_ylabel("pca")
axes[3, 0].set_ylabel("nmf")
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Figure 3-30. Comparing k-means cluster centers to components found by PCA and NMF
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Figure 3-31. Comparing image reconstructions using k-means, PCA, and NMF with 100 components (or cluster centers)—k-means uses only a single cluster center per image




An interesting aspect of vector quantization using k-means is that we
can use many more clusters than input dimensions to encode our data.
Let’s go back to the two_moons data. Using PCA or NMF, there is
nothing much we can do to this data, as it lives in only two dimensions.
Reducing it to one dimension with PCA or NMF would completely destroy
the structure of the data. But we can find a more expressive
representation with k-means, by using more cluster centers (see Figure 3-32):


In[59]:


X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

kmeans = KMeans(n_clusters=10, random_state=0)
kmeans.fit(X)
y_pred = kmeans.predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_pred, s=60, cmap='Paired')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=60,
            marker='^', c=range(kmeans.n_clusters), linewidth=2, cmap='Paired')
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
print("Cluster memberships:\n{}".format(y_pred))


Out[59]:


Cluster memberships:
[9 2 5 4 2 7 9 6 9 6 1 0 2 6 1 9 3 0 3 1 7 6 8 6 8 5 2 7 5 8 9 8 6 5 3 7 0
 9 4 5 0 1 3 5 2 8 9 1 5 6 1 0 7 4 6 3 3 6 3 8 0 4 2 9 6 4 8 2 8 4 0 4 0 5
 6 4 5 9 3 0 7 8 0 7 5 8 9 8 0 7 3 9 7 1 7 2 2 0 4 5 6 7 8 9 4 5 4 1 2 3 1
 8 8 4 9 2 3 7 0 9 9 1 5 8 5 1 9 5 6 7 9 1 4 0 6 2 6 4 7 9 5 5 3 8 1 9 5 6
 3 5 0 2 9 3 0 8 6 0 3 3 5 6 3 2 0 2 3 0 2 6 3 4 4 1 5 6 7 1 1 3 2 4 7 2 7
 3 8 6 4 1 4 3 9 9 5 1 7 5 8 2]
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Figure 3-32. Using many k-means clusters to cover the variation in a complex dataset




We used 10 cluster centers, which means each point is now assigned a
number between 0 and 9. We can see this as the data being represented
using 10 components (that is, we have 10 new features), with all
features being 0, apart from the one that represents the cluster
center the point is assigned to. Using this 10-dimensional
representation, it would now be possible to separate the two half-moon
shapes using a linear model, which would not have been possible using
the original two features. It is also possible to get an even more
expressive representation of the data by using the distances to each of
the cluster centers as features. This can be accomplished using the transform
method of kmeans:


In[60]:


distance_features = kmeans.transform(X)
print("Distance feature shape: {}".format(distance_features.shape))
print("Distance features:\n{}".format(distance_features))


Out[60]:


Distance feature shape: (200, 10)
Distance features:
[[ 0.922  1.466  1.14  ...,  1.166  1.039  0.233]
 [ 1.142  2.517  0.12  ...,  0.707  2.204  0.983]
 [ 0.788  0.774  1.749 ...,  1.971  0.716  0.944]
 ...,
 [ 0.446  1.106  1.49  ...,  1.791  1.032  0.812]
 [ 1.39   0.798  1.981 ...,  1.978  0.239  1.058]
 [ 1.149  2.454  0.045 ...,  0.572  2.113  0.882]]


k-means is a very popular algorithm for clustering, not only because it
is relatively easy to understand and implement, but also because it runs
relatively quickly. k-means scales easily to large datasets, and
scikit-learn even includes a more scalable variant in the
MiniBatchKMeans class, which can handle very large datasets.


One of the drawbacks of k-means is that it relies on a random
initialization, which means the outcome of the algorithm depends on a
random seed. By default, scikit-learn runs the algorithm 10 times with
10 different random initializations, and returns the best result.4 Further downsides of k-means are the relatively
restrictive assumptions made on the shape of clusters, and the
requirement to specify the number of clusters you are looking for (which
might not be known in a real-world application).


Next, we will look at two more clustering algorithms that improve upon
these properties in some ways.






















Agglomerative Clustering


Agglomerative clustering refers to a collection of clustering algorithms
that all build upon the same principles: the algorithm starts by
declaring each point its own cluster, and then merges the two most
similar clusters until some stopping criterion is satisfied. The
stopping criterion implemented in scikit-learn is the number of
clusters, so similar clusters are merged until only the specified number
of clusters are left. There are several linkage criteria that specify
how exactly the “most similar cluster” is measured. This measure is always
defined between two existing clusters.


The following three choices are implemented in scikit-learn:


	ward

	
The default choice, ward picks the two clusters to merge such that the variance within all clusters increases the least. This often leads to clusters that are relatively equally sized.



	average

	
average linkage merges the two clusters that have the smallest average distance between all their points.



	complete

	
complete linkage (also known as maximum linkage)
merges the two clusters that have the smallest maximum distance between
their points.






ward works on most datasets, and we will use it in our examples.
If the clusters have very dissimilar numbers of members (if one is much
bigger than all the others, for example), average or complete might
work better.


The following plot (Figure 3-33) illustrates the progression of agglomerative clustering
on a two-dimensional dataset, looking for three clusters:


In[61]:


mglearn.plots.plot_agglomerative_algorithm()
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Figure 3-33. Agglomerative clustering iteratively joins the two closest clusters




Initially, each point is its own cluster. Then, in each step, the two
clusters that are closest are merged. In the first four steps, two
single-point clusters are picked and these are joined into two-point
clusters. In step 5, one of the two-point clusters is extended to a
third point, and so on. In step 9, there are only three clusters
remaining. As we specified that we are looking for three clusters, the
algorithm then stops.


Let’s have a look at how agglomerative clustering performs on the simple
three-cluster data we used here. Because of the way the algorithm
works, agglomerative clustering cannot make predictions for new data
points. Therefore, AgglomerativeClustering has no predict method. To
build the model and get the cluster memberships on the training set,
use the fit_predict method instead.5 The result is shown in Figure 3-34:


In[62]:


from sklearn.cluster import AgglomerativeClustering
X, y = make_blobs(random_state=1)

agg = AgglomerativeClustering(n_clusters=3)
assignment = agg.fit_predict(X)

mglearn.discrete_scatter(X[:, 0], X[:, 1], assignment)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
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Figure 3-34. Cluster assignment using agglomerative clustering with three clusters




As expected, the algorithm recovers the clustering perfectly. While the
scikit-learn implementation of agglomerative clustering requires you to
specify the number of clusters you want the algorithm to find,
agglomerative clustering methods provide some help with choosing the
right number, which we will discuss next.












Hierarchical clustering and dendrograms


Agglomerative clustering produces what is known as a hierarchical
clustering. The clustering proceeds iteratively, and every point makes
a journey from being a single point cluster to belonging to some final
cluster. Each intermediate step provides a clustering of the data (with
a different number of clusters). It is sometimes helpful to look at all
possible clusterings jointly. The next example (Figure 3-35) shows an overlay of all the
possible clusterings shown in Figure 3-33, providing
some insight into how each cluster breaks up into smaller clusters:


In[63]:


mglearn.plots.plot_agglomerative()
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Figure 3-35. Hierarchical cluster assignment (shown as lines) generated with agglomerative clustering, with numbered data points (cf. Figure 3-36)




While this visualization provides a very detailed view of the
hierarchical clustering, it relies on the two-dimensional nature of the
data and therefore cannot be used on datasets that have more than two
features. There is, however, another tool to visualize hierarchical
clustering, called a dendrogram, that can handle multidimensional datasets.


Unfortunately, scikit-learn currently does not have the functionality to
draw dendrograms. However, you can generate them easily using SciPy. The
SciPy clustering algorithms have a slightly different interface to the
scikit-learn clustering algorithms. SciPy provides a function that takes a
data array X and computes a linkage array, which encodes
hierarchical cluster similarities. We can then feed this linkage array
into the scipy dendrogram function to plot the dendrogram (Figure 3-36):


In[64]:


# Import the dendrogram function and the ward clustering function from SciPy
from scipy.cluster.hierarchy import dendrogram, ward

X, y = make_blobs(random_state=0, n_samples=12)
# Apply the ward clustering to the data array X
# The SciPy ward function returns an array that specifies the distances
# bridged when performing agglomerative clustering
linkage_array = ward(X)
# Now we plot the dendrogram for the linkage_array containing the distances
# between clusters
dendrogram(linkage_array)

# Mark the cuts in the tree that signify two or three clusters
ax = plt.gca()
bounds = ax.get_xbound()
ax.plot(bounds, [7.25, 7.25], '--', c='k')
ax.plot(bounds, [4, 4], '--', c='k')

ax.text(bounds[1], 7.25, ' two clusters', va='center', fontdict={'size': 15})
ax.text(bounds[1], 4, ' three clusters', va='center', fontdict={'size': 15})
plt.xlabel("Sample index")
plt.ylabel("Cluster distance")
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Figure 3-36. Dendrogram of the clustering shown in Figure 3-35 with lines indicating splits into two and three clusters




The dendrogram shows data points as points on the bottom (numbered from
0 to 11). Then, a tree is plotted with these points (representing
single-point clusters) as the leaves, and a new node parent is added for
each two clusters that are joined.


Reading from bottom to top, the data points 1 and 4 are joined first (as
you could see in Figure 3-33). Next, points 6 and 9
are joined into a cluster, and so on. At the top level, there are two
branches, one consisting of points 11, 0, 5, 10, 7, 6, and 9, and the
other consisting of points 1, 4, 3, 2, and 8. These correspond to the
two largest clusters in the lefthand side of the plot.


The y-axis in the dendrogram doesn’t just specify when in the
agglomerative algorithm two clusters get merged. The length of each
branch also shows how far apart the merged clusters are. The longest
branches in this dendrogram are the three lines that are marked by the
dashed line labeled “three clusters.” That these are the longest
branches indicates that going from three to two clusters meant merging
some very far-apart points. We see this again at the top of the chart,
where merging the two remaining clusters into a single cluster again
bridges a relatively large distance.


Unfortunately, agglomerative clustering still fails at separating
complex shapes like the two_moons dataset. But the same is not true
for the next algorithm we will look at, DBSCAN.






















DBSCAN


Another very useful clustering algorithm is DBSCAN (which stands for
“density-based spatial clustering of applications with noise”). The main
benefits of DBSCAN are that it does not require the user to set the
number of clusters a priori, it can capture clusters of complex
shapes, and it can identify points that are not part of any cluster.
DBSCAN is somewhat slower than agglomerative clustering and k-means, but
still scales to relatively large datasets.


DBSCAN works by identifying points that are in “crowded” regions of
the feature space, where many data points are close together. These
regions are referred to as dense regions in feature space. The idea
behind DBSCAN is that clusters form dense regions of data, separated by
regions that are relatively empty.


Points that are within a dense region are called core samples (or core points), and
they are defined as follows. There are two parameters in DBSCAN:
min_samples and eps. If there are at least min_samples many data
points within a distance of eps to a given data point, that data point is classified as a core sample. Core samples that are closer to each other than the distance eps are
put into the same cluster by DBSCAN.


The algorithm works by picking an arbitrary point to start with. It then finds all
points with distance eps or less from that point. If there are less than min_samples
points within distance eps of the starting point, this point is labeled as noise,
meaning that it doesn’t belong to any cluster. If there are more
than min_samples points within a distance of eps, the point is
labeled a core sample and assigned a new cluster label. Then, all
neighbors (within eps) of the point are visited. If they have not
been assigned a cluster yet, they are assigned the new cluster label that was just created. If they are core samples, their neighbors are visited in
turn, and so on. The cluster grows until there are no more core samples
within distance eps of the cluster. Then another point that hasn’t
yet been visited is picked, and the same procedure is repeated.


In the end, there are three kinds of points: core points, points that
are within distance eps of core points (called boundary points), and
noise. When the DBSCAN algorithm is run on a particular dataset
multiple times, the clustering of the core points is always the same,
and the same points will always be labeled as noise. However, a boundary
point might be neighbor to core samples of more than one cluster.
Therefore, the cluster membership of boundary points depends on the
order in which points are visited. Usually there are only few boundary
points, and this slight dependence on the order of points is not
important.


Let’s apply DBSCAN on the synthetic dataset we used to demonstrate agglomerative clustering. Like agglomerative
clustering, DBSCAN does not allow predictions on new test data, so we
will use the fit_predict method to perform clustering and return the
cluster labels in one step:


In[65]:


from sklearn.cluster import DBSCAN
X, y = make_blobs(random_state=0, n_samples=12)

dbscan = DBSCAN()
clusters = dbscan.fit_predict(X)
print("Cluster memberships:\n{}".format(clusters))


Out[65]:


Cluster memberships:
[-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]


As you can see, all data points were assigned the label -1, which
stands for noise. This is a consequence of the default parameter
settings for eps and min_samples, which are not tuned for small toy
datasets. The cluster assignments for different values of min_samples and eps are shown below, and visualized in Figure 3-37:


In[66]:


mglearn.plots.plot_dbscan()


Out[66]:


min_samples: 2 eps: 1.000000  cluster: [-1  0  0 -1  0 -1  1  1  0  1 -1 -1]
min_samples: 2 eps: 1.500000  cluster: [0 1 1 1 1 0 2 2 1 2 2 0]
min_samples: 2 eps: 2.000000  cluster: [0 1 1 1 1 0 0 0 1 0 0 0]
min_samples: 2 eps: 3.000000  cluster: [0 0 0 0 0 0 0 0 0 0 0 0]
min_samples: 3 eps: 1.000000  cluster: [-1  0  0 -1  0 -1  1  1  0  1 -1 -1]
min_samples: 3 eps: 1.500000  cluster: [0 1 1 1 1 0 2 2 1 2 2 0]
min_samples: 3 eps: 2.000000  cluster: [0 1 1 1 1 0 0 0 1 0 0 0]
min_samples: 3 eps: 3.000000  cluster: [0 0 0 0 0 0 0 0 0 0 0 0]
min_samples: 5 eps: 1.000000  cluster: [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]
min_samples: 5 eps: 1.500000  cluster: [-1  0  0  0  0 -1 -1 -1  0 -1 -1 -1]
min_samples: 5 eps: 2.000000  cluster: [-1  0  0  0  0 -1 -1 -1  0 -1 -1 -1]
min_samples: 5 eps: 3.000000  cluster: [0 0 0 0 0 0 0 0 0 0 0 0]
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Figure 3-37. Cluster assignments found by DBSCAN with varying settings for the min_samples and eps parameters




In this plot, points that belong to clusters are solid, while the noise
points are shown in white. Core samples are shown as large markers,
while boundary points are displayed as smaller markers. Increasing eps
(going from left to right in the figure) means that more points
will be included in a cluster. This makes clusters grow, but might also
lead to multiple clusters joining into one. Increasing min_samples
(going from top to bottom in the figure) means that fewer points will be
core points, and more points will be labeled as noise.


The parameter eps is somewhat more important, as it determines what it
means for points to be “close.” Setting eps to be very small will mean
that no points are core samples, and may lead to all points being
labeled as noise. Setting eps to be very large will result in all
points forming a single cluster.


The min_samples setting mostly determines whether points in less dense
regions will be labeled as outliers or as their own clusters. If you
decrease min_samples, anything that would have been a cluster with
less than min_samples many samples will now be labeled as noise. min_samples therefore determines the minimum cluster size. You can see
this very clearly in Figure 3-37, when going from min_samples=3 to
min_samples=5 with eps=1.5. With min_samples=3, there are three
clusters: one of four points, one of five points, and one of three
points. Using min_samples=5, the two smaller clusters (with three and
four points) are now labeled as noise, and only the cluster with five
samples remains.


While DBSCAN doesn’t require setting the number of clusters explicitly,
setting eps implicitly controls how many clusters will be found. Finding a good setting for eps is sometimes easier after scaling the
data using StandardScaler or MinMaxScaler, as using these scaling
techniques will ensure that all features have similar ranges.


Figure 3-38 shows the result of running DBSCAN on the two_moons dataset. The
algorithm actually finds the two half-circles and separates them using
the default settings:


In[67]:


X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

# rescale the data to zero mean and unit variance
scaler = StandardScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)

dbscan = DBSCAN()
clusters = dbscan.fit_predict(X_scaled)
# plot the cluster assignments
plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap=mglearn.cm2, s=60)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")


As the algorithm produced the desired number of clusters (two), the
parameter settings seem to work well. If we decrease eps to 0.2 (from
the default of 0.5), we will get eight clusters, which is clearly too many.
Increasing eps to 0.7 results in a single cluster.


When using DBSCAN, you need to be careful about handling the returned
cluster assignments. The use of -1 to indicate noise might result in
unexpected effects when using the cluster labels to index another array.
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Figure 3-38. Cluster assignment found by DBSCAN using the default value of eps=0.5



















Comparing and Evaluating Clustering Algorithms


One of the challenges in applying clustering algorithms is
that it is very hard to assess how well an algorithm worked, and to
compare outcomes between different algorithms. After talking about the algorithms behind k-means, agglomerative clustering, and DBSCAN, we will now compare them on some real-world datasets.












Evaluating clustering with ground truth


There are metrics that can be used to assess the outcome of a clustering
algorithm relative to a ground truth clustering, the most important ones
being the adjusted rand index (ARI) and normalized mutual
information (NMI), which both provide a quantitative measure between 0
and 1.


Here, we compare the k-means, agglomerative clustering, and DBSCAN
algorithms using ARI. We also include what it looks like when we
randomly assign points to two clusters for comparison (see Figure 3-39):


In[68]:


from sklearn.metrics.cluster import adjusted_rand_score
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

# rescale the data to zero mean and unit variance
scaler = StandardScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)

fig, axes = plt.subplots(1, 4, figsize=(15, 3),
                         subplot_kw={'xticks': (), 'yticks': ()})

# make a list of algorithms to use
algorithms = [KMeans(n_clusters=2), AgglomerativeClustering(n_clusters=2),
              DBSCAN()]

# create a random cluster assignment for reference
random_state = np.random.RandomState(seed=0)
random_clusters = random_state.randint(low=0, high=2, size=len(X))

# plot random assignment
axes[0].scatter(X_scaled[:, 0], X_scaled[:, 1], c=random_clusters,
                cmap=mglearn.cm3, s=60)
axes[0].set_title("Random assignment - ARI: {:.2f}".format(
        adjusted_rand_score(y, random_clusters)))

for ax, algorithm in zip(axes[1:], algorithms):
    # plot the cluster assignments and cluster centers
    clusters = algorithm.fit_predict(X_scaled)
    ax.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters,
               cmap=mglearn.cm3, s=60)
    ax.set_title("{} - ARI: {:.2f}".format(algorithm.__class__.__name__,
                                           adjusted_rand_score(y, clusters)))
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Figure 3-39. Comparing random assignment, k-means, agglomerative clustering, and DBSCAN on the two_moons dataset using the supervised ARI score




The adjusted rand index provides intuitive results, with a random
cluster assignment having a score of 0 and DBSCAN (which recovers the
desired clustering perfectly) having a score of 1.


A common mistake when evaluating clustering in this way is to use accuracy_score instead of adjusted_rand_score, normalized_mutual_info_score, or some other clustering metric. The problem in using accuracy is that it requires the assigned cluster
labels to exactly match the ground truth. However, the cluster labels
themselves are meaningless—the only thing that matters is which points
are in the same cluster:


In[69]:


from sklearn.metrics import accuracy_score

# these two labelings of points correspond to the same clustering
clusters1 = [0, 0, 1, 1, 0]
clusters2 = [1, 1, 0, 0, 1]
# accuracy is zero, as none of the labels are the same
print("Accuracy: {:.2f}".format(accuracy_score(clusters1, clusters2)))
# adjusted rand score is 1, as the clustering is exactly the same
print("ARI: {:.2f}".format(adjusted_rand_score(clusters1, clusters2)))


Out[69]:


Accuracy: 0.00
ARI: 1.00

















Evaluating clustering without ground truth


Although we have just shown one way to evaluate clustering algorithms, in
practice, there is a big problem with using measures like
ARI. When applying clustering algorithms, there is usually no ground
truth to which to compare the results. If we knew the right clustering of the data,
we could use this information to build a supervised model like a
classifier. Therefore, using metrics like ARI and NMI usually only helps
in developing algorithms, not in assessing success in an application.


There are scoring metrics for clustering that don’t require ground
truth, like the silhouette coefficient. However, these often don’t
work well in practice. The silhouette score computes the compactness of
a cluster, where higher is better, with a perfect score of 1. While
compact clusters are good, compactness doesn’t allow for complex shapes.


Here is an example comparing the outcome of k-means, agglomerative
clustering, and DBSCAN on the two-moons dataset using the silhouette score (Figure 3-40):


In[70]:


from sklearn.metrics.cluster import silhouette_score

X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
# rescale the data to zero mean and unit variance
scaler = StandardScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)

fig, axes = plt.subplots(1, 4, figsize=(15, 3),
                         subplot_kw={'xticks': (), 'yticks': ()})

# create a random cluster assignment for reference
random_state = np.random.RandomState(seed=0)
random_clusters = random_state.randint(low=0, high=2, size=len(X))

# plot random assignment
axes[0].scatter(X_scaled[:, 0], X_scaled[:, 1], c=random_clusters,
    cmap=mglearn.cm3, s=60)
axes[0].set_title("Random assignment: {:.2f}".format(
    silhouette_score(X_scaled, random_clusters)))

algorithms = [KMeans(n_clusters=2), AgglomerativeClustering(n_clusters=2),
              DBSCAN()]

for ax, algorithm in zip(axes[1:], algorithms):
    clusters = algorithm.fit_predict(X_scaled)
    # plot the cluster assignments and cluster centers
    ax.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap=mglearn.cm3,
               s=60)
    ax.set_title("{} : {:.2f}".format(algorithm.__class__.__name__,
                                      silhouette_score(X_scaled, clusters)))
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Figure 3-40. Comparing random assignment, k-means, agglomerative clustering, and DBSCAN on the two_moons dataset using the unsupervised silhouette score—the more intuitive result of DBSCAN has a lower silhouette score than the assignments found by k-means




As you can see, k-means gets the highest silhouette score, even though
we might prefer the result produced by DBSCAN. A slightly better
strategy for evaluating clusters is using robustness-based clustering
metrics. These run an algorithm after adding some noise to the data, or
using different parameter settings, and compare the outcomes. The idea
is that if many algorithm parameters and many perturbations of the data
return the same result, it is likely to be trustworthy. Unfortunately,
this strategy is not implemented in scikit-learn at the time of writing.


Even if we get a very robust clustering, or a very high silhouette
score, we still don’t know if there is any semantic meaning in the
clustering, or whether the clustering reflects an aspect of the data
that we are interested in. Let’s go back to the example of face images.
We hope to find groups of similar faces—say, men and women, or old
people and young people, or people with beards and without. Let’s say we
cluster the data into two clusters, and all algorithms agree about which
points should be clustered together. We still don’t know if the clusters
that are found correspond in any way to the concepts we are interested
in. It could be that they found side views versus front views, or
pictures taken at night versus pictures taken during the day, or
pictures taken with iPhones versus pictures taken with Android phones.
The only way to know whether the clustering corresponds to anything we
are interested in is to analyze the clusters manually.

















Comparing algorithms on the faces dataset


Let’s apply the k-means, DBSCAN, and agglomerative clustering algorithms
to the Labeled Faces in the Wild dataset, and see if any of them find
interesting structure. We will use the eigenface representation of the
data, as produced by PCA(whiten=True), with 100 components:


In[71]:


# extract eigenfaces from lfw data and transform data
from sklearn.decomposition import PCA
pca = PCA(n_components=100, whiten=True, random_state=0)
pca.fit_transform(X_people)
X_pca = pca.transform(X_people)


We saw earlier that this is a more semantic representation of the face images than the raw pixels. It will also make computation faster. A good exercise would be for you to run the following experiments on the original data, without PCA, and see if you find similar clusters.














Analyzing the faces dataset with DBSCAN


We will start by applying DBSCAN, which we just discussed:


In[72]:


# apply DBSCAN with default parameters
dbscan = DBSCAN()
labels = dbscan.fit_predict(X_pca)
print("Unique labels: {}".format(np.unique(labels)))


Out[72]:


Unique labels: [-1]


We see that all the returned labels are –1, so all of the data was labeled
as “noise” by DBSCAN. There are two things we can change to help this:
we can make eps higher, to expand the neighborhood of each point, and
set min_samples lower, to consider smaller groups of points as
clusters. Let’s try changing min_samples first:


In[73]:


dbscan = DBSCAN(min_samples=3)
labels = dbscan.fit_predict(X_pca)
print("Unique labels: {}".format(np.unique(labels)))


Out[73]:


Unique labels: [-1]


Even when considering groups of three points, everything is labeled as
noise. So, we need to increase eps:


In[74]:


dbscan = DBSCAN(min_samples=3, eps=15)
labels = dbscan.fit_predict(X_pca)
print("Unique labels: {}".format(np.unique(labels)))


Out[74]:


Unique labels: [-1  0]


Using a much larger eps  of 15, we get only a single cluster and noise
points. We can use this result to find out what the “noise” looks like
compared to the rest of the data. To understand better what’s happening,
let’s look at how many points are noise, and how many points are inside
the cluster:


In[75]:


# Count number of points in all clusters and noise.
# bincount doesn't allow negative numbers, so we need to add 1.
# The first number in the result corresponds to noise points.
print("Number of points per cluster: {}".format(np.bincount(labels + 1)))


Out[75]:


Number of points per cluster: [  27 2036]


There are very few noise points—only 27—so we can look at all of them (see Figure 3-41):


In[76]:


noise = X_people[labels==-1]

fig, axes = plt.subplots(3, 9, subplot_kw={'xticks': (), 'yticks': ()},
                         figsize=(12, 4))
for image, ax in zip(noise, axes.ravel()):
    ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)



[image: malp 0341]
Figure 3-41. Samples from the faces dataset labeled as noise by DBSCAN




Comparing these images to the random sample of face images from
Figure 3-7, we can guess why they were labeled as noise: the
fifth image in the first row shows a person drinking from a glass,
there are images of people wearing hats, and in the last image there’s a hand in front of
the person’s face. The other images contain odd angles or crops that are too
close or too wide.


This kind of analysis—trying to find “the odd one out”—is called
outlier detection. If this was a real application, we might try to do
a better job of cropping images, to get more homogeneous data. There is
little we can do about people in photos sometimes wearing hats, drinking, or holding something in front of their faces, but it’s good to know that these are issues in the data that any
algorithm we might apply needs to handle.


If we want to find more interesting clusters than just one large one, we
need to set eps smaller, somewhere between 15 and 0.5 (the default).
Let’s have a look at what different values of eps result in:


In[77]:


for eps in [1, 3, 5, 7, 9, 11, 13]:
    print("\neps={}".format(eps))
    dbscan = DBSCAN(eps=eps, min_samples=3)
    labels = dbscan.fit_predict(X_pca)
    print("Clusters present: {}".format(np.unique(labels)))
    print("Cluster sizes: {}".format(np.bincount(labels + 1)))


Out[78]:


eps=1
Clusters present: [-1]
Cluster sizes: [2063]

eps=3
Clusters present: [-1]
Cluster sizes: [2063]

eps=5
Clusters present: [-1]
Cluster sizes: [2063]

eps=7
Clusters present: [-1  0  1  2  3  4  5  6  7  8  9 10 11 12]
Cluster sizes: [2006  4  6  6  6  9  3  3  4  3  3  3  3  4]

eps=9
Clusters present: [-1  0  1  2]
Cluster sizes: [1269  788    3    3]

eps=11
Clusters present: [-1  0]
Cluster sizes: [ 430 1633]

eps=13
Clusters present: [-1  0]
Cluster sizes: [ 112 1951]


For low settings of eps, all points are labeled as noise. For eps=7,
we get many noise points and many smaller clusters. For eps=9 we
still get many noise points, but we get one big cluster and some smaller clusters.
Starting from eps=11, we get only one large cluster and noise.


What is interesting to note is that there is never more than one large
cluster. At most, there is one large cluster containing most of the
points, and some smaller clusters. This indicates that there are not two
or three different kinds of face images in the data that are very
distinct, but rather that all images are more or less equally similar to (or
dissimilar from) the rest.


The results for eps=7 look most interesting, with many small clusters.
We can investigate this clustering in more detail by visualizing all of the
points in each of the 13 small clusters (Figure 3-42):


In[78]:


dbscan = DBSCAN(min_samples=3, eps=7)
labels = dbscan.fit_predict(X_pca)

for cluster in range(max(labels) + 1):
    mask = labels == cluster
    n_images =  np.sum(mask)
    fig, axes = plt.subplots(1, n_images, figsize=(n_images * 1.5, 4),
                             subplot_kw={'xticks': (), 'yticks': ()})
    for image, label, ax in zip(X_people[mask], y_people[mask], axes):

        ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)
        ax.set_title(people.target_names[label].split()[-1])



[image: malp 0342]
Figure 3-42. Clusters found by DBSCAN with eps=7




Some of the clusters correspond to people with very distinct faces
(within this dataset), such as Sharon or Koizumi. Within each cluster,
the orientation of the face is also quite fixed, as well as the facial
expression. Some of the clusters contain faces of multiple people, but
they share a similar orientation and expression.


This concludes our analysis of the DBSCAN algorithm applied to the faces
dataset. As you can see, we are doing a manual analysis here,
different from the much more automatic search approach we could use for
supervised learning based on R2 score or accuracy.


Let’s move on to applying k-means and agglomerative clustering.

















Analyzing the faces dataset with k-means


We saw that it was not possible to create more than one big cluster
using DBSCAN. Agglomerative clustering and k-means are much more likely
to create clusters of even size, but we do need to set a target number of
clusters. We could set the number of clusters to the known number of
people in the dataset, though it is very unlikely that an unsupervised
clustering algorithm will recover them. Instead, we can start with a low
number of clusters, like 10, which might allow us to analyze each of the
clusters:


In[79]:


# extract clusters with k-means
km = KMeans(n_clusters=10, random_state=0)
labels_km = km.fit_predict(X_pca)
print("Cluster sizes k-means: {}".format(np.bincount(labels_km)))


Out[79]:


Cluster sizes k-means: [269 128 170 186 386 222 237  64 253 148]


As you can see, k-means clustering partitioned the data into relatively
similarly sized clusters from 64 to 386. This is quite different from
the result of DBSCAN.


We can further analyze the outcome of k-means by visualizing the cluster
centers (Figure 3-43). As we clustered in the representation produced by PCA, we need
to rotate the cluster centers back into the original space to visualize
them, using pca.inverse_transform:


In[80]:


fig, axes = plt.subplots(2, 5, subplot_kw={'xticks': (), 'yticks': ()},
                         figsize=(12, 4))
for center, ax in zip(km.cluster_centers_, axes.ravel()):
    ax.imshow(pca.inverse_transform(center).reshape(image_shape),
              vmin=0, vmax=1)



[image: malp 0343]
Figure 3-43. Cluster centers found by k-means when setting the number of clusters to 10




The cluster centers found by k-means are very smooth versions of faces.
This is not very surprising, given that each center is an average of 64 to 386 face images. Working with a reduced PCA representation adds to
the smoothness of the images (compared to the faces reconstructed using 100
PCA dimensions in Figure 3-11). The clustering seems to
pick up on different orientations of the face, different expressions (the
third cluster center seems to show a smiling face), and the presence of
shirt collars (see the second-to-last cluster center).


For a more detailed view, in Figure 3-44 we show for each cluster center the five most
typical images in the cluster (the images assigned to the
cluster that are closest to the cluster center) and the five most atypical
images in the cluster (the images assigned to the cluster that are
furthest from the cluster center):


In[81]:


mglearn.plots.plot_kmeans_faces(km, pca, X_pca, X_people,
                                y_people, people.target_names)



[image: malp 0344]
Figure 3-44. Sample images for each cluster found by k-means—the cluster centers are on the left, followed by the five closest points to each center and the five points that are assigned to the cluster but are furthest away from the center




Figure 3-44 confirms our intuition about smiling faces
for the third cluster, and also the importance of orientation for the
other clusters. The “atypical” points are not very similar to the
cluster centers, though, and their assignment seems somewhat arbitrary.
This can be attributed to the fact that k-means partitions all the data
points and doesn’t have a concept of “noise” points, as DBSCAN does.
Using a larger number of clusters, the algorithm could find finer
distinctions. However, adding more clusters makes manual inspection even
harder.

















Analyzing the faces dataset with agglomerative clustering


Now, let’s look at the results of agglomerative clustering:


In[82]:


# extract clusters with ward agglomerative clustering
agglomerative = AgglomerativeClustering(n_clusters=10)
labels_agg = agglomerative.fit_predict(X_pca)
print("Cluster sizes agglomerative clustering: {}".format(
    np.bincount(labels_agg)))


Out[82]:


Cluster sizes agglomerative clustering: [255 623  86 102 122 199 265  26 230 155]


Agglomerative clustering also produces relatively equally sized clusters,
with cluster sizes between 26 and 623. These are more uneven than those produced by k-means, but much more even than the ones produced by DBSCAN.


We can compute the ARI to measure whether the two partitions of the data
given by agglomerative clustering and k-means are similar:


In[83]:


print("ARI: {:.2f}".format(adjusted_rand_score(labels_agg, labels_km)))


Out[83]:


ARI: 0.13


An ARI of only 0.13 means that the two clusterings labels_agg and
labels_km have little in common. This is not very surprising, given
the fact that points further away from the cluster centers seem to have
little in common for k-means.


Next, we might want to plot the dendrogram (Figure 3-45). We’ll limit the depth of the
tree in the plot, as branching down to the individual 2,063 data points
would result in an unreadably dense plot:


In[84]:


linkage_array = ward(X_pca)
# now we plot the dendrogram for the linkage_array
# containing the distances between clusters
plt.figure(figsize=(20, 5))
dendrogram(linkage_array, p=7, truncate_mode='level', no_labels=True)
plt.xlabel("Sample index")
plt.ylabel("Cluster distance")



[image: malp 0345]
Figure 3-45. Dendrogram of agglomerative clustering on the faces dataset




Creating 10 clusters, we cut across the tree at the very top, where
there are 10 vertical lines. In the dendrogram for the toy data shown in
Figure 3-36, you could see by the length of the branches that two
or three clusters might capture the data appropriately. For the faces
data, there doesn’t seem to be a very natural cutoff point. There are
some branches that represent more distinct groups, but there doesn’t
appear to be a particular number of clusters that is a good fit. This is
not surprising, given the results of DBSCAN, which tried to cluster all
points together.


Let’s visualize the 10 clusters, as we did for k-means earlier (Figure 3-46). Note that there is no notion of cluster center in agglomerative clustering (though we could compute the mean), and we simply show the first couple of points in each cluster. We show the number of points in each cluster to the left of the first image:


In[85]:


n_clusters = 10
for cluster in range(n_clusters):
    mask = labels_agg == cluster
    fig, axes = plt.subplots(1, 10, subplot_kw={'xticks': (), 'yticks': ()},
                             figsize=(15, 8))
    axes[0].set_ylabel(np.sum(mask))
    for image, label, asdf, ax in zip(X_people[mask], y_people[mask],
                                      labels_agg[mask], axes):
        ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)
        ax.set_title(people.target_names[label].split()[-1],
                     fontdict={'fontsize': 9})



[image: malp 0346]
Figure 3-46. Random images from the clusters generated by In[82]—each row corresponds to one cluster; the number to the left lists the number of images in each cluster




While some of the clusters seem to have a semantic theme, many of them
are too large to be actually homogeneous. To get more homogeneous
clusters, we can run the algorithm again, this time with 40 clusters, and
pick out some of the clusters that are particularly interesting (Figure 3-47):


In[86]:


# extract clusters with ward agglomerative clustering
agglomerative = AgglomerativeClustering(n_clusters=40)
labels_agg = agglomerative.fit_predict(X_pca)
print("cluster sizes agglomerative clustering: {}".format(np.bincount(labels_agg)))

n_clusters = 40
for cluster in [10, 13, 19, 22, 36]: # hand-picked "interesting" clusters
    mask = labels_agg == cluster
    fig, axes = plt.subplots(1, 15, subplot_kw={'xticks': (), 'yticks': ()},
                             figsize=(15, 8))
    cluster_size = np.sum(mask)
    axes[0].set_ylabel("#{}: {}".format(cluster, cluster_size))
    for image, label, asdf, ax in zip(X_people[mask], y_people[mask],
                                      labels_agg[mask], axes):
        ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)
        ax.set_title(people.target_names[label].split()[-1],
                     fontdict={'fontsize': 9})
    for i in range(cluster_size, 15):
        axes[i].set_visible(False)


Out[86]:


cluster sizes agglomerative clustering:
 [ 58  80  79  40 222  50  55  78 172  28  26  34  14  11  60  66 152  27
  47  31  54   5   8  56   3   5   8  18  22  82  37  89  28  24  41  40
  21  10 113  69]
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[image: malp 0351]
Figure 3-47. Images from selected clusters found by agglomerative clustering when setting the number of clusters to 40—the text to the left shows the index of the cluster and the total number of points in the cluster




Here, the clustering seems to have picked up on “dark skinned and
smiling,” “collared shirt,” “smiling woman,” “Hussein,” and “high
forehead.” We could also find these highly similar clusters using the
dendrogram, if we did more a detailed analysis.

























Summary of Clustering Methods


This section has shown that applying and evaluating clustering is a
highly qualitative procedure, and often most helpful in the exploratory
phase of data analysis. We looked at three clustering algorithms:
k-means, DBSCAN, and agglomerative clustering. All three have a way of
controlling the granularity of clustering. k-means and agglomerative
clustering allow you to specify the number of desired clusters, while
DBSCAN lets you define proximity using the eps parameter, which
indirectly influences cluster size. All three methods can be used on
large, real-world datasets, are relatively easy to understand, and allow
for clustering into many clusters.


Each of the algorithms has somewhat different strengths. k-means allows
for a characterization of the clusters using the cluster means. It can
also be viewed as a decomposition method, where each data point is
represented by its cluster center. DBSCAN allows for the detection of
“noise points” that are not assigned any cluster, and it can help
automatically determine the number of clusters. In contrast to the other
two methods, it allow for complex cluster shapes, as we saw in the
two_moons example. DBSCAN sometimes produces clusters of very
differing size, which can be a strength or a weakness. Agglomerative
clustering can provide a whole hierarchy of possible partitions of the
data, which can be easily inspected via dendrograms.
























Summary and Outlook


This chapter introduced a range of unsupervised learning algorithms that
can be applied for exploratory data analysis and preprocessing. Having
the right representation of the data is often crucial for supervised or
unsupervised learning to succeed, and preprocessing and decomposition
methods play an important part in data preparation.


Decomposition, manifold learning, and clustering are essential tools to
further your understanding of your data, and can be the only ways to make
sense of your data in the absence of supervision information. Even in a
supervised setting, exploratory tools are important for a better
understanding of the properties of the data. Often it is hard to
quantify the usefulness of an unsupervised algorithm, though this
shouldn’t deter you from using them to gather insights from your data.
With these methods under your belt, you are now equipped with all the
essential learning algorithms that machine learning practitioners use
every day.


We encourage you to try clustering and decomposition methods both on
two-dimensional toy data and on real-world datasets included in
scikit-learn, like the digits, iris, and cancer datasets.


Summary of the Estimator Interface

Let’s briefly review the
API that we introduced in Chapters 2 and 3. All algorithms in
scikit-learn, whether preprocessing, supervised learning, or unsupervised
learning algorithms, are implemented as classes. These classes are called
estimators in scikit-learn. To apply an algorithm, you first have to
instantiate an object of the particular class:


In[87]:


from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()


The estimator class contains the algorithm, and also stores the model
that is learned from data using the algorithm.


You should set any parameters of the model when constructing the model
object. These parameters include regularization, complexity control,
number of clusters to find, etc. All estimators have a fit method,
which is used to build the model. The fit method always requires as its first argument the data X, represented as a NumPy array or a SciPy
sparse matrix, where each row represents a single data point. The data
X is always assumed to be a NumPy array or SciPy sparse matrix that
has continuous (floating-point) entries. Supervised algorithms also
require a y argument, which is a one-dimensional NumPy array
containing target values for regression or classification (i.e., the
known output labels or responses).


There are two main ways to apply a learned model in scikit-learn. To
create a prediction in the form of a new output like y, you use the
predict method. To create a new representation of the input data X,
you use the transform method. Table 3-1 summarizes the
use cases of the predict and transform methods.


Table 3-1. scikit-learn API summary
  
  
    	estimator.fit(x_train, [y_train])
  

  
    	estimator.predict(X_text)
    	estimator.transform(X_test)
    

  
  
  
    	Classification
    	Preprocessing
  

  
    	Regression
    	Dimensionality reduction
  

  
    	Clustering
    	Feature extraction
  

  
    	 
    	Feature selection
  

  



Additionally, all supervised models have a score(X_test, y_test)
method that allows an evaluation of the model. In Table 3-1, X_train and
y_train refer to the training data and training labels, while
X_test and y_test refer to the test data and test labels (if
applicable).












1 The median of a set of numbers is the number x such that half of the numbers are smaller than x and half of the numbers are larger than x. The lower quartile is the number x such that one-fourth of the numbers are smaller than x, and the upper quartile is the number x such that one-fourth of the numbers are larger than x.
2 Not to be confused with the much larger MNIST dataset.
3 If you don’t provide n_clusters, it is set to 8 by default. There is no particular reason why you should use this value.
4 In this case, “best” means that the sum of variances of the clusters is small.
5 We could also use the labels_ attribute, as we did for k-means.



Chapter 4. Representing Data and Engineering Features



So far, we’ve assumed that our data comes in as a two-dimensional array of
floating-point numbers, where each column is a continuous feature that
describes the data points. For many applications, this is not how the
data is collected. A particularly common type of feature is the categorical
features. Also known as discrete features, these are usually not
numeric. The distinction between categorical features and continuous
features is analogous to the distinction between classification and
regression, only on the input side rather than the output side.
Examples of continuous features that we have seen are pixel brightnesses and
size measurements of plant flowers. Examples of categorical features
are the brand of a product, the color of a product, or the department
(books, clothing, hardware) it is sold in. These are all properties that
can describe a product, but they don’t vary in a continuous way. A
product belongs either in the clothing department or in the books
department. There is no middle ground between books and clothing, and no
natural order for the different categories (books is not greater or
less than clothing, hardware is not between books and clothing, etc.).


Regardless of the types of features your data consists of, how you
represent them can have an enormous effect on the performance of machine
learning models. We saw in Chapters 2 and 3 that scaling of the
data is important. In other words, if you don’t rescale your data (say,
to unit variance), then it makes a difference whether you represent a
measurement in centimeters or inches. We also saw in Chapter 2 that it
can be helpful to augment your data with additional features, like
adding interactions (products) of features or more general polynomials.


The question of how to represent your data best for a particular
application is known as feature engineering, and it is one of the main
tasks of data scientists and machine learning practitioners trying to
solve real-world problems. Representing your data in the right way can
have a bigger influence on the performance of a supervised model than
the exact parameters you choose.


In this chapter, we will first go over the important and very common
case of categorical features, and then give some examples of helpful
transformations for specific combinations of features and models.








Categorical Variables


As an example, we will use the dataset of adult incomes in the United
States, derived from the 1994 census database. The task of the adult
dataset is to predict whether a worker has an income of over $50,000 or
under $50,000. The features in this dataset include the workers’ ages, how
they are employed (self employed, private industry employee, government
employee, etc.), their education, their gender, their working hours per
week, occupation, and more. Table 4-1 shows the first few
entries in the dataset.


Table 4-1. The first few entries in the adult dataset


	
	age
	workclass
	education
	gender
	hours-per-week
	occupation
	income





	0

	39

	State-gov

	Bachelors

	Male

	40

	Adm-clerical

	<=50K




	1

	50

	Self-emp-not-inc

	Bachelors

	Male

	13

	Exec-managerial

	<=50K




	2

	38

	Private

	HS-grad

	Male

	40

	Handlers-cleaners

	<=50K




	3

	53

	Private

	11th

	Male

	40

	Handlers-cleaners

	<=50K




	4

	28

	Private

	Bachelors

	Female

	40

	Prof-specialty

	<=50K




	5

	37

	Private

	Masters

	Female

	40

	Exec-managerial

	<=50K




	6

	49

	Private

	9th

	Female

	16

	Other-service

	<=50K




	7

	52

	Self-emp-not-inc

	HS-grad

	Male

	45

	Exec-managerial

	>50K




	8

	31

	Private

	Masters

	Female

	50

	Prof-specialty

	>50K




	9

	42

	Private

	Bachelors

	Male

	40

	Exec-managerial

	>50K




	10

	37

	Private

	Some-college

	Male

	80

	Exec-managerial

	>50K







The task is phrased as a classification task with the two classes being
income <=50k and >50k. It would also be possible to predict the
exact income, and make this a regression task. However, that would be
much more difficult, and the 50K division is interesting to understand
on its own.


In this dataset, age and hours-per-week are continuous features,
which we know how to treat. The workclass, education, sex, and
occupation features are categorical, however. All of them come from a
fixed list of possible values, as opposed to a range, and denote a
qualitative property, as opposed to a quantity.


As a starting point, let’s say we want to learn a logistic regression
classifier on this data. We know from Chapter 2 that a logistic
regression makes predictions, ŷ, using the following formula:


  	ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0




where w[i] and b are coefficients learned from the training set and
x[i] are the input features. This formula makes sense when x[i] are
numbers, but not when x[2] is "Masters" or "Bachelors". Clearly we
need to represent our data in some different way when applying logistic
regression. The next section will explain how we can overcome this
problem.










One-Hot-Encoding (Dummy Variables)


By far the most common way to represent categorical variables is using
the one-hot-encoding or one-out-of-N encoding, also known as dummy
variables. The idea behind dummy variables is to replace a categorical
variable with one or more new features that can have the values 0 and 1.
The values 0 and 1 make sense in the formula for linear binary
classification (and for all other models in scikit-learn), and we can
represent any number of categories by introducing one new feature per
category, as described here.


Let’s say for the workclass feature we have
possible values of "Government Employee", "Private Employee",
"Self Employed", and "Self Employed Incorporated". To encode these
four possible values, we create four new features, called
"Government Employee", "Private Employee", "Self Employed", and
"Self Employed Incorporated". A feature is 1 if workclass for this
person has the corresponding value and 0 otherwise, so exactly one of
the four new features will be 1 for each data point. This is why this is
called one-hot or one-out-of-N encoding.


The principle is illustrated in Table 4-2. A single feature is
encoded using four new features. When using this data in a machine
learning algorithm, we would drop the original workclass feature and
only keep the 0–1 features.


Table 4-2. Encoding the workclass feature using one-hot encoding


	workclass
	Government Employee
	Private Employee
	Self Employed
	Self Employed Incorporated





	Government Employee

	1

	0

	0

	0




	Private Employee

	0

	1

	0

	0




	Self Employed

	0

	0

	1

	0




	Self Employed Incorporated

	0

	0

	0

	1






Note

The one-hot encoding we use is quite similar, but not identical,
to the dummy encoding used in statistics. For simplicity, we encode each
category with a different binary feature. In statistics, it is common to
encode a categorical feature with k different possible
values into k–1 features (the last one is represented as
all zeros). This is done to simplify the analysis (more
technically, this will avoid making the data matrix rank-deficient).




There are two ways to convert your data to a one-hot encoding of
categorical variables, using either pandas or scikit-learn. At the
time of writing, using pandas is slightly easier, so
let’s go this route. First we load the data using pandas from a comma-separated values (CSV) file:


In[2]:


import pandas as pd
# The file has no headers naming the columns, so we pass header=None
# and provide the column names explicitly in "names"
data = pd.read_csv(
    "/home/andy/datasets/adult.data", header=None, index_col=False,
    names=['age', 'workclass', 'fnlwgt', 'education',  'education-num',
           'marital-status', 'occupation', 'relationship', 'race', 'gender',
           'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
           'income'])
# For illustration purposes, we only select some of the columns
data = data[['age', 'workclass', 'education', 'gender', 'hours-per-week',
             'occupation', 'income']]
# IPython.display allows nice output formatting within the Jupyter notebook
display(data.head())


Table 4-3 shows the result.


Table 4-3. The first five rows of the adult dataset


	
	age
	workclass
	education
	gender
	hours-per-week
	occupation
	income





	0

	39

	State-gov

	Bachelors

	Male

	40

	Adm-clerical

	<=50K




	1

	50

	Self-emp-not-inc

	Bachelors

	Male

	13

	Exec-managerial

	<=50K




	2

	38

	Private

	HS-grad

	Male

	40

	Handlers-cleaners

	<=50K




	3

	53

	Private

	11th

	Male

	40

	Handlers-cleaners

	<=50K




	4

	28

	Private

	Bachelors

	Female

	40

	Prof-specialty

	<=50K

















Checking string-encoded categorical data


After reading a dataset like this, it is often good to first check if a
column actually contains meaningful categorical data. When working with
data that was input by humans (say, users on a website), there might not
be a fixed set of categories, and differences in spelling and
capitalization might require preprocessing. For example, it might be
that some people specified gender as “male” and some as “man,” and we
might want to represent these two inputs using the same category. A good
way to check the contents of a column is using the value_counts
function of a pandas Series (the type of a single column in a
DataFrame), to show us what the unique values are and how often they
appear:


In[3]:


print(data.gender.value_counts())


Out[3]:


 Male      21790
 Female    10771
Name: gender, dtype: int64


We can see that there are exactly two values for gender in this
dataset, Male and Female, meaning the data is already in a good
format to be represented using one-hot-encoding. In a real application,
you should look at all columns and check their values. We will skip
this here for brevity’s sake.


There is a very simple way to encode the data in pandas, using the
get_dummies function. The get_dummies function automatically
transforms all columns that have object type (like strings) or are
categorical (which is a special pandas concept that we haven’t talked
about yet):


In[4]:


print("Original features:\n", list(data.columns), "\n")
data_dummies = pd.get_dummies(data)
print("Features after get_dummies:\n", list(data_dummies.columns))


Out[4]:


Original features:
 ['age', 'workclass', 'education', 'gender', 'hours-per-week', 'occupation',
  'income']

Features after get_dummies:
 ['age', 'hours-per-week', 'workclass_ ?', 'workclass_ Federal-gov',
  'workclass_ Local-gov', 'workclass_ Never-worked', 'workclass_ Private',
  'workclass_ Self-emp-inc', 'workclass_ Self-emp-not-inc',
  'workclass_ State-gov', 'workclass_ Without-pay', 'education_ 10th',
  'education_ 11th', 'education_ 12th', 'education_ 1st-4th',
   ...
  'education_ Preschool', 'education_ Prof-school', 'education_ Some-college',
  'gender_ Female', 'gender_ Male', 'occupation_ ?',
  'occupation_ Adm-clerical', 'occupation_ Armed-Forces',
  'occupation_ Craft-repair', 'occupation_ Exec-managerial',
  'occupation_ Farming-fishing', 'occupation_ Handlers-cleaners',
  ...
  'occupation_ Tech-support', 'occupation_ Transport-moving',
  'income_ <=50K', 'income_ >50K']


You can see that the continuous features age and hours-per-week were
not touched, while the categorical features were expanded into one new
feature for each possible value:


In[5]:


data_dummies.head()


Out[5]:





	
	age
	hours-per-week
	workclass_ ?
	workclass_ Federal-gov
	workclass_
Local-gov
	…
	occupation_ Tech-support
	occupation_
Transport-moving
	income_ <=50K
	income_ >50K





	0

	39

	40

	0.0

	0.0

	0.0

	…

	0.0

	0.0

	1.0

	0.0




	1

	50

	13

	0.0

	0.0

	0.0

	…

	0.0

	0.0

	1.0

	0.0




	2

	38

	40

	0.0

	0.0

	0.0

	…

	0.0

	0.0

	1.0

	0.0




	3

	53

	40

	0.0

	0.0

	0.0

	…

	0.0

	0.0

	1.0

	0.0




	4

	28

	40

	0.0

	0.0

	0.0

	…

	0.0

	0.0

	1.0

	0.0







5 rows × 46 columns


We can now use the values attribute to convert the data_dummies
DataFrame into a NumPy array, and then train a machine learning model on
it. Be careful to separate the target variable (which is now encoded in
two income columns) from the data before training a model. Including
the output variable, or some derived property of the output variable,
into the feature representation is a very common mistake in building
supervised machine learning models.

Warning

Be careful: column indexing in pandas includes the end of the
range, so 'age':'occupation_ Transport-moving' is inclusive of
occupation_ Transport-moving. This is different from slicing a NumPy
array, where the end of a range is not included: for example,
np.arange(11)[0:10] doesn’t include the entry with index 10.




In this case, we extract only the columns containing features—that is, all columns from age to occupation_ Transport-moving. This range contains all the features but not the target:


In[6]:


features = data_dummies.ix[:, 'age':'occupation_ Transport-moving']
# Extract NumPy arrays
X = features.values
y = data_dummies['income_ >50K'].values
print("X.shape: {}  y.shape: {}".format(X.shape, y.shape))


Out[6]:


X.shape: (32561, 44)  y.shape: (32561,)


Now the data is represented in a way that scikit-learn can work with,
and we can proceed as usual:


In[7]:


from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
print("Test score: {:.2f}".format(logreg.score(X_test, y_test)))


Out[7]:


Test score: 0.81

Warning

In this example, we called get_dummies on a DataFrame
containing both the training and the test data. This is important to
ensure categorical values are represented in the same way in the
training set and the test set.


Imagine we have the training and test sets in two different
DataFrames. If the "Private Employee" value for the workclass feature
does not appear in the test set, pandas will assume there are only
three possible values for this feature and will create only three new
dummy features. Now our training and test sets have different numbers of
features, and we can’t apply the model we learned on the training set to
the test set anymore. Even worse, imagine the workclass feature has
the values "Government Employee" and "Private Employee" in the training
set, and "Self Employed" and "Self Employed Incorporated" in the test
set. In both cases, pandas will create two new dummy features, so the
encoded DataFrames will have the same number of features. However, the
two dummy features have entirely different meanings in the training and
test sets. The column that means "Government Employee" for the
training set would encode "Self Employed" for the test set.


If we built a machine learning model on this data it would work very
badly, because it would assume the columns mean the same things (because they are in
the same position) when in fact they mean very different things. To fix this,
either call get_dummies on a DataFrame that contains both the training and
the test data points, or make sure that the column names are the same
for the training and test sets after calling get_dummies, to ensure they
have the same semantics.
























Numbers Can Encode Categoricals


In the example of the adult dataset, the categorical variables were
encoded as strings. On the one hand, that opens up the possibility of
spelling errors, but on the other hand, it clearly marks a variable as
categorical. Often, whether for ease of storage or because of the way
the data is collected, categorical variables are encoded as integers.
For example, imagine the census data in the adult dataset was
collected using a questionnaire, and the answers for workclass were
recorded as 0 (first box ticked), 1 (second box ticked), 2 (third box
ticked), and so on. Now the column will contain numbers from 0 to 8,
instead of strings like "Private", and it won’t be immediately obvious to someone looking at the table representing
the dataset whether they should treat
this variable as continuous or categorical. Knowing that the numbers
indicate employment status, however, it is clear that these are very distinct
states and should not be modeled by a single continuous variable.

Warning

Categorical features are often encoded using integers.
That they are numbers doesn’t mean that they should necessarily be treated as
continuous features. It is not always clear whether an integer feature
should be treated as continuous or discrete (and one-hot-encoded). If
there is no ordering between the semantics that are encoded (like in the
workclass example), the feature must be treated as discrete. For
other cases, like five-star ratings, the better encoding depends on the
particular task and data and which machine learning algorithm is
used.




The get_dummies function in pandas treats all numbers as continuous
and will not create dummy variables for them. To get around this, you
can either use scikit-learn’s OneHotEncoder, for which you can
specify which variables are continuous and which are discrete, or
convert numeric columns in the DataFrame to strings. To illustrate,
let’s create a DataFrame object with two columns, one containing strings
and one containing integers:


In[8]:


# create a DataFrame with an integer feature and a categorical string feature
demo_df = pd.DataFrame({'Integer Feature': [0, 1, 2, 1],
                        'Categorical Feature': ['socks', 'fox', 'socks', 'box']})
display(demo_df)


Table 4-4 shows the result.


Table 4-4. DataFrame containing categorical string features and integer features


	
	Categorical Feature
	Integer Feature





	0

	socks

	0




	1

	fox

	1




	2

	socks

	2




	3

	box

	1







Using get_dummies will only encode the string feature and will not change
the integer feature, as you can see in Table 4-5:


In[9]:


pd.get_dummies(demo_df)


Table 4-5. One-hot-encoded version of the data from Table 4-4, leaving the integer feature unchanged


	
	Integer Feature
	Categorical Feature_box
	Categorical Feature_fox
	Categorical Feature_socks





	0

	0

	0.0

	0.0

	1.0




	1

	1

	0.0

	1.0

	0.0




	2

	2

	0.0

	0.0

	1.0




	3

	1

	1.0

	0.0

	0.0







If you want dummy variables to be created for the “Integer Feature”
column, you can explicitly list the columns you want to encode using the
columns parameter. Then, both features will be treated as categorical (see Table 4-6):


In[10]:


demo_df['Integer Feature'] = demo_df['Integer Feature'].astype(str)
pd.get_dummies(demo_df, columns=['Integer Feature', 'Categorical Feature'])


Table 4-6. One-hot encoding of the data shown in Table 4-4, encoding the integer and string features


	
	Integer Feature_0
	Integer Feature_1
	Integer Feature_2
	Categorical Feature_box
	Categorical Feature_fox
	Categorical Feature_socks





	0

	1.0

	0.0

	0.0

	0.0

	0.0

	1.0




	1

	0.0

	1.0

	0.0

	0.0

	1.0

	0.0




	2

	0.0

	0.0

	1.0

	0.0

	0.0

	1.0




	3

	0.0

	1.0

	0.0

	1.0

	0.0

	0.0





























Binning, Discretization, Linear Models, and Trees


The best way to represent data depends not only on the semantics of the
data, but also on the kind of model you are using. Linear models and
tree-based models (such as decision trees, gradient boosted trees, and
random forests), two large and very commonly used families, have very
different properties when it comes to how they work with different
feature representations. Let’s go back to the wave regression dataset
that we used in Chapter 2. It has only a single input feature. Here is a
comparison of a linear regression model and a decision tree regressor on
this dataset (see Figure 4-1):


In[11]:


from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor

X, y = mglearn.datasets.make_wave(n_samples=100)
line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)

reg = DecisionTreeRegressor(min_samples_split=3).fit(X, y)
plt.plot(line, reg.predict(line), label="decision tree")

reg = LinearRegression().fit(X, y)
plt.plot(line, reg.predict(line), label="linear regression")

plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")


As you know, linear models can only model linear relationships, which
are lines in the case of a single feature. The decision tree can build a
much more complex model of the data. However, this is strongly dependent
on the representation of the data. One way to make linear models more
powerful on continuous data is to use binning (also known as
discretization) of the feature to split it up into multiple features,
as described here.



[image: malp 0401]
Figure 4-1. Comparing linear regression and a decision tree on the wave dataset




We imagine a partition of the input range for the feature (in this case,
the numbers from –3 to 3) into a fixed number of bins—say, 10. A data
point will then be represented by which bin it falls into. To determine this,
we first have to define the bins. In this case, we’ll define 10 bins equally spaced between –3
and 3. We use the np.linspace function for this, creating 11 entries,
which will create 10 bins—they are the spaces in between two consecutive
boundaries:


In[12]:


bins = np.linspace(-3, 3, 11)
print("bins: {}".format(bins))


Out[12]:


bins: [-3.  -2.4 -1.8 -1.2 -0.6  0.   0.6  1.2  1.8  2.4  3. ]


Here, the first bin contains all data points with feature values –3 to
–2.68, the second bin contains all points with feature values from –2.68
to –2.37, and so on.


Next, we record for each data point which bin it falls into. This can be
easily computed using the np.digitize function:


In[13]:


which_bin = np.digitize(X, bins=bins)
print("\nData points:\n", X[:5])
print("\nBin membership for data points:\n", which_bin[:5])


Out[13]:


Data points:
 [[-0.753]
  [ 2.704]
  [ 1.392]
  [ 0.592]
 [-2.064]]

Bin membership for data points:
 [[ 4]
  [10]
  [ 8]
  [ 6]
 [ 2]]


What we did here is transform the single continuous input feature in the
wave dataset into a categorical feature that encodes which bin a data
point is in. To use a scikit-learn model on this data, we transform this
discrete feature to a one-hot encoding using the OneHotEncoder from
the preprocessing module. The OneHotEncoder does the same encoding as
pandas.get_dummies, though it currently only works on categorical
variables that are integers:


In[14]:


from sklearn.preprocessing import OneHotEncoder
# transform using the OneHotEncoder
encoder = OneHotEncoder(sparse=False)
# encoder.fit finds the unique values that appear in which_bin
encoder.fit(which_bin)
# transform creates the one-hot encoding
X_binned = encoder.transform(which_bin)
print(X_binned[:5])


Out[14]:


[[ 0.  0.  0.  1.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  1.]
 [ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.]
 [ 0.  0.  0.  0.  0.  1.  0.  0.  0.  0.]
 [ 0.  1.  0.  0.  0.  0.  0.  0.  0.  0.]]


Because we specified 10 bins, the transformed dataset X_binned now is
made up of 10 features:


In[15]:


print("X_binned.shape: {}".format(X_binned.shape))


Out[15]:


X_binned.shape: (100, 10)


Now we build a new linear regression model and a new decision tree model
on the one-hot-encoded data. The result is visualized in Figure 4-2, together
with the bin boundaries, shown as dotted black lines:


In[16]:


line_binned = encoder.transform(np.digitize(line, bins=bins))

reg = LinearRegression().fit(X_binned, y)
plt.plot(line, reg.predict(line_binned), label='linear regression binned')

reg = DecisionTreeRegressor(min_samples_split=3).fit(X_binned, y)
plt.plot(line, reg.predict(line_binned), label='decision tree binned')
plt.plot(X[:, 0], y, 'o', c='k')
plt.vlines(bins, -3, 3, linewidth=1, alpha=.2)
plt.legend(loc="best")
plt.ylabel("Regression output")
plt.xlabel("Input feature")



[image: malp 0402]
Figure 4-2. Comparing linear regression and decision tree regression on binned features




The dashed line and solid line are exactly on top of each other, meaning
the linear regression model and the decision tree make exactly the same
predictions. For each bin, they predict a constant value. As features
are constant within each bin, any model must predict the same value for
all points within a bin. Comparing what the models learned before
binning the features and after, we see that the linear model became much
more flexible, because it now has a different value for each bin, while
the decision tree model got much less flexible. Binning features
generally has no beneficial effect for tree-based models, as these models
can learn to split up the data anywhere. In a sense, that means
decision trees can learn whatever binning is most useful for
predicting on this data. Additionally, decision trees look at multiple
features at once, while binning is usually done on a per-feature basis.
However, the linear model benefited greatly in expressiveness from the
transformation of the data.


If there are good reasons to use a linear model for a particular
dataset—say, because it is very large and high-dimensional, but some
features have nonlinear relations with the output—binning can be a
great way to increase modeling power.

















Interactions and Polynomials


Another way to enrich a feature representation, particularly for linear
models, is adding interaction features and polynomial features of
the original data. This kind of feature engineering is often used in
statistical modeling, but it’s also common in many practical machine
learning applications.


As a first example, look again at Figure 4-2. The linear model learned a constant value for
each bin in the wave dataset. We know, however, that linear models can learn
not only offsets, but also slopes. One way to add a slope to the
linear model on the binned data is to add the original feature (the x-axis in the plot) back in. This leads to an 11-dimensional dataset, as seen in Figure 4-3:


In[17]:


X_combined = np.hstack([X, X_binned])
print(X_combined.shape)


Out[17]:


(100, 11)


In[18]:


reg = LinearRegression().fit(X_combined, y)

line_combined = np.hstack([line, line_binned])
plt.plot(line, reg.predict(line_combined), label='linear regression combined')

for bin in bins:
    plt.plot([bin, bin], [-3, 3], ':', c='k')
plt.legend(loc="best")
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.plot(X[:, 0], y, 'o', c='k')



[image: malp 0403]
Figure 4-3. Linear regression using binned features and a single global slope




In this example, the model learned an offset for each bin, together with
a slope. The learned slope is downward, and shared across all the bins—there is a single x-axis feature, which has a single slope. Because the
slope is shared across all bins, it doesn’t seem to be very helpful. We
would rather have a separate slope for each bin! We can achieve this by
adding an interaction or product feature that indicates which bin a
data point is in and where it lies on the x-axis. This feature is a
product of the bin indicator and the original feature. Let’s create this
dataset:


In[19]:


X_product = np.hstack([X_binned, X * X_binned])
print(X_product.shape)


Out[19]:


(100, 20)


The dataset now has 20 features: the indicators for which bin a data
point is in, and a product of the original feature and the bin
indicator. You can think of the product feature as a separate copy of
the x-axis feature for each bin. It is the original feature within the
bin, and zero everywhere else. Figure 4-4 shows the result of the linear model on this new
representation:


In[20]:


reg = LinearRegression().fit(X_product, y)

line_product = np.hstack([line_binned, line * line_binned])
plt.plot(line, reg.predict(line_product), label='linear regression product')

for bin in bins:
    plt.plot([bin, bin], [-3, 3], ':', c='k')

plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")



[image: malp 0404]
Figure 4-4. Linear regression with a separate slope per bin




As you can see, now each bin has its own offset and slope in this model.


Using binning is one way to expand a continuous feature. Another one is
to use polynomials of the original features. For a given feature x,
we might want to consider x ** 2, x ** 3, x ** 4, and so on. This
is implemented in PolynomialFeatures in the preprocessing module:


In[21]:


from sklearn.preprocessing import PolynomialFeatures

# include polynomials up to x ** 10:
# the default "include_bias=True" adds a feature that's constantly 1
poly = PolynomialFeatures(degree=10, include_bias=False)
poly.fit(X)
X_poly = poly.transform(X)


Using a degree of 10 yields 10 features:


In[22]:


print("X_poly.shape: {}".format(X_poly.shape))


Out[22]:


X_poly.shape: (100, 10)


Let’s compare the entries of X_poly to those of X:


In[23]:


print("Entries of X:\n{}".format(X[:5]))
print("Entries of X_poly:\n{}".format(X_poly[:5]))


Out[23]:


Entries of X:
[[-0.753]
 [ 2.704]
 [ 1.392]
 [ 0.592]
 [-2.064]]
Entries of X_poly:
[[    -0.753      0.567     -0.427      0.321     -0.242      0.182
      -0.137      0.103     -0.078      0.058]
 [     2.704      7.313     19.777     53.482    144.632    391.125
    1057.714   2860.360   7735.232  20918.278]
 [     1.392      1.938      2.697      3.754      5.226      7.274
      10.125     14.094     19.618     27.307]
 [     0.592      0.350      0.207      0.123      0.073      0.043
       0.025      0.015      0.009      0.005]
 [    -2.064      4.260     -8.791     18.144    -37.448     77.289
    -159.516    329.222   -679.478   1402.367]]


You can obtain the semantics of the features by calling the
get_feature_names method, which provides the exponent for each
feature:


In[24]:


print("Polynomial feature names:\n{}".format(poly.get_feature_names()))


Out[24]:


Polynomial feature names:
['x0', 'x0^2', 'x0^3', 'x0^4', 'x0^5', 'x0^6', 'x0^7', 'x0^8', 'x0^9', 'x0^10']


You can see that the first column of X_poly corresponds exactly to X,
while the other columns are the powers of the first entry. It’s
interesting to see how large some of the values can get. The second
column has entries above 20,000, orders of magnitude different from the
rest.


Using polynomial features together with a linear regression model yields
the classical model of polynomial regression (see Figure 4-5):


In[26]:


reg = LinearRegression().fit(X_poly, y)

line_poly = poly.transform(line)
plt.plot(line, reg.predict(line_poly), label='polynomial linear regression')
plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")



[image: malp 0405]
Figure 4-5. Linear regression with tenth-degree polynomial features




As you can see, polynomial features yield a very smooth fit on this
one-dimensional data. However, polynomials of high degree tend to behave
in extreme ways on the boundaries or in regions with little data.


As a comparison, here is a kernel SVM model learned on the original
data, without any transformation (see Figure 4-6):


In[26]:


from sklearn.svm import SVR

for gamma in [1, 10]:
    svr = SVR(gamma=gamma).fit(X, y)
    plt.plot(line, svr.predict(line), label='SVR gamma={}'.format(gamma))

plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")



[image: malp 0406]
Figure 4-6. Comparison of different gamma parameters for an SVM with RBF kernel




Using a more complex model, a kernel SVM, we are able to learn a similarly complex prediction to the polynomial regression without an explicit transformation of the features.


As a more realistic application of interactions and polynomials, let’s
look again at the Boston Housing dataset. We already used polynomial
features on this dataset in Chapter 2. Now let’s have a look at how
these features were constructed, and at how much the polynomial features
help. First we load the data, and rescale it to be between 0 and 1 using
MinMaxScaler:


In[27]:


from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

boston = load_boston()
X_train, X_test, y_train, y_test = train_test_split
    (boston.data, boston.target, random_state=0)

# rescale data
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)


Now, we extract polynomial features and interactions up to a degree of
2:


In[28]:


poly = PolynomialFeatures(degree=2).fit(X_train_scaled)
X_train_poly = poly.transform(X_train_scaled)
X_test_poly = poly.transform(X_test_scaled)
print("X_train.shape: {}".format(X_train.shape))
print("X_train_poly.shape: {}".format(X_train_poly.shape))


Out[28]:


X_train.shape: (379, 13)
X_train_poly.shape: (379, 105)


The data originally had 13 features, which were expanded into 105
interaction features. These new features represent all possible
interactions between two different original features, as well as the
square of each original feature. degree=2 here means that we look at
all features that are the product of up to two original features. The
exact correspondence between input and output features can be found
using the get_feature_names method:


In[29]:


print("Polynomial feature names:\n{}".format(poly.get_feature_names()))


Out[29]:


Polynomial feature names:
['1', 'x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10',
'x11', 'x12', 'x0^2', 'x0 x1', 'x0 x2', 'x0 x3', 'x0 x4', 'x0 x5', 'x0 x6',
'x0 x7', 'x0 x8', 'x0 x9', 'x0 x10', 'x0 x11', 'x0 x12', 'x1^2', 'x1 x2',
'x1 x3', 'x1 x4', 'x1 x5', 'x1 x6', 'x1 x7', 'x1 x8', 'x1 x9', 'x1 x10',
'x1 x11', 'x1 x12', 'x2^2', 'x2 x3', 'x2 x4', 'x2 x5', 'x2 x6', 'x2 x7',
'x2 x8', 'x2 x9', 'x2 x10', 'x2 x11', 'x2 x12', 'x3^2', 'x3 x4', 'x3 x5',
'x3 x6', 'x3 x7', 'x3 x8', 'x3 x9', 'x3 x10', 'x3 x11', 'x3 x12', 'x4^2',
'x4 x5', 'x4 x6', 'x4 x7', 'x4 x8', 'x4 x9', 'x4 x10', 'x4 x11', 'x4 x12',
'x5^2', 'x5 x6', 'x5 x7', 'x5 x8', 'x5 x9', 'x5 x10', 'x5 x11', 'x5 x12',
'x6^2', 'x6 x7', 'x6 x8', 'x6 x9', 'x6 x10', 'x6 x11', 'x6 x12', 'x7^2',
'x7 x8', 'x7 x9', 'x7 x10', 'x7 x11', 'x7 x12', 'x8^2', 'x8 x9', 'x8 x10',
'x8 x11', 'x8 x12', 'x9^2', 'x9 x10', 'x9 x11', 'x9 x12', 'x10^2', 'x10 x11',
'x10 x12', 'x11^2', 'x11 x12', 'x12^2']


The first new feature is a constant feature, called "1" here. The next
13 features are the original features (called "x0" to "x12"). Then
follows the first feature squared ("x0^2") and combinations of the first
and the other features.


Let’s compare the performance using Ridge on the data with and without
interactions:


In[30]:


from sklearn.linear_model import Ridge
ridge = Ridge().fit(X_train_scaled, y_train)
print("Score without interactions: {:.3f}".format(
    ridge.score(X_test_scaled, y_test)))
ridge = Ridge().fit(X_train_poly, y_train)
print("Score with interactions: {:.3f}".format(
    ridge.score(X_test_poly, y_test)))


Out[30]:


Score without interactions: 0.621
Score with interactions: 0.753


Clearly, the interactions and polynomial features gave us a good boost in
performance when using Ridge. When using a more complex model like a
random forest, the story is a bit different, though:


In[31]:


from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators=100).fit(X_train_scaled, y_train)
print("Score without interactions: {:.3f}".format(
    rf.score(X_test_scaled, y_test)))
rf = RandomForestRegressor(n_estimators=100).fit(X_train_poly, y_train)
print("Score with interactions: {:.3f}".format(rf.score(X_test_poly, y_test)))


Out[31]:


Score without interactions: 0.799
Score with interactions: 0.763


You can see that even without additional features, the random forest
beats the performance of Ridge. Adding interactions and polynomials
actually decreases performance slightly.

















Univariate Nonlinear Transformations


We just saw that adding squared or cubed features can help linear models
for regression. There are other transformations that often prove useful
for transforming certain features: in particular, applying mathematical
functions like log, exp, or sin. While tree-based models only care
about the ordering of the features, linear models and neural networks
are very tied to the scale and distribution of each feature, and if
there is a nonlinear relation between the feature and the target, that
becomes hard to model—particularly in regression. The functions log
and exp can help by adjusting the relative scales in the data so that
they can be captured better by a linear model or neural network. We saw
an application of that in Chapter 2 with the memory price data. The
sin and cos functions can come in handy when dealing with data that
encodes periodic patterns.


Most models work best when each feature (and in regression also the
target) is loosely Gaussian distributed—that is, a histogram of each
feature should have something resembling the familiar “bell curve” shape.
Using transformations like log and exp is a hacky but simple and
efficient way to achieve this. A particularly common case when such a
transformation can be helpful is when dealing with integer count data.
By count data, we mean features like “how often did user A log in?”
Counts are never negative, and often follow particular statistical
patterns. We are using a synthetic dataset of counts here that has
properties similar to those you can find in the wild. The features are
all integer-valued, while the response is continuous:


In[32]:


rnd = np.random.RandomState(0)
X_org = rnd.normal(size=(1000, 3))
w = rnd.normal(size=3)

X = rnd.poisson(10 * np.exp(X_org))
y = np.dot(X_org, w)


Let’s look at the first 10 entries of the first feature. All are
integer values and positive, but apart from that it’s hard to make out a
particular pattern.


If we count the appearance of each value, the distribution of values
becomes clearer:


In[33]:


print("Number of feature appearances:\n{}".format(np.bincount(X[:, 0])))


Out[33]:


Number of feature appearances:
[28 38 68 48 61 59 45 56 37 40 35 34 36 26 23 26 27 21 23 23 18 21 10  9 17
  9  7 14 12  7  3  8  4  5  5  3  4  2  4  1  1  3  2  5  3  8  2  5  2  1
  2  3  3  2  2  3  3  0  1  2  1  0  0  3  1  0  0  0  1  3  0  1  0  2  0
  1  1  0  0  0  0  1  0  0  2  2  0  1  1  0  0  0  0  1  1  0  0  0  0  0
  0  0  1  0  0  0  0  0  1  1  0  0  1  0  0  0  0  0  0  0  1  0  0  0  0
  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1]


The value 2 seems to be the most common, with 62 appearances (bincount
always starts at 0), and the counts for higher values fall quickly.
However, there are some very high values, like 134 appearing twice. We
visualize the counts in Figure 4-7:


In[34]:


bins = np.bincount(X[:, 0])
plt.bar(range(len(bins)), bins, color='w')
plt.ylabel("Number of appearances")
plt.xlabel("Value")



[image: malp 0407]
Figure 4-7. Histogram of feature values for X[0]




Features X[:, 1] and X[:, 2] have similar properties. This kind of
distribution of values (many small ones and a few very large ones) is
very common in practice.1 However, it is something most
linear models can’t handle very well. Let’s try to fit a ridge
regression to this model:


In[35]:


from sklearn.linear_model import Ridge
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
score = Ridge().fit(X_train, y_train).score(X_test, y_test)
print("Test score: {:.3f}".format(score))


Out[35]:


Test score: 0.622


As you can see from the relatively low R2 score, Ridge was not able to really capture the relationship between X and y. Applying a logarithmic transformation can help, though. Because the
value 0 appears in the data (and the logarithm is not defined at 0), we
can’t actually just apply log, but we have to compute log(X + 1):


In[36]:


X_train_log = np.log(X_train + 1)
X_test_log = np.log(X_test + 1)


After the transformation, the distribution of the data is less
asymmetrical and doesn’t have very large outliers anymore (see Figure 4-8):


In[37]:


plt.hist(np.log(X_train_log[:, 0] + 1), bins=25, color='gray')
plt.ylabel("Number of appearances")
plt.xlabel("Value")



[image: malp 0408]
Figure 4-8. Histogram of feature values for X[0] after logarithmic transformation




Building a ridge model on the new data provides a much better fit:


In[38]:


score = Ridge().fit(X_train_log, y_train).score(X_test_log, y_test)
print("Test score: {:.3f}".format(score))


Out[38]:


Test score: 0.875


Finding the transformation that works best for each combination of
dataset and model is somewhat of an art. In this example, all the
features had the same properties. This is rarely the case in practice,
and usually only a subset of the features should be transformed, or
sometimes each feature needs to be transformed in a different way. As we
mentioned earlier, these kinds of transformations are irrelevant for
tree-based models but might be essential for linear models. Sometimes
it is also a good idea to transform the target variable y in
regression. Trying to predict counts (say, number of orders) is a fairly
common task, and using the log(y + 1) transformation often helps.2


As you saw in the previous examples, binning, polynomials, and interactions
can have a huge influence on how models perform on a given dataset. This
is particularly true for less complex models like linear models and
naive Bayes models. Tree-based models, on the other hand, are often able to
discover important interactions themselves, and don’t require
transforming the data explicitly most of the time. Other models, like
SVMs, nearest neighbors, and neural networks, might sometimes benefit from
using binning, interactions, or polynomials, but the implications there
are usually much less clear than in the case of linear models.

















Automatic Feature Selection


With so many ways to create new features, you might get tempted to
increase the dimensionality of the data way beyond the number of
original features. However, adding more features makes all models more
complex, and so increases the chance of overfitting. When adding new
features, or with high-dimensional datasets in general, it can be a good
idea to reduce the number of features to only the most useful ones, and
discard the rest. This can lead to simpler models that generalize
better. But how can you know how good each feature is? There are three
basic strategies: univariate statistics, model-based selection, and
iterative selection. We will discuss all three of them in detail. All
of these methods are supervised methods, meaning they need the
target for fitting the model. This means we need to split the data
into training and test sets, and fit the feature selection only on the
training part of the data.










Univariate Statistics


In univariate statistics, we compute whether there is a statistically
significant relationship between each feature and the target. Then the
features that are related with the highest confidence are selected. In
the case of classification, this is also known as analysis of variance
(ANOVA). A key property of these tests is that they are univariate,
meaning that they only consider each feature individually. Consequently,
a feature will be discarded if it is only informative when combined with
another feature. Univariate tests are often very fast to compute, and
don’t require building a model. On the other hand, they are completely
independent of the model that you might want to apply after the feature
selection.


To use univariate feature selection in scikit-learn, you need to choose
a test, usually either f_classif (the default) for classification or
f_regression for regression, and a method to discard features based on
the p-values determined in the test. All methods for discarding
parameters use a threshold to discard all features with too high a
p-value (which means they are unlikely to be related to the target).
The methods differ in how they compute this threshold, with the simplest
ones being SelectKBest, which selects a fixed number k of features,
and SelectPercentile, which selects a fixed percentage of features.
Let’s apply the feature selection for classification on the cancer
dataset. To make the task a bit harder, we’ll add some noninformative
noise features to the data. We expect the feature selection to be able
to identify the features that are noninformative and remove them:


In[39]:


from sklearn.datasets import load_breast_cancer
from sklearn.feature_selection import SelectPercentile
from sklearn.model_selection import train_test_split

cancer = load_breast_cancer()

# get deterministic random numbers
rng = np.random.RandomState(42)
noise = rng.normal(size=(len(cancer.data), 50))
# add noise features to the data
# the first 30 features are from the dataset, the next 50 are noise
X_w_noise = np.hstack([cancer.data, noise])

X_train, X_test, y_train, y_test = train_test_split(
    X_w_noise, cancer.target, random_state=0, test_size=.5)
# use f_classif (the default) and SelectPercentile to select 50% of features
select = SelectPercentile(percentile=50)
select.fit(X_train, y_train)
# transform training set
X_train_selected = select.transform(X_train)

print("X_train.shape: {}".format(X_train.shape))
print("X_train_selected.shape: {}".format(X_train_selected.shape))


Out[39]:


X_train.shape: (284, 80)
X_train_selected.shape: (284, 40)


As you can see, the number of features was reduced from 80 to 40 (50
percent of the original number of features). We can find out which
features have been selected using the get_support method, which
returns a Boolean mask of the selected features (visualized in Figure 4-9):


In[40]:


mask = select.get_support()
print(mask)
# visualize the mask -- black is True, white is False
plt.matshow(mask.reshape(1, -1), cmap='gray_r')
plt.xlabel("Sample index")


Out[40]:


[ True  True  True  True  True  True  True  True  True False  True False
  True  True  True  True  True  True False False  True  True  True  True
  True  True  True  True  True  True False False False  True False  True
 False False  True False False False False  True False False  True False
 False  True False  True False False False False False False  True False
  True False False False False  True False  True False False False False
  True  True False  True False False False False]



[image: malp 0409]
Figure 4-9. Features selected by SelectPercentile




As you can see from the visualization of the mask, most of the
selected features are the original features, and most of the noise
features were removed. However, the recovery of the original features is
not perfect. Let’s compare the performance of logistic regression on all
features against the performance using only the selected features:


In[41]:


from sklearn.linear_model import LogisticRegression

# transform test data
X_test_selected = select.transform(X_test)

lr = LogisticRegression()
lr.fit(X_train, y_train)
print("Score with all features: {:.3f}".format(lr.score(X_test, y_test)))
lr.fit(X_train_selected, y_train)
print("Score with only selected features: {:.3f}".format(
    lr.score(X_test_selected, y_test)))


Out[41]:


Score with all features: 0.930
Score with only selected features: 0.940


In this case, removing the noise features improved performance, even
though some of the original features were lost. This was a very simple
synthetic example, and outcomes on real data are usually mixed.
Univariate feature selection can still be very helpful, though, if there is such
a large number of features that building a model on them is infeasible,
or if you suspect that many features are completely uninformative.

















Model-Based Feature Selection


Model-based feature selection uses a supervised machine learning model
to judge the importance of each feature, and keeps only the most
important ones. The supervised model that is used for feature selection
doesn’t need to be the same model that is used for the final supervised
modeling. The feature selection model needs to provide
some measure of importance for each feature, so that they can be ranked
by this measure. Decision trees and decision tree–based models provide a feature_importances_ attribute, which directly encodes the importance of each feature. Linear models have coefficients, which can also be used to capture feature importances by considering the absolute values. As we saw in
Chapter 2, linear models with L1 penalty learn sparse coefficients,
which only use a small subset of features. This can be viewed as a form
of feature selection for the model itself, but can also be used as a
preprocessing step to select features for another model. In contrast to
univariate selection, model-based selection considers all features at
once, and so can capture interactions (if the model can capture them).
To use model-based feature selection, we need to use the
SelectFromModel transformer:


In[42]:


from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
select = SelectFromModel(
    RandomForestClassifier(n_estimators=100, random_state=42),
    threshold="median")


The SelectFromModel class selects all features that have an importance
measure of the feature (as provided by the supervised model) greater
than the provided threshold. To get a comparable result to what we got
with univariate feature selection, we used the median as a threshold, so
that half of the features will be selected. We use a random forest
classifier with 100 trees to compute the feature importances. This is a
quite complex model and much more powerful than using univariate tests.
Now let’s actually fit the model:


In[43]:


select.fit(X_train, y_train)
X_train_l1 = select.transform(X_train)
print("X_train.shape: {}".format(X_train.shape))
print("X_train_l1.shape: {}".format(X_train_l1.shape))


Out[43]:


X_train.shape: (284, 80)
X_train_l1.shape: (284, 40)


Again, we can have a look at the features that were selected (Figure 4-10):


In[44]:


mask = select.get_support()
# visualize the mask -- black is True, white is False
plt.matshow(mask.reshape(1, -1), cmap='gray_r')
plt.xlabel("Sample index")



[image: malp 0410]
Figure 4-10. Features selected by SelectFromModel using the RandomForestClassifier




This time, all but two of the original features were selected. Because
we specified to select 40 features, some of the noise features are also
selected. Let’s take a look at the performance:


In[45]:


X_test_l1 = select.transform(X_test)
score = LogisticRegression().fit(X_train_l1, y_train).score(X_test_l1, y_test)
print("Test score: {:.3f}".format(score))


Out[45]:


Test score: 0.951


With the better feature selection, we also gained some improvements here.

















Iterative Feature Selection


In univariate testing we used no model, while in model-based
selection we used a single model to select features. In iterative
feature selection, a series of models are built, with varying numbers of
features. There are two basic methods: starting with no features and
adding features one by one until some stopping criterion is reached, or
starting with all features and removing features one by one until some
stopping criterion is reached. Because a series of models are built,
these methods are much more computationally expensive than the methods
we discussed previously. One particular method of this kind is recursive
feature elimination (RFE), which starts with all features, builds a
model, and discards the least important feature according to the model.
Then a new model is built using all but the discarded feature, and so
on until only a prespecified number of features are left. For this to
work, the model used for selection needs to provide some way to
determine feature importance, as was the case for the model-based
selection. Here, we use the same random forest model that we used earlier, and get the results shown in Figure 4-11:


In[46]:


from sklearn.feature_selection import RFE
select = RFE(RandomForestClassifier(n_estimators=100, random_state=42),
             n_features_to_select=40)

select.fit(X_train, y_train)
# visualize the selected features:
mask = select.get_support()
plt.matshow(mask.reshape(1, -1), cmap='gray_r')
plt.xlabel("Sample index")



[image: malp 0411]
Figure 4-11. Features selected by recursive feature elimination with the random forest classifier model




The feature selection got better compared to the univariate and model-based selection, but one feature was still missed. Running this
code also takes significantly longer than that for the model-based selection, because
a random forest model is trained 40 times, once for each feature that is
dropped. Let’s test the accuracy of the logistic regression model when using RFE for feature selection:


In[47]:


X_train_rfe= select.transform(X_train)
X_test_rfe= select.transform(X_test)

score = LogisticRegression().fit(X_train_rfe, y_train).score(X_test_rfe, y_test)
print("Test score: {:.3f}".format(score))


Out[47]:


Test score: 0.951


We can also use the model used inside the RFE to make predictions. This
uses only the feature set that was selected:


In[48]:


print("Test score: {:.3f}".format(select.score(X_test, y_test)))


Out[48]:


Test score: 0.951


Here, the performance of the random forest used inside the RFE is the same as that achieved by training a logistic regression model on top of the selected features. In other words, once we’ve selected the right features, the linear model performs as well as the random forest.


If you are unsure when selecting what to use as input to your machine
learning algorithms, automatic feature selection can be quite helpful.
It is also great for reducing the amount of features needed—for example, to
speed up prediction or to allow for more interpretable models. In most
real-world cases, applying feature selection is unlikely to provide
large gains in performance. However, it is still a valuable tool in the
toolbox of the feature engineer.
























Utilizing Expert Knowledge


Feature engineering is often an important place to use expert
knowledge for a particular application. While the purpose of machine
learning in many cases is to avoid having to create a set of expert-designed
rules, that doesn’t mean that prior knowledge of the application or
domain should be discarded. Often, domain experts can help in
identifying useful features that are much more informative than the
initial representation of the data. Imagine you work for a travel agency and
want to predict flight prices. Let’s say you have a record of prices
together with dates, airlines, start locations, and destinations. A machine
learning model might be able to build a decent model from that. Some
important factors in flight prices, however, cannot be learned. For
example, flights are usually more expensive during peak vacation months and around holidays. While the dates of some holidays (like Christmas) are fixed, and their effect can therefore be learned from the date, others might depend on the phases of the
moon (like Hanukkah and Easter) or be set by authorities (like school
holidays). These events cannot be learned from the data if each flight
is only recorded using the (Gregorian) date. However, it is easy to add a feature
that encodes whether a flight was on, preceding, or following a public
or school holiday. In this way, prior knowledge about the nature of the
task can be encoded in the features to aid a machine learning algorithm.
Adding a feature does not force a machine learning algorithm to use it,
and even if the holiday information turns out to be noninformative for
flight prices, augmenting the data with this information doesn’t hurt.


We’ll now look at one particular case of using expert knowledge—though in this case it might be more rightfully called “common sense.”
The task is predicting bicycle rentals in front of Andreas’s house.


In New York, Citi Bike operates a network of bicycle rental stations with a
subscription system. The stations are all over the city and provide a
convenient way to get around. Bike rental data is made public in an
anonymized form
and has been analyzed in various ways. The task we want to solve is to
predict for a given time and day how many people will rent a bike in
front of Andreas’s house—so he knows if any bikes will be left for him.


We first load the data for August 2015 for this particular station as a
pandas DataFrame. We resample the data into three-hour intervals to obtain
the main trends for each day:


In[49]:


citibike = mglearn.datasets.load_citibike()


In[50]:


print("Citi Bike data:\n{}".format(citibike.head()))


Out[50]:


Citi Bike data:
starttime
2015-08-01 00:00:00     3.0
2015-08-01 03:00:00     0.0
2015-08-01 06:00:00     9.0
2015-08-01 09:00:00    41.0
2015-08-01 12:00:00    39.0
Freq: 3H, Name: one, dtype: float64


The following example shows a visualization of the rental frequencies for the whole month (Figure 4-12):


In[51]:


plt.figure(figsize=(10, 3))
xticks = pd.date_range(start=citibike.index.min(), end=citibike.index.max(),
                       freq='D')
plt.xticks(xticks, xticks.strftime("%a %m-%d"), rotation=90, ha="left")
plt.plot(citibike, linewidth=1)
plt.xlabel("Date")
plt.ylabel("Rentals")



[image: malp 0412]
Figure 4-12. Number of bike rentals over time for a selected Citi Bike station




Looking at the data, we can clearly distinguish day and night for each
24-hour interval. The patterns for weekdays and weekends also seem to be quite
different. When evaluating a prediction task on a time series like this,
we usually want to learn from the past and predict for the future.
This means when doing a split into a training and a test set, we want to
use all the data up to a certain date as the training set and all the data
past that date as the test set. This is how we would usually use time
series prediction: given everything that we know about rentals in the
past, what do we think will happen tomorrow? We will use the first 184
data points, corresponding to the first 23 days, as our training set,
and the remaining 64 data points, corresponding to the remaining 8 days,
as our test set.


The only feature that we are using in our prediction task is the date
and time when a particular number of rentals occurred. So, the input
feature is the date and time—say, 2015-08-01 00:00:00—and the output is the
number of rentals in the following three hours (three in this case, according to our DataFrame).


A (surprisingly) common way that dates are stored on computers is using
POSIX time, which is the number of seconds since January 1970 00:00:00
(aka the beginning of Unix time). As a first try, we can use this single
integer feature as our data representation:


In[52]:


# extract the target values (number of rentals)
y = citibike.values
# convert the time to POSIX time using "%s"
X = citibike.index.strftime("%s").astype("int").reshape(-1, 1)


We first define a function to split the data into training and test sets,
build the model, and visualize the result:


In[54]:


# use the first 184 data points for training, and the rest for testing
n_train = 184

# function to evaluate and plot a regressor on a given feature set
def eval_on_features(features, target, regressor):
    # split the given features into a training and a test set
    X_train, X_test = features[:n_train], features[n_train:]
    # also split the target array
    y_train, y_test = target[:n_train], target[n_train:]
    regressor.fit(X_train, y_train)
    print("Test-set R^2: {:.2f}".format(regressor.score(X_test, y_test)))
    y_pred = regressor.predict(X_test)
    y_pred_train = regressor.predict(X_train)
    plt.figure(figsize=(10, 3))

    plt.xticks(range(0, len(X), 8), xticks.strftime("%a %m-%d"), rotation=90,
               ha="left")

    plt.plot(range(n_train), y_train, label="train")
    plt.plot(range(n_train, len(y_test) + n_train), y_test, '-', label="test")
    plt.plot(range(n_train), y_pred_train, '--', label="prediction train")

    plt.plot(range(n_train, len(y_test) + n_train), y_pred, '--',
             label="prediction test")
    plt.legend(loc=(1.01, 0))
    plt.xlabel("Date")
    plt.ylabel("Rentals")


We saw earlier that random forests require very little preprocessing of the
data, which makes this seem like a good model to start with. We use the
POSIX time feature X and pass a random forest regressor to our
eval_on_features function. Figure 4-13 shows the result:


In[55]:


from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=100, random_state=0)
plt.figure()
eval_on_features(X, y, regressor)


Out[55]:


Test-set R^2: -0.04



[image: malp 0413]
Figure 4-13. Predictions made by a random forest using only the POSIX time




The predictions on the training set are quite good, as is usual for
random forests. However, for the test set, a constant line is predicted.
The R2 is –0.03, which means that we learned nothing. What happened?


The problem lies in the combination of our feature and the random
forest. The value of the POSIX time feature for the test set is outside
of the range of the feature values in the training set: the points in
the test set have timestamps that are later than all the points in the
training set. Trees, and therefore random forests, cannot extrapolate
to feature ranges outside the training set. The result is that the model
simply predicts the target value of the closest point in the training set—which is the last time it observed any data.


Clearly we can do better than this. This is where our “expert knowledge”
comes in. From looking at the rental figures in the training data, two
factors seem to be very important: the time of day and the day of the
week. So, let’s add these two features. We can’t really learn anything
from the POSIX time, so we drop that feature. First, let’s use only the
hour of the day. As Figure 4-14 shows, now the predictions have the same pattern for each day of the week:


In[56]:


X_hour = citibike.index.hour.reshape(-1, 1)
eval_on_features(X_hour, y, regressor)


Out[56]:


Test-set R^2: 0.60



[image: malp 0414]
Figure 4-14. Predictions made by a random forest using only the hour of the day




The
R2 is already much better, but the predictions clearly
miss the weekly pattern. Now let’s also add the day of the week (see Figure 4-15):


In[57]:


X_hour_week = np.hstack([citibike.index.dayofweek.reshape(-1, 1),
                         citibike.index.hour.reshape(-1, 1)])
eval_on_features(X_hour_week, y, regressor)


Out[57]:


Test-set R^2: 0.84



[image: malp 0415]
Figure 4-15. Predictions with a random forest using day of week and hour of day features




Now we have a model that captures the periodic behavior by considering the day of week and time of day. It has an R2 of 0.84, and shows
pretty good predictive performance. What this model likely is learning
is the mean number of rentals for each combination of weekday and time
of day from the first 23 days of August. This actually does not require
a complex model like a random forest, so let’s try with a simpler model, LinearRegression (see Figure 4-16):


In[58]:


from sklearn.linear_model import LinearRegression
eval_on_features(X_hour_week, y, LinearRegression())


Out[58]:


Test-set R^2: 0.13



[image: malp 0416]
Figure 4-16. Predictions made by linear regression using day of week and hour of day as features




LinearRegression works much worse, and the periodic pattern looks odd.
The reason for this is that we encoded day of week and time of
day using integers, which are interpreted as categorical variables.
Therefore, the linear model can only learn a linear function of the time
of day—and it learned that later in the day, there are more rentals.
However, the patterns are much more complex than that. We can capture this
by interpreting the integers as categorical variables, by transforming
them using OneHotEncoder (see Figure 4-17):


In[59]:


enc = OneHotEncoder()
X_hour_week_onehot = enc.fit_transform(X_hour_week).toarray()


In[60]:


eval_on_features(X_hour_week_onehot, y, Ridge())


Out[60]:


Test-set R^2: 0.62



[image: malp 0417]
Figure 4-17. Predictions made by linear regression using a one-hot encoding of hour of day and day of week




This gives us a much better match than the continuous feature encoding.
Now the linear model learns one coefficient for each day of the week,
and one coefficient for each time of the day. That means that the “time
of day” pattern is shared over all days of the week, though.


Using interaction features, we can allow the model to learn one
coefficient for each combination of day and time of day (see Figure 4-18):


In[61]:


poly_transformer = PolynomialFeatures(degree=2, interaction_only=True,
                                      include_bias=False)
X_hour_week_onehot_poly = poly_transformer.fit_transform(X_hour_week_onehot)
lr = Ridge()
eval_on_features(X_hour_week_onehot_poly, y, lr)


Out[61]:


Test-set R^2: 0.85



[image: malp 0418]
Figure 4-18. Predictions made by linear regression using a product of the day of week and hour of day features




This transformation finally yields a model that performs similarly well
to the random forest. A big benefit of this model is that it is very
clear what is learned: one coefficient for each day and time. We can
simply plot the coefficients learned by the model, something that would
not be possible for the random forest.


First, we create feature names for the hour and day features:


In[62]:


hour = ["%02d:00" % i for i in range(0, 24, 3)]
day = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
features =  day + hour


Then we name all the interaction features extracted by
PolynomialFeatures, using the get_feature_names method, and keep
only the features with nonzero coefficients:


In[63]:


features_poly = poly_transformer.get_feature_names(features)
features_nonzero = np.array(features_poly)[lr.coef_ != 0]
coef_nonzero = lr.coef_[lr.coef_ != 0]


Now we can visualize the coefficients learned by the linear model, as seen in Figure 4-19:


In[64]:


plt.figure(figsize=(15, 2))
plt.plot(coef_nonzero, 'o')
plt.xticks(np.arange(len(coef_nonzero)), features_nonzero, rotation=90)
plt.xlabel("Feature magnitude")
plt.ylabel("Feature")



[image: malp 0419]
Figure 4-19. Coefficients of the linear regression model using a product of hour and day



















Summary and Outlook


In this chapter, we discussed how to deal with different data types (in
particular, with categorical variables). We emphasized the importance of
representing data in a way that is suitable for the machine
learning algorithm—for example, by one-hot-encoding categorical
variables. We also discussed the importance of engineering new features,
and the possibility of utilizing expert knowledge in creating derived
features from your data. In particular, linear models might benefit
greatly from generating new features via binning and adding polynomials
and interactions, while more complex, nonlinear models like random
forests and SVMs might be able to learn more complex tasks without
explicitly expanding the feature space. In practice, the features that
are used (and the match between features and method) is often the most
important piece in making a machine learning approach work well.


Now that you have a good idea of how to represent your data in an appropriate way and which
algorithm to use for which task, the next chapter will focus on
evaluating the performance of machine learning models and selecting the
right parameter settings.










1 This is a Poisson distribution, which is quite fundamental to count data.
2 This is a very crude approximation of using Poisson regression, which would be the proper solution from a probabilistic standpoint.



Chapter 5. Model Evaluation and Improvement



Having discussed the fundamentals of supervised and unsupervised
learning, and having explored a variety of machine learning algorithms,
we will now dive more deeply into evaluating models and selecting
parameters.


We will focus on the supervised methods, regression and classification,
as evaluating and selecting models in unsupervised learning is often a
very qualitative process (as we saw in Chapter 3).


To evaluate our supervised models, so far we have split our dataset into a training set and a test set using the train_test_split function,
built a model on the training set by calling the fit method, and
evaluated it on the test set using the score method, which for
classification computes the fraction of correctly classified samples.
Here’s an example of that process:


In[2]:


from sklearn.datasets import make_blobs
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# create a synthetic dataset
X, y = make_blobs(random_state=0)
# split data and labels into a training and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# instantiate a model and fit it to the training set
logreg = LogisticRegression().fit(X_train, y_train)
# evaluate the model on the test set
print("Test set score: {:.2f}".format(logreg.score(X_test, y_test)))


Out[2]:


Test set score: 0.88


Remember, the reason we split our data into training and test sets is
that we are interested in measuring how well our model generalizes to
new, previously unseen data. We are not interested in how well our model fit the
training set, but rather in how well it can make predictions for data that
was not observed during training.


In this chapter, we will expand on two aspects of this evaluation. We
will first introduce cross-validation, a more robust way to assess
generalization performance, and discuss methods to evaluate
classification and regression performance that go beyond the default
measures of accuracy and R2 provided by the score
method.


We will also discuss grid search, an effective method for adjusting
the parameters in supervised models for the best generalization
performance.








Cross-Validation


Cross-validation is a statistical method of evaluating generalization
performance that is more stable and thorough than using a split into a
training and a test set. In cross-validation, the data is instead split
repeatedly and multiple models are trained. The most commonly used
version of cross-validation is k-fold cross-validation, where k is a
user-specified number, usually 5 or 10. When performing five-fold
cross-validation, the data is first partitioned into five parts of
(approximately) equal size, called folds. Next, a sequence of models
is trained. The first model is trained using the first fold as the test
set, and the remaining folds (2–5) are used as the training set. The model
is built using the data in folds 2–5, and then the accuracy is evaluated
on fold 1. Then another model is built, this time using fold 2 as the
test set and the data in folds 1, 3, 4, and 5 as the training set. This
process is repeated using folds 3, 4, and 5 as test sets. For each of
these five splits of the data into training and test sets, we compute
the accuracy. In the end, we have collected five accuracy values. The
process is illustrated in Figure 5-1:


In[3]:


mglearn.plots.plot_cross_validation()



[image: png]
Figure 5-1. Data splitting in five-fold cross-validation




Usually, the first
fifth of the data is the first fold, the second fifth of the data is the
second fold, and so on.










Cross-Validation in scikit-learn


Cross-validation is implemented in scikit-learn using the
cross_val_score function from the model_selection module. The
parameters of the cross_val_score function are the model we want to
evaluate, the training data, and the ground-truth labels. Let’s evaluate
LogisticRegression on the iris dataset:


In[4]:


from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression

iris = load_iris()
logreg = LogisticRegression()

scores = cross_val_score(logreg, iris.data, iris.target)
print("Cross-validation scores: {}".format(scores))


Out[4]:


Cross-validation scores: [ 0.961  0.922  0.958]


By default, cross_val_score performs three-fold cross-validation,
returning three accuracy values. We can change the number of folds used
by changing the cv parameter:


In[5]:


scores = cross_val_score(logreg, iris.data, iris.target, cv=5)
print("Cross-validation scores: {}".format(scores))


Out[5]:


Cross-validation scores: [ 1.     0.967  0.933  0.9    1.   ]


A common way to summarize the cross-validation accuracy is to compute
the mean:


In[6]:


print("Average cross-validation score: {:.2f}".format(scores.mean()))


Out[6]:


Average cross-validation score: 0.96


Using the mean cross-validation we can conclude that we expect the model
to be around 96% accurate on average. Looking at all five scores
produced by the five-fold cross-validation, we can also conclude that
there is a relatively high variance in the accuracy between folds,
ranging from 100% accuracy to 90% accuracy. This could imply that the
model is very dependent on the particular folds used for training, but
it could also just be a consequence of the small size of the dataset.

















Benefits of Cross-Validation


There are several benefits to using cross-validation instead of a single
split into a training and a test set. First, remember that
train_test_split performs a random split of the data. Imagine that we
are “lucky” when randomly splitting the data, and all examples that are
hard to classify end up in the training set. In that case, the test set
will only contain “easy” examples, and our test set accuracy will be
unrealistically high. Conversely, if we are “unlucky,” we might have
randomly put all the hard-to-classify examples in the test set and
consequently obtain an unrealistically low score. However, when using
cross-validation, each example will be in the training set exactly once:
each example is in one of the folds, and each fold is the test set once.
Therefore, the model needs to generalize well to all of the samples in
the dataset for all of the cross-validation scores (and their mean) to
be high.


Having multiple splits of the data also provides some information about
how sensitive our model is to the selection of the training dataset.
For the iris dataset, we saw accuracies
between 90% and 100%. This is quite a range, and it provides us with an
idea about how the model might perform in the worst case and best
case scenarios when applied to new data.


Another benefit of cross-validation as compared to using a single split
of the data is that we use our data more effectively. When using
train_test_split, we usually use 75% of the data for training and 25%
of the data for evaluation. When using five-fold cross-validation, in
each iteration we can use four-fifths of the data (80%) to fit the model. When
using 10-fold cross-validation, we can use nine-tenths of the data (90%) to
fit the model. More data will usually result in more accurate models.


The main disadvantage of cross-validation is increased computational
cost. As we are now training k models instead of a single model,
cross-validation will be roughly k times slower than doing a single
split of the data.

Tip

It is important to keep in mind that cross-validation is not
a way to build a model that can be applied to new data. Cross-validation
does not return a model. When calling cross_val_score, multiple models
are built internally, but the purpose of cross-validation is only to
evaluate how well a given algorithm will generalize when trained on a
specific dataset.



















Stratified k-Fold Cross-Validation and Other Strategies


Splitting the dataset into k folds by starting with the first one-k-th
part of the data, as described in the previous section, might not always be a good idea. For
example, let’s have a look at the iris dataset:


In[7]:


from sklearn.datasets import load_iris
iris = load_iris()
print("Iris labels:\n{}".format(iris.target))


Out[7]:


Iris labels:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]


As you can see, the first third of the data is the class 0, the second
third is the class 1, and the last third is the class 2. Imagine doing
three-fold cross-validation on this dataset. The first fold would be
only class 0, so in the first split of the data, the test set would be
only class 0, and the training set would be only classes 1 and 2. As
the classes in training and test sets would be different for all three
splits, the three-fold cross-validation accuracy would be zero on this
dataset. That is not very helpful, as we can do much better than 0%
accuracy on iris.


As the simple k-fold strategy fails here, scikit-learn does not use
it for classification, but rather uses stratified k-fold
cross-validation. In stratified cross-validation, we split the data
such that the proportions between classes are the same in each fold as
they are in the whole dataset, as illustrated in
Figure 5-2:


In[8]:


mglearn.plots.plot_stratified_cross_validation()



[image: png]
Figure 5-2. Comparison of standard cross-validation and stratified cross-validation when the data is ordered by class label




For example, if 90% of your samples belong to class A
and 10% of your samples belong to class B, then stratified
cross-validation ensures that in each fold, 90% of samples belong to
class A and 10% of samples belong to class B.


It is usually a good idea to use stratified k-fold cross-validation
instead of k-fold cross-validation to evaluate a classifier, because it
results in more reliable estimates of generalization performance. In the
case of only 10% of samples belonging to class B, using standard k-fold
cross-validation it might easily happen that one fold only contains
samples of class A. Using this fold as a test set would not be very
informative about the overall performance of the classifier.


For regression, scikit-learn uses the standard k-fold cross-validation
by default. It would be possible to also try to make each fold
representative of the different values the regression target has, but
this is not a commonly used strategy and would be surprising to most
users.












More control over cross-validation


We saw earlier that we can adjust the number of folds that are used in
cross_val_score using the cv parameter. However, scikit-learn allows
for much finer control over what happens during the splitting of the
data by providing a cross-validation splitter as the cv parameter.
For most use cases, the defaults of k-fold cross-validation for
regression and stratified k-fold for classification work well, but there
are some cases where you might want to use a different strategy. Say, for
example, we want to use the standard k-fold cross-validation on a
classification dataset to reproduce someone else’s results. To do this,
we first have to import the KFold splitter class from the
model_selection module and instantiate it with the number of folds
we want to use:


In[9]:


from sklearn.model_selection import KFold
kfold = KFold(n_splits=5)


Then, we can pass the kfold splitter object as the cv parameter to
cross_val_score:


In[10]:


print("Cross-validation scores:\n{}".format(
      cross_val_score(logreg, iris.data, iris.target, cv=kfold)))


Out[10]:


Cross-validation scores:
[ 1.     0.933  0.433  0.967  0.433]


This way, we can verify that it is indeed a really bad idea to use
three-fold (nonstratified) cross-validation on the iris dataset:


In[11]:


kfold = KFold(n_splits=3)
print("Cross-validation scores:\n{}".format(
    cross_val_score(logreg, iris.data, iris.target, cv=kfold)))


Out[11]:


Cross-validation scores:
[ 0.  0.  0.]


Remember: each fold corresponds to one of the classes in the iris
dataset, and so nothing can be learned. Another way to resolve this
problem is to shuffle the data instead of stratifying the folds, to
remove the ordering of the samples by label. We can do that by setting the
shuffle parameter of KFold to True. If we shuffle the data, we
also need to fix the random_state to get a reproducible shuffling.
Otherwise, each run of cross_val_score would yield a different result,
as each time a different split would be used (this might not be a
problem, but can be surprising). Shuffling the data before splitting it yields a much better result:


In[12]:


kfold = KFold(n_splits=3, shuffle=True, random_state=0)
print("Cross-validation scores:\n{}".format(
    cross_val_score(logreg, iris.data, iris.target, cv=kfold)))


Out[12]:


Cross-validation scores:
[ 0.9   0.96  0.96]

















Leave-one-out cross-validation


Another frequently used cross-validation method is leave-one-out. You
can think of leave-one-out cross-validation as k-fold cross-validation
where each fold is a single sample. For each split, you pick a single
data point to be the test set. This can be very time consuming,
particularly for large datasets, but sometimes provides better estimates
on small datasets:


In[13]:


from sklearn.model_selection import LeaveOneOut
loo = LeaveOneOut()
scores = cross_val_score(logreg, iris.data, iris.target, cv=loo)
print("Number of cv iterations: ", len(scores))
print("Mean accuracy: {:.2f}".format(scores.mean()))


Out[13]:


Number of cv iterations:  150
Mean accuracy: 0.95

















Shuffle-split cross-validation


Another, very flexible strategy for cross-validation is shuffle-split
cross-validation. In shuffle-split cross-validation, each split samples
train_size many points for the training set and test_size many
(disjoint) point for the test set. This splitting is repeated n_iter
times. Figure 5-3 illustrates running four iterations of
splitting a dataset consisting of 10 points, with a training set of 5
points and test sets of 2 points each (you can use integers for
train_size and test_size to use absolute sizes for these sets, or
floating-point numbers to use fractions of the whole dataset):


In[14]:


mglearn.plots.plot_shuffle_split()



[image: shuffle_split]
Figure 5-3. ShuffleSplit with 10 points, train_size=5, test_size=2, and n_iter=4




The following code splits the dataset into 50% training set and 50% test
set for 10 iterations:


In[15]:


from sklearn.model_selection import ShuffleSplit
shuffle_split = ShuffleSplit(test_size=.5, train_size=.5, n_splits=10)
scores = cross_val_score(logreg, iris.data, iris.target, cv=shuffle_split)
print("Cross-validation scores:\n{}".format(scores))


Out[15]:


Cross-validation scores:
[ 0.96   0.907  0.947  0.96   0.96   0.907  0.893  0.907  0.92   0.973]


Shuffle-split cross-validation allows for control over the number of
iterations independently of the training and test sizes, which can
sometimes be helpful. It also allows for using only part of the data in
each iteration, by providing train_size and test_size settings that
don’t add up to one. Subsampling the data in this way can be useful for
experimenting with large datasets.


There is also a stratified variant of
ShuffleSplit, aptly named StratifiedShuffleSplit, which can provide
more reliable results for classification tasks.

















Cross-validation with groups


Another very common setting for cross-validation is when there are
groups in the data that are highly related. Say you want to build a
system to recognize emotions from pictures of faces, and you collect a
dataset of pictures of 100 people where each person is captured multiple
times, showing various emotions. The goal is to build a classifier that
can correctly identify emotions of people not in the dataset. You could
use the default stratified cross-validation to measure the performance
of a classifier here. However, it is likely that pictures of the same
person will be in both the training and the test set. It will be much easier
for a classifier to detect emotions in a face that is part of the
training set, compared to a completely new face. To accurately evaluate
the generalization to new faces, we must therefore ensure that the
training and test sets contain images of different people.


To achieve this, we can use GroupKFold, which takes an array of groups
as argument that we can use to indicate which person is in the image. The groups array here indicates groups in the data that should not be split when
creating the training and test sets, and should not be confused with the
class label.


This example of groups in the data is common in medical applications,
where you might have multiple samples from the same patient, but are
interested in generalizing to new patients. Similarly, in speech
recognition, you might have multiple recordings of the same speaker in
your dataset, but are interested in recognizing speech of new speakers.


The following is an example of using a synthetic dataset with a grouping given
by the groups array. The dataset consists of 12 data points, and for
each of the data points, groups specifies which group (think patient)
the point belongs to. The groups specify that there are four groups, and the
first three samples belong to the first group, the next four samples
belong to the second group, and so on:


In[17]:


from sklearn.model_selection import GroupKFold
# create synthetic dataset
X, y = make_blobs(n_samples=12, random_state=0)
# assume the first three samples belong to the same group,
# then the next four, etc.
groups = [0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3]
scores = cross_val_score(logreg, X, y, groups, cv=GroupKFold(n_splits=3))
print("Cross-validation scores:\n{}".format(scores))


Out[17]:


Cross-validation scores:
[ 0.75   0.8    0.667]


The samples don’t need to be
ordered by group; we just did this for illustration purposes. The splits
that are calculated based on these labels are visualized in Figure 5-4. As you can see, for each split, each group is either
entirely in the training set or entirely in the test set:


In[16]:


mglearn.plots.plot_label_kfold()



[image: png]
Figure 5-4. Label-dependent splitting with GroupKFold




There are more splitting strategies for cross-validation in
scikit-learn, which allow for an even greater variety of use cases (you can find these in the scikit-learn user guide). However, the standard KFold,
StratifiedKFold, and GroupKFold are by far the most commonly used
ones.





























Grid Search


Now that we know how to evaluate how well a model generalizes, we can
take the next step and improve the model’s generalization performance by
tuning its parameters. We discussed the parameter settings of many of
the algorithms in scikit-learn in Chapters 2 and 3, and it is important
to understand what the parameters mean before trying to adjust them.
Finding the values of the important parameters of a model (the ones that
provide the best generalization performance) is a tricky task, but
necessary for almost all models and datasets. Because it is such a
common task, there are standard methods in scikit-learn to help you with
it. The most commonly used method is grid search, which basically
means trying all possible combinations of the parameters of interest.


Consider the case of a kernel SVM with an RBF (radial basis function)
kernel, as implemented in the SVC class. As we discussed in Chapter 2,
there are two important parameters: the kernel bandwidth, gamma, and the
regularization parameter, C. Say we want to try the values
0.001, 0.01, 0.1, 1, 10, and 100 for the parameter C, and the same for
gamma. Because we have six different settings for C and gamma that
we want to try, we have 36 combinations of parameters in total. Looking
at all possible combinations creates a table (or grid) of parameter
settings for the SVM, as shown here:





	
	
	C = 0.001
	C = 0.01
	…
	C = 10





	gamma=0.001

	
	SVC(C=0.001, gamma=0.001)

	SVC(C=0.01, gamma=0.001)

	…

	SVC(C=10, gamma=0.001)




	gamma=0.01

	
	SVC(C=0.001, gamma=0.01)

	SVC(C=0.01, gamma=0.01)

	…

	SVC(C=10, gamma=0.01)




	…

	
	…

	…

	…

	…




	gamma=100

	
	SVC(C=0.001, gamma=100)

	SVC(C=0.01, gamma=100)

	…

	SVC(C=10, gamma=100)















Simple Grid Search


We can implement a simple grid search just as for loops over the two
parameters, training and evaluating a classifier for each combination:


In[18]:


# naive grid search implementation
from sklearn.svm import SVC
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, random_state=0)
print("Size of training set: {}   size of test set: {}".format(
      X_train.shape[0], X_test.shape[0]))

best_score = 0

for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
    for C in [0.001, 0.01, 0.1, 1, 10, 100]:
        # for each combination of parameters, train an SVC
        svm = SVC(gamma=gamma, C=C)
        svm.fit(X_train, y_train)
        # evaluate the SVC on the test set
        score = svm.score(X_test, y_test)
        # if we got a better score, store the score and parameters
        if score > best_score:
            best_score = score
            best_parameters = {'C': C, 'gamma': gamma}

print("Best score: {:.2f}".format(best_score))
print("Best parameters: {}".format(best_parameters))


Out[18]:


Size of training set: 112   size of test set: 38
Best score: 0.97
Best parameters: {'C': 100, 'gamma': 0.001}

















The Danger of Overfitting the Parameters and the Validation Set


Given this result, we might be tempted to report that we found a model
that performs with 97% accuracy on our dataset. However, this claim could
be overly optimistic (or just wrong), for the following reason: we tried
many different parameters and selected the one with best accuracy on
the test set, but this accuracy won’t necessarily carry over
to new data. Because we used the test data to adjust the parameters, we
can no longer use it to assess how good the model is. This is the same
reason we needed to split the data into training and test sets in the
first place; we need an independent dataset to evaluate, one that was
not used to create the model.


One way to resolve this problem is to split the data again, so we have
three sets: the training set to build the model, the validation (or
development) set to select the parameters of the model, and the test
set to evaluate the performance of the selected parameters. Figure 5-5 shows what this looks like:


In[19]:


mglearn.plots.plot_threefold_split()



[image: png]
Figure 5-5. A threefold split of data into training set, validation set, and test set




After selecting the best parameters using the
validation set, we can rebuild a model using the parameter settings we
found, but now training on both the training data and the validation
data. This way, we can use as much data as possible to build our model. This leads to the following implementation:


In[20]:


from sklearn.svm import SVC
# split data into train+validation set and test set
X_trainval, X_test, y_trainval, y_test = train_test_split(
    iris.data, iris.target, random_state=0)
# split train+validation set into training and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(
    X_trainval, y_trainval, random_state=1)
print("Size of training set: {}   size of validation set: {}   size of test set:"
      " {}\n".format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))

best_score = 0

for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
    for C in [0.001, 0.01, 0.1, 1, 10, 100]:
        # for each combination of parameters, train an SVC
        svm = SVC(gamma=gamma, C=C)
        svm.fit(X_train, y_train)
        # evaluate the SVC on the test set
        score = svm.score(X_valid, y_valid)
        # if we got a better score, store the score and parameters
        if score > best_score:
            best_score = score
            best_parameters = {'C': C, 'gamma': gamma}

# rebuild a model on the combined training and validation set,
# and evaluate it on the test set
svm = SVC(**best_parameters)
svm.fit(X_trainval, y_trainval)
test_score = svm.score(X_test, y_test)
print("Best score on validation set: {:.2f}".format(best_score))
print("Best parameters: ", best_parameters)
print("Test set score with best parameters: {:.2f}".format(test_score))


Out[20]:


Size of training set: 84   size of validation set: 28   size of test set: 38

Best score on validation set: 0.96
Best parameters:  {'C': 10, 'gamma': 0.001}
Test set score with best parameters: 0.92


The best score on the validation set is 96%: slightly lower than
before, probably because we used less data to train the model (X_train
is smaller now because we split our dataset twice). However, the score
on the test set—the score that actually tells us how well we
generalize—is even lower, at 92%. So we can only claim to classify new
data 92% correctly, not 97% correctly as we thought before!


The distinction between the training set, validation set, and test set is
fundamentally important to applying machine learning methods in
practice. Any choices made based on the test set accuracy “leak”
information from the test set into the model. Therefore, it is important
to keep a separate test set, which is only used for the final
evaluation. It is good practice to do all exploratory analysis and model
selection using the combination of a training and a validation set, and
reserve the test set for a final evaluation—this is even true for
exploratory visualization. Strictly speaking, evaluating more than one
model on the test set and choosing the better of the two will result in
an overly optimistic estimate of how accurate the model is.

















Grid Search with Cross-Validation


While the method of splitting the data into a training, a
validation, and a test set that we just saw is workable, and relatively commonly used, it
is quite sensitive to how exactly the data is split. From the output of
the previous code snippet we can see that GridSearchCV
selects 'C': 10, 'gamma': 0.001 as the best parameters, while the
output of the code in the previous section selects
'C': 100, 'gamma': 0.001 as the best parameters. For a better estimate
of the generalization performance, instead of using a single split into
a training and a validation set, we can use cross-validation to evaluate
the performance of each parameter combination. This method can be coded
up as follows:


In[21]:


for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
    for C in [0.001, 0.01, 0.1, 1, 10, 100]:
        # for each combination of parameters,
        # train an SVC
        svm = SVC(gamma=gamma, C=C)
        # perform cross-validation
        scores = cross_val_score(svm, X_trainval, y_trainval, cv=5)
        # compute mean cross-validation accuracy
        score = np.mean(scores)
        # if we got a better score, store the score and parameters
        if score > best_score:
            best_score = score
            best_parameters = {'C': C, 'gamma': gamma}
# rebuild a model on the combined training and validation set
svm = SVC(**best_parameters)
svm.fit(X_trainval, y_trainval)


To evaluate the accuracy of the SVM using a particular setting of C
and gamma using five-fold cross-validation, we need to train 36 * 5 =
180 models. As you can imagine, the main downside of the use of
cross-validation is the time it takes to train all these models.


The following visualization (Figure 5-6) illustrates how the best parameter setting is
selected in the preceding code:


In[22]:


mglearn.plots.plot_cross_val_selection()



[image: png]
Figure 5-6. Results of grid search with cross-validation




For each parameter setting (only a subset is
shown), five accuracy values are computed, one for each split in the
cross-validation. Then the mean validation accuracy is computed for each
parameter setting. The parameters with the highest mean validation
accuracy are chosen, marked by the circle.

Warning

As we said earlier, cross-validation is a way to evaluate a
given algorithm on a specific dataset. However, it is often used in
conjunction with parameter search methods like grid search. For this
reason, many people use the term cross-validation colloquially to
refer to grid search with cross-validation.




The overall process of splitting the data, running the grid search, and
evaluating the final parameters is illustrated in
Figure 5-7:


In[23]:


mglearn.plots.plot_grid_search_overview()



[image: png]
Figure 5-7. Overview of the process of parameter selection and model evaluation with GridSearchCV




Because grid search with cross-validation is such a commonly used method
to adjust parameters, scikit-learn provides the GridSearchCV class, which
implements it in the form of an estimator. To use the GridSearchCV
class, you first need to specify the parameters you want to search over
using a dictionary. GridSearchCV will then perform all the necessary
model fits. The keys of the dictionary are the names of parameters we
want to adjust (as given when constructing the model—in this case, C
and gamma), and the values are the parameter settings we want to try
out. Trying the values 0.001, 0.01, 0.1, 1, 10, and 100 for C and
gamma translates to the following dictionary:


In[24]:


param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100],
              'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}
print("Parameter grid:\n{}".format(param_grid))


Out[24]:


Parameter grid:
{'C': [0.001, 0.01, 0.1, 1, 10, 100], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}


We can now instantiate the GridSearchCV class with the model (SVC),
the parameter grid to search (param_grid), and the cross-validation
strategy we want to use (say, five-fold stratified cross-validation):


In[25]:


from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
grid_search = GridSearchCV(SVC(), param_grid, cv=5)


GridSearchCV will use cross-validation in place of the split into a
training and validation set that we used before. However, we still need
to split the data into a training and a test set, to avoid overfitting
the parameters:


In[26]:


X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, random_state=0)


The grid_search object that we created behaves just like a classifier;
we can call the standard methods fit, predict, and score on it.1 However,
when we call fit, it will run cross-validation for each combination of
parameters we specified in param_grid:


In[27]:


grid_search.fit(X_train, y_train)


Fitting the GridSearchCV object not only searches for the best
parameters, but also automatically fits a new model on the whole training
dataset with the parameters that yielded the best cross-validation
performance. What happens in fit is therefore equivalent to the result of the In[21] code we saw at the beginning of this section. The GridSearchCV class provides a
very convenient interface to access the retrained model using the
predict and score methods. To evaluate how well the best found
parameters generalize, we can call score on the test set:


In[28]:


print("Test set score: {:.2f}".format(grid_search.score(X_test, y_test)))


Out[28]:


Test set score: 0.97


Choosing the parameters using cross-validation, we actually found a
model that achieves 97% accuracy on the test set. The important thing
here is that we did not use the test set to choose the parameters. The
parameters that were found are scored in the best_params_ attribute,
and the best cross-validation accuracy (the mean accuracy over the
different splits for this parameter setting) is stored in best_score_:


In[29]:


print("Best parameters: {}".format(grid_search.best_params_))
print("Best cross-validation score: {:.2f}".format(grid_search.best_score_))


Out[29]:


Best parameters: {'C': 100, 'gamma': 0.01}
Best cross-validation score: 0.97

Warning

Again, be careful not to confuse best_score_ with the
generalization performance of the model as computed by the score
method on the test set. Using the score method (or evaluating the
output of the predict method) employs a model trained on the whole
training set. The best_score_ attribute stores the mean cross-validation accuracy, with cross-validation performed on the
training set.




Sometimes it is helpful to have access to the actual model that was
found—for example, to look at coefficients or feature importances. You
can access the model with the best parameters trained on the whole
training set using the best_estimator_ attribute:


In[30]:


print("Best estimator:\n{}".format(grid_search.best_estimator_))


Out[30]:


Best estimator:
SVC(C=100, cache_size=200, class_weight=None, coef0=0.0,
   decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
   max_iter=-1, probability=False, random_state=None, shrinking=True,
   tol=0.001, verbose=False)


Because grid_search itself has predict and score methods, using
best_estimator_ is not needed to make predictions or evaluate the
model.












Analyzing the result of cross-validation


It is often helpful to visualize the results of cross-validation, to
understand how the model generalization depends on the parameters we are
searching. As grid searches are quite computationally expensive to run,
often it is a good idea to start with a relatively coarse and small
grid. We can then inspect the results of the cross-validated
grid search, and possibly expand our search. The results of a grid
search can be found in the cv_results_ attribute, which is a dictionary
storing all aspects of the search. It contains a lot of details, as you can see in the following output, and
is best looked at after converting it to a pandas DataFrame:


In[31]:


import pandas as pd
# convert to DataFrame
results = pd.DataFrame(grid_search.cv_results_)
# show the first 5 rows
display(results.head())


Out[31]:


    param_C   param_gamma   params                        mean_test_score
0   0.001     0.001         {'C': 0.001, 'gamma': 0.001}       0.366
1   0.001      0.01         {'C': 0.001, 'gamma': 0.01}        0.366
2   0.001       0.1         {'C': 0.001, 'gamma': 0.1}         0.366
3   0.001         1         {'C': 0.001, 'gamma': 1}           0.366
4   0.001        10         {'C': 0.001, 'gamma': 10}          0.366

       rank_test_score  split0_test_score  split1_test_score  split2_test_score
0               22              0.375           0.347           0.363
1               22              0.375           0.347           0.363
2               22              0.375           0.347           0.363
3               22              0.375           0.347           0.363
4               22              0.375           0.347           0.363

       split3_test_score  split4_test_score  std_test_score
0           0.363              0.380           0.011
1           0.363              0.380           0.011
2           0.363              0.380           0.011
3           0.363              0.380           0.011
4           0.363              0.380           0.011


Each row in results corresponds to one particular parameter
setting. For each setting, the results of all cross-validation splits
are recorded, as well as the mean and standard deviation over all splits. As
we were searching a two-dimensional grid of parameters (C and
gamma), this is best visualized as a heat map (Figure 5-8). First we extract the
mean validation scores, then we reshape the scores so that the axes
correspond to C and gamma:


In[32]:


scores = np.array(results.mean_test_score).reshape(6, 6)

# plot the mean cross-validation scores
mglearn.tools.heatmap(scores, xlabel='gamma', xticklabels=param_grid['gamma'],
                      ylabel='C', yticklabels=param_grid['C'], cmap="viridis")



[image: png]
Figure 5-8. Heat map of mean cross-validation score as a function of C and gamma




Each point in the heat map corresponds to one run of cross-validation,
with a particular parameter setting. The color encodes the
cross-validation accuracy, with light colors meaning high accuracy and
dark colors meaning low accuracy. You can see that SVC is very
sensitive to the setting of the parameters. For many of the parameter
settings, the accuracy is around 40%, which is quite bad; for other
settings the accuracy is around 96%. We can take away from this plot
several things. First, the parameters we adjusted are very important
for obtaining good performance. Both parameters (C and gamma) matter a
lot, as adjusting them can change the accuracy from 40% to 96%. Additionally,
the ranges we picked for the parameters are ranges in which we see
significant changes in the outcome. It’s also important to note that the
ranges for the parameters are large enough: the optimum values for each
parameter are not on the edges of the plot.


Now let’s look at some plots (shown in
Figure 5-9) where the result is less
ideal, because the search ranges were not chosen properly:



[image: png]
Figure 5-9. Heat map visualizations of misspecified search grids




In[33]:


fig, axes = plt.subplots(1, 3, figsize=(13, 5))

param_grid_linear = {'C': np.linspace(1, 2, 6),
                     'gamma':  np.linspace(1, 2, 6)}

param_grid_one_log = {'C': np.linspace(1, 2, 6),
                      'gamma':  np.logspace(-3, 2, 6)}

param_grid_range = {'C': np.logspace(-3, 2, 6),
                    'gamma':  np.logspace(-7, -2, 6)}

for param_grid, ax in zip([param_grid_linear, param_grid_one_log,
                           param_grid_range], axes):
    grid_search = GridSearchCV(SVC(), param_grid, cv=5)
    grid_search.fit(X_train, y_train)
    scores = grid_search.cv_results_['mean_test_score'].reshape(6, 6)

    # plot the mean cross-validation scores
    scores_image = mglearn.tools.heatmap(
        scores, xlabel='gamma', ylabel='C', xticklabels=param_grid['gamma'],
        yticklabels=param_grid['C'], cmap="viridis", ax=ax)

plt.colorbar(scores_image, ax=axes.tolist())


The first panel shows no changes at all, with a constant color over the
whole parameter grid. In this case, this is caused by improper scaling and range of
the parameters C and gamma. However, if no change in accuracy is
visible over the different parameter settings, it could also be that a
parameter is just not important at all. It is usually good to try very
extreme values first, to see if there are any changes in the accuracy as
a result of changing a parameter.


The second panel shows a vertical stripe pattern. This indicates that
only the setting of the gamma parameter makes any difference. This could
mean that the gamma parameter is searching over interesting values but
the C parameter is not—or it could mean the C parameter is not
important.


The third panel shows changes in both C and gamma. However, we can
see that in the entire bottom left of the plot, nothing interesting is
happening. We can probably exclude the very small values from future
grid searches. The optimum parameter setting is at the top right. As the
optimum is in the border of the plot, we can expect that there might be
even better values beyond this border, and we might want to change our
search range to include more parameters in this region.


Tuning the parameter grid based on the cross-validation scores is
perfectly fine, and a good way to explore the importance of different
parameters. However, you should not test different parameter ranges on
the final test set—as we discussed earlier, evaluation of the test set
should happen only once we know exactly what model we want to use.

















Search over spaces that are not grids


In some cases, trying all possible combinations of all parameters
as GridSearchCV usually does, is not a good idea. For example, SVC
has a kernel parameter, and depending on which kernel is chosen, other parameters will be relevant. If kernel='linear', the model
is linear, and only the C parameter is used. If kernel='rbf', both
the C and gamma parameters are used (but not other parameters like
degree). In this case, searching over all possible combinations of
C, gamma, and kernel wouldn’t make sense: if kernel='linear',
gamma is not used, and trying different values for gamma would be a
waste of time. To deal with these kinds of “conditional” parameters,
GridSearchCV allows the param_grid to be a list of dictionaries.
Each dictionary in the list is expanded into an independent grid. A
possible grid search involving kernel and parameters could look like
this:


In[34]:


param_grid = [{'kernel': ['rbf'],
               'C': [0.001, 0.01, 0.1, 1, 10, 100],
               'gamma': [0.001, 0.01, 0.1, 1, 10, 100]},
              {'kernel': ['linear'],
               'C': [0.001, 0.01, 0.1, 1, 10, 100]}]
print("List of grids:\n{}".format(param_grid))


Out[34]:


List of grids:
[{'kernel': ['rbf'], 'C': [0.001, 0.01, 0.1, 1, 10, 100],
  'gamma': [0.001, 0.01, 0.1, 1, 10, 100]},
 {'kernel': ['linear'], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}]


In the first grid, the kernel parameter is always set to 'rbf' (not
that the entry for kernel is a list of length one), and both the C
and gamma parameters are varied. In the second grid, the kernel
parameter is always set to linear, and only C is varied. Now let’s
apply this more complex parameter search:


In[35]:


grid_search = GridSearchCV(SVC(), param_grid, cv=5)
grid_search.fit(X_train, y_train)
print("Best parameters: {}".format(grid_search.best_params_))
print("Best cross-validation score: {:.2f}".format(grid_search.best_score_))


Out[35]:


Best parameters: {'C': 100, 'kernel': 'rbf', 'gamma': 0.01}
Best cross-validation score: 0.97


Let’s look at the cv_results_ again. As expected, if kernel is
'linear', then only C is varied:


In[36]:


results = pd.DataFrame(grid_search.cv_results_)
# we display the transposed table so that it better fits on the page:
display(results.T)


Out[36]:





	
	0
	1
	2
	3
	…
	38
	39
	40
	41





	param_C

	0.001

	0.001

	0.001

	0.001

	…

	0.1

	1

	10

	100




	param_gamma

	0.001

	0.01

	0.1

	1

	…

	NaN

	NaN

	NaN

	NaN




	param_kernel

	rbf

	rbf

	rbf

	rbf

	…

	linear

	linear

	linear

	linear




	params

	{C: 0.001, kernel: rbf, gamma: 0.001}

	{C: 0.001,
kernel: rbf, gamma: 0.01}

	{C: 0.001, kernel: rbf, gamma:
0.1}

	{C: 0.001, kernel: rbf, gamma: 1}

	…

	{C: 0.1,
kernel: linear}

	{C: 1, kernel: linear}

	{C: 10, kernel:
linear}

	{C: 100, kernel: linear}




	mean_test_score

	0.37

	0.37

	0.37

	0.37

	…

	0.95

	0.97

	0.96

	0.96




	rank_test_score

	27

	27

	27

	27

	…

	11

	1

	3

	3




	split0_test_score

	0.38

	0.38

	0.38

	0.38

	…

	0.96

	1

	0.96

	0.96




	split1_test_score

	0.35

	0.35

	0.35

	0.35

	…

	0.91

	0.96

	1

	1




	split2_test_score

	0.36

	0.36

	0.36

	0.36

	…

	1

	1

	1

	1




	split3_test_score

	0.36

	0.36

	0.36

	0.36

	…

	0.91

	0.95

	0.91

	0.91




	split4_test_score

	0.38

	0.38

	0.38

	0.38

	…

	0.95

	0.95

	0.95

	0.95




	std_test_score

	0.011

	0.011

	0.011

	0.011

	…

	0.033

	0.022

	0.034

	0.034







12 rows × 42 columns

















Using different cross-validation strategies with grid search


Similarly to cross_val_score, GridSearchCV uses stratified k-fold
cross-validation by default for classification, and k-fold
cross-validation for regression. However, you can also pass any
cross-validation splitter, as described in “More control over cross-validation”, as the cv
parameter in GridSearchCV. In particular, to get only a single split
into a training and a validation set, you can use ShuffleSplit or
StratifiedShuffleSplit with n_iter=1. This might be helpful for very
large datasets, or very slow models.

















Nested cross-validation


In the preceding examples, we went from using a single split of the data into
training, validation, and test sets to splitting the data into training
and test sets and then performing cross-validation on the training set.
But when using GridSearchCV as described earlier, we still have a single split of the
data into training and test sets, which might make our
results unstable and make us depend too much on this single split
of the data. We can go a step further, and instead of splitting the
original data into training and test sets once, use multiple
splits of cross-validation. This will result in what is called nested
cross-validation. In nested cross-validation, there is an outer loop
over splits of the data into training and test sets. For each of them, a
grid search is run (which might result in different best parameters for
each split in the outer loop). Then, for each outer split, the test set
score using the best settings is reported.


The result of this procedure is a list of scores—not a model, and not a
parameter setting. The scores tell us how well a model generalizes,
given the best parameters found by the grid. As it doesn’t provide a
model that can be used on new data, nested cross-validation is rarely
used when looking for a predictive model to apply to future data.
However, it can be useful for evaluating how well a given model works on
a particular dataset.


Implementing nested cross-validation in scikit-learn is straightforward.
We call cross_val_score with an instance of GridSearchCV as the
model:


In[34]:


scores = cross_val_score(GridSearchCV(SVC(), param_grid, cv=5),
                         iris.data, iris.target, cv=5)
print("Cross-validation scores: ", scores)
print("Mean cross-validation score: ", scores.mean())


Out[34]:


Cross-validation scores:  [ 0.967  1.     0.967  0.967  1.   ]
Mean cross-validation score:  0.98


The result of our nested cross-validation can be summarized as “SVC can
achieve 98% mean cross-validation accuracy on the iris dataset”—nothing more and nothing less.


Here, we used stratified five-fold cross-validation in both the inner
and the outer loop. As our param_grid contains 36 combinations of
parameters, this results in a whopping 36 * 5 * 5 = 900 models being
built, making nested cross-validation a very expensive procedure. Here,
we used the same cross-validation splitter in the inner and the outer loop;
however, this is not necessary and you can use any combination of
cross-validation strategies in the inner and outer loops. It can be a bit
tricky to understand what is happening in the single line given above,
and it can be helpful to visualize it as for loops, as done in the
following simplified implementation:


In[35]:


def nested_cv(X, y, inner_cv, outer_cv, Classifier, parameter_grid):
    outer_scores = []
    # for each split of the data in the outer cross-validation
    # (split method returns indices)
    for training_samples, test_samples in outer_cv.split(X, y):
        # find best parameter using inner cross-validation
        best_parms = {}
        best_score = -np.inf
        # iterate over parameters
        for parameters in parameter_grid:
            # accumulate score over inner splits
            cv_scores = []
            # iterate over inner cross-validation
            for inner_train, inner_test in inner_cv.split(
                    X[training_samples], y[training_samples]):
                # build classifier given parameters and training data
                clf = Classifier(**parameters)
                clf.fit(X[inner_train], y[inner_train])
                # evaluate on inner test set
                score = clf.score(X[inner_test], y[inner_test])
                cv_scores.append(score)
            # compute mean score over inner folds
            mean_score = np.mean(cv_scores)
            if mean_score > best_score:
                # if better than so far, remember parameters
                best_score = mean_score
                best_params = parameters
        # build classifier on best parameters using outer training set
        clf = Classifier(**best_params)
        clf.fit(X[training_samples], y[training_samples])
        # evaluate
        outer_scores.append(clf.score(X[test_samples], y[test_samples]))
    return np.array(outer_scores)


Now, let’s run this function on the iris dataset:


In[36]:


from sklearn.model_selection import ParameterGrid, StratifiedKFold
scores = nested_cv(iris.data, iris.target, StratifiedKFold(5),
          StratifiedKFold(5), SVC, ParameterGrid(param_grid))
print("Cross-validation scores: {}".format(scores))


Out[36]:


Cross-validation scores: [ 0.967  1.     0.967  0.967  1.   ]

















Parallelizing cross-validation and grid search


While running a grid search over many parameters and on large datasets can
be computationally challenging, it is also embarrassingly parallel.
This means that building a model using a particular parameter setting on
a particular cross-validation split can be done completely independently
from the other parameter settings and models. This makes grid search and
cross-validation ideal candidates for parallelization over multiple CPU
cores or over a cluster. You can make use of multiple cores in
GridSearchCV and cross_val_score by setting the n_jobs parameter
to the number of CPU cores you want to use. You can set n_jobs=-1 to
use all available cores.


You should be aware that scikit-learn does not allow nesting of
parallel operations. So, if you are using the n_jobs option on your
model (for example, a random forest), you cannot use it in GridSearchCV
to search over this model. If your dataset and model are very large, it
might be that using many cores uses up too much memory, and you should
monitor your memory usage when building large models in parallel.


It is also possible to parallelize grid search and cross-validation over
multiple machines in a cluster, although at the time of writing this is
not supported within scikit-learn. It is, however, possible to use the
IPython parallel framework for parallel grid searches, if you don’t mind
writing the for loop over parameters as we did in “Simple Grid Search”.


For Spark users, there is also the recently developed spark-sklearn
package, which allows
running a grid search over an already established Spark cluster.





























Evaluation Metrics and Scoring


So far, we have evaluated classification performance using accuracy (the
fraction of correctly classified samples) and regression performance
using R2. However, these are only two of the many
possible ways to summarize how well a supervised model performs on a
given dataset. In practice, these evaluation metrics might not be
appropriate for your application, and it is important to choose the
right metric when selecting between models and adjusting parameters.










Keep the End Goal in Mind


When selecting a metric, you should always have the end goal of the
machine learning application in mind. In practice, we are usually interested not just in making accurate predictions, but in using these
predictions as part of a larger decision-making process. Before picking
a machine learning metric, you should think about the high-level goal of
the application, often called the business metric. The consequences of
choosing a particular algorithm for a machine learning application are
called the business impact.2 Maybe the high-level goal is avoiding traffic
accidents, or decreasing the number of hospital admissions. It could
also be getting more users for your website, or having users spend more
money in your shop. When choosing a model or adjusting parameters, you
should pick the model or parameter values that have the most positive influence on the
business metric. Often this is hard, as assessing the business impact of
a particular model might require putting it in production in a real-life
system.


In the early stages of development, and for adjusting parameters, it is
often infeasible to put models into production just for testing
purposes, because of the high business or personal risks that can be
involved. Imagine evaluating the pedestrian avoidance capabilities of a
self-driving car by just letting it drive around, without verifying it
first; if your model is bad, pedestrians will be in trouble! Therefore
we often need to find some surrogate evaluation procedure, using an
evaluation metric that is easier to compute. For example, we could test
classifying images of pedestrians against non-pedestrians and measure
accuracy. Keep in mind that this is only a surrogate, and it pays off to
find the closest metric to the original business goal that is feasible
to evaluate. This closest metric should be used whenever possible for
model evaluation and selection. The result of this evaluation might not be a single
number—the consequence of your algorithm could be that you have 10%
more customers, but each customer will spend 15% less—but it should
capture the expected business impact of choosing one model over another.


In this section, we will first discuss metrics for the important special
case of binary classification, then turn to multiclass classification and
finally regression.

















Metrics for Binary Classification


Binary classification is arguably the most common and conceptually
simple application of machine learning in practice. However, there are
still a number of caveats in evaluating even this simple task. Before we
dive into alternative metrics, let’s have a look at the ways in which
measuring accuracy might be misleading. Remember that for binary
classification, we often speak of a positive class and a negative
class, with the understanding that the positive class is the one we are
looking for.












Kinds of errors


Often, accuracy is not a good measure of predictive performance, as the
number of mistakes we make does not contain all the information we are
interested in. Imagine an application to screen for the early detection
of cancer using an automated test. If the test is negative, the patient
will be assumed healthy, while if the test is positive, the patient will
undergo additional screening. Here, we would call a positive test
(an indication of cancer) the positive class, and a negative test the
negative class. We can’t assume that our model will always work
perfectly, and it will make mistakes. For any application, we need to
ask ourselves what the consequences of these mistakes might be in the real
world.


One possible mistake is that a healthy patient will be classified as
positive, leading to additional testing. This leads to some costs and an inconvenience for the patient (and possibly some mental distress). An incorrect positive
prediction is called a false positive. The other possible mistake is
that a sick patient will be classified as negative, and will not receive
further tests and treatment. The undiagnosed cancer might lead to
serious health issues, and could even be fatal. A mistake of this
kind—an incorrect negative prediction—is called a false negative. In
statistics, a false positive is also known as type I error, and a
false negative as type II error. We will stick to “false negative” and
“false positive,” as they are more explicit and easier to remember. In the
cancer diagnosis example, it is clear that we want to avoid false
negatives as much as possible, while false positives can be viewed as more of a minor
nuisance.


While this is a particularly drastic example, the consequence of false
positives and false negatives are rarely the same. In commercial
applications, it might be possible to assign dollar values to both kinds
of mistakes, which would allow measuring the error of a particular
prediction in dollars, instead of accuracy. This might be much more
meaningful for making business decisions on which model to use.

















Imbalanced datasets


Types of errors play an important role when one of two classes is much
more frequent than the other one. This is very common in practice; a
good example is click-through prediction, where each data point
represents an “impression,” an item that was shown to a user. This item
might be an ad, or a related story, or a related person to follow on a
social media site. The goal is to predict whether, if shown a particular
item, a user will click on it (indicating they are interested). Most
things users are shown on the Internet (in particular, ads) will not
result in a click. You might need to show a user 100 ads or articles
before they find something interesting enough to click on. This results
in a dataset where for each 99 “no click” data points, there is 1
“clicked” data point; in other words, 99% of the samples belong to the
“no click” class. Datasets in which one class is much more frequent than
the other are often called imbalanced datasets, or datasets with
imbalanced classes. In reality, imbalanced data is the norm, and it is
rare that the events of interest have equal or even similar frequency in
the data.


Now let’s say you build a classifier that is 99% accurate on the click
prediction task. What does that tell you? 99% accuracy sounds
impressive, but this doesn’t take the class imbalance into account. You
can achieve 99% accuracy without building a machine learning model, by
always predicting “no click.” On the other hand, even with imbalanced
data, a 99% accurate model could in fact be quite good. However,
accuracy doesn’t allow us to distinguish the constant “no click” model
from a potentially good model.


To illustrate, we’ll create a 9:1 imbalanced dataset from the digits
dataset, by classifying the digit 9 against the nine other classes:


In[37]:


from sklearn.datasets import load_digits

digits = load_digits()
y = digits.target == 9

X_train, X_test, y_train, y_test = train_test_split(
    digits.data, y, random_state=0)


We can use the DummyClassifier to always predict the majority class
(here “not nine”) to see how uninformative accuracy can be:


In[38]:


from sklearn.dummy import DummyClassifier
dummy_majority = DummyClassifier(strategy='most_frequent').fit(X_train, y_train)
pred_most_frequent = dummy_majority.predict(X_test)
print("Unique predicted labels: {}".format(np.unique(pred_most_frequent)))
print("Test score: {:.2f}".format(dummy_majority.score(X_test, y_test)))


Out[38]:


Unique predicted labels: [False]
Test score: 0.90


We obtained close to 90% accuracy without learning anything. This might
seem striking, but think about it for a minute. Imagine someone telling you their model is 90% accurate.
You might think they did a very good job. But depending on the problem,
that might be possible by just predicting one class! Let’s compare this
against using an actual classifier:


In[39]:


from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max_depth=2).fit(X_train, y_train)
pred_tree = tree.predict(X_test)
print("Test score: {:.2f}".format(tree.score(X_test, y_test)))


Out[39]:


Test score: 0.92


According to accuracy, the DecisionTreeClassifier is only slightly
better than the constant predictor. This could indicate either that
something is wrong with how we used DecisionTreeClassifier, or that
accuracy is in fact not a good measure here.


For comparison purposes, let’s evaluate two more classifiers,
LogisticRegression and the default DummyClassifier, which makes
random predictions but produces classes with the same proportions as in
the training set:


In[40]:


from sklearn.linear_model import LogisticRegression

dummy = DummyClassifier().fit(X_train, y_train)
pred_dummy = dummy.predict(X_test)
print("dummy score: {:.2f}".format(dummy.score(X_test, y_test)))

logreg = LogisticRegression(C=0.1).fit(X_train, y_train)
pred_logreg = logreg.predict(X_test)
print("logreg score: {:.2f}".format(logreg.score(X_test, y_test)))


Out[40]:


dummy score: 0.80
logreg score: 0.98


The dummy classifier that produces random output is clearly the worst of the lot
(according to accuracy), while LogisticRegression produces very good
results. However, even the random classifier yields over 80% accuracy.
This makes it very hard to judge which of these results is actually
helpful. The problem here is that accuracy is an inadequate measure for
quantifying predictive performance in this imbalanced setting. For the
rest of this chapter, we will explore alternative metrics that provide
better guidance in selecting models. In particular, we would like to
have metrics that tell us how much better a model is than making “most
frequent” predictions or random predictions, as they are computed in
pred_most_frequent and pred_dummy. If we use a metric to assess our
models, it should definitely be able to weed out these nonsense
predictions.

















Confusion matrices


One of the most comprehensive ways to represent the result of evaluating
binary classification is using confusion matrices.
Let’s inspect the
predictions of LogisticRegression from the previous section using the confusion_matrix
function. We already stored the predictions on the test set in
pred_logreg:


In[41]:


from sklearn.metrics import confusion_matrix

confusion = confusion_matrix(y_test, pred_logreg)
print("Confusion matrix:\n{}".format(confusion))


Out[41]:


Confusion matrix:
[[401   2]
 [  8  39]]


The output of confusion_matrix is a two-by-two array, where the rows
correspond to the true classes and the columns correspond to the
predicted classes. Each entry counts how often a sample that belongs to
the class corresponding to the row (here, “not nine” and “nine”) was classified
as the class corresponding to the column. The following plot (Figure 5-10)
illustrates this meaning:


In[42]:


mglearn.plots.plot_confusion_matrix_illustration()



[image: png]
Figure 5-10. Confusion matrix of the “nine vs. rest” classification task




Entries on the main diagonal3 of the confusion
matrix correspond to correct classifications, while other entries tell
us how many samples of one class got mistakenly classified as another
class.


If we declare “a nine” the positive class, we can relate the
entries of the confusion matrix with the terms false positive and
false negative that we introduced earlier. To complete the picture,
we call correctly classified samples belonging to the positive class
true positives and correctly classified samples belonging to the
negative class true negatives. These terms are usually abbreviated FP,
FN, TP, and TN and lead to the following interpretation for the confusion
matrix (Figure 5-11):


In[43]:


mglearn.plots.plot_binary_confusion_matrix()



[image: png]
Figure 5-11. Confusion matrix for binary classification




Now let’s use the confusion matrix to compare the models we fitted
earlier (the two dummy models, the decision tree, and the logistic
regression):


In[44]:


print("Most frequent class:")
print(confusion_matrix(y_test, pred_most_frequent))
print("\nDummy model:")
print(confusion_matrix(y_test, pred_dummy))
print("\nDecision tree:")
print(confusion_matrix(y_test, pred_tree))
print("\nLogistic Regression")
print(confusion_matrix(y_test, pred_logreg))


Out[44]:


Most frequent class:
[[403   0]
 [ 47   0]]

Dummy model:
[[361  42]
 [ 43   4]]

Decision tree:
[[390  13]
 [ 24  23]]

Logistic Regression
[[401   2]
 [  8  39]]


Looking at the confusion matrix, it is quite clear that something is
wrong with pred_most_frequent, because it always predicts the same
class. pred_dummy, on the other hand, has a very small number of true
positives (4), particularly compared to the number of false negatives
and false positives—there are many more false positives than true
positives! The predictions made by the decision tree make much more sense than
the dummy predictions, even though the accuracy was nearly the same.
Finally, we can see that logistic regression does better than pred_tree in
all aspects: it has more true positives and true negatives while having
fewer false positives and false negatives. From this comparison, it is
clear that only the decision tree and the logistic regression give reasonable
results, and that the logistic regression works better than the tree on
all accounts. However, inspecting the full confusion matrix is a bit
cumbersome, and while we gained a lot of insight from looking at all
aspects of the matrix, the process was very manual and qualitative.
There are several ways to summarize the information in the confusion
matrix, which we will discuss next.














Relation to accuracy


We already saw one way to summarize the result in the confusion matrix—by computing accuracy, which can be expressed as:


[image: Accuracy equals StartFraction TP plus TN Over TP plus TN plus FP plus FN EndFraction]



In other words, accuracy is the number of correct predictions (TP and
TN) divided by the number of all samples (all entries of the confusion
matrix summed up).

















Precision, recall, and f-score


There are several other ways to summarize the confusion matrix, with the
most common ones being precision and recall. Precision measures how
many of the samples predicted as positive are actually positive:


[image: Precision equals StartFraction TP Over TP plus FP EndFraction]



Precision is used as a performance metric when the goal is to limit the
number of false positives. As an example, imagine a model for predicting
whether a new drug will be effective in treating a disease in clinical
trials. Clinical trials are notoriously expensive, and a pharmaceutical
company will only want to run an experiment if it is very sure that the
drug will actually work. Therefore, it is important that the
model does not produce many false positives—in other words, that it has a
high precision. Precision is also known as positive predictive value
(PPV).


Recall, on the other hand, measures how many of the positive samples are
captured by the positive predictions:


[image: Recall equals StartFraction TP Over TP plus FN EndFraction]



Recall is used as performance metric when we need to identify all
positive samples; that is, when it is important to avoid false negatives.
The cancer diagnosis example from earlier in this chapter is a good
example for this: it is important to find all people that are sick,
possibly including healthy patients in the prediction. Other names for
recall are sensitivity, hit rate, or true positive rate (TPR).


There is a trade-off between optimizing recall and optimizing precision.
You can trivially obtain a perfect recall if you predict all samples to
belong to the positive class—there will be no false negatives, and no
true negatives either. However, predicting all samples as positive will
result in many false positives, and therefore the precision will be very
low. On the other hand, if you find a model that predicts only the
single data point it is most sure about as positive and the rest as
negative, then precision will be perfect (assuming this data point is in
fact positive), but recall will be very bad.

Tip

Precision and recall are only two of many classification
measures derived from TP, FP, TN, and FN. You can find a great summary of
all the measures on Wikipedia.
 In the machine
learning community, precision and recall are arguably the most commonly
used measures for binary classification, but other communities might use
other related metrics.




So, while precision and recall are very important measures, looking at
only one of them will not provide you with the full picture. One way to
summarize them is the f-score or f-measure, which is with the harmonic
mean of precision and recall:


[image: upper F equals 2 dot StartFraction precision dot recall Over precision plus recall EndFraction]



This particular variant is also known as the f1-score. As
it takes precision and recall into account, it can be a better measure
than accuracy on imbalanced binary classification datasets. Let’s run it
on the predictions for the “nine vs. rest” dataset that we computed
earlier. Here, we will assume that the “nine” class is the positive
class (it is labeled as True while the rest is labeled as False), so
the positive class is the minority class:


In[45]:


from sklearn.metrics import f1_score
print("f1 score most frequent: {:.2f}".format(
        f1_score(y_test, pred_most_frequent)))
print("f1 score dummy: {:.2f}".format(f1_score(y_test, pred_dummy)))
print("f1 score tree: {:.2f}".format(f1_score(y_test, pred_tree)))
print("f1 score logistic regression: {:.2f}".format(
        f1_score(y_test, pred_logreg)))


Out[45]:


f1 score most frequent: 0.00
f1 score dummy: 0.10
f1 score tree: 0.55
f1 score logistic regression: 0.89


We can note two things here. First, we get an error message for the most_frequent
prediction, as there were no predictions of the positive class (which
makes the denominator in the f-score zero). Also, we can see a pretty
strong distinction between the dummy predictions and the tree
predictions, which wasn’t clear when looking at accuracy alone. Using
the f-score for evaluation, we summarized the predictive performance
again in one number. However, the f-score seems to capture our intuition
of what makes a good model much better than accuracy did. A disadvantage
of the f-score, however, is that it is harder to interpret and explain
than accuracy.


If we want a more comprehensive summary of precision, recall, and f1-score, we can use the classification_report convenience function to
compute all three at once, and print them in a nice format:


In[46]:


from sklearn.metrics import classification_report
print(classification_report(y_test, pred_most_frequent,
                            target_names=["not nine", "nine"]))


Out[46]:


             precision    recall  f1-score   support

   not nine       0.90      1.00      0.94       403
       nine       0.00      0.00      0.00        47

avg / total       0.80      0.90      0.85       450


The classification_report function produces one line per class (here,
True and False) and reports precision, recall, and f-score with this
class as the positive class. Before, we assumed the minority “nine”
class was the positive class. If we change the positive class to “not
nine,” we can see from the output of classification_report that we
obtain an f-score of 0.94 with the most_frequent model. Furthermore,
for the “not nine” class we have a recall of 1, as we classified all
samples as “not nine.” The last column next to the f-score provides the
support of each class, which simply means the number of samples in
this class according to the ground truth.


The last row in the classification report shows a weighted (by the
number of samples in the class) average of the numbers for each class.
Here are two more reports, one for the dummy classifier and one for the
logistic regression:


In[47]:


print(classification_report(y_test, pred_dummy,
                            target_names=["not nine", "nine"]))


Out[47]:


             precision    recall  f1-score   support

   not nine       0.90      0.92      0.91       403
       nine       0.11      0.09      0.10        47

avg / total       0.81      0.83      0.82       450


In[48]:


print(classification_report(y_test, pred_logreg,
                            target_names=["not nine", "nine"]))


Out[48]:


             precision    recall  f1-score   support

   not nine       0.98      1.00      0.99       403
       nine       0.95      0.83      0.89        47

avg / total       0.98      0.98      0.98       450


As you may notice when looking at the reports, the differences between
the dummy models and a very good model are not as clear any more. Picking
which class is declared the positive class has a big impact on the
metrics. While the f-score for the dummy classification is 0.13 (vs. 0.89 for the logistic
regression) on the “nine” class, for
the “not nine” class it is 0.90 vs. 0.99, which both seem like reasonable results. Looking
at all the numbers together paints a pretty accurate picture, though, and we
can clearly see the superiority of the logistic regression model.




















Taking uncertainty into account


The confusion matrix and the classification report provide a very
detailed analysis of a particular set of predictions. However, the
predictions themselves already threw away a lot of information that is
contained in the model. As we discussed in Chapter 2, most classifiers
provide a decision_function or a predict_proba method to assess
degrees of certainty about predictions. Making predictions can be seen
as thresholding the output of decision_function or predict_proba at
a certain fixed point—in binary classification we use 0 for the
decision function and 0.5 for predict_proba.


The following is an example of an imbalanced binary classification task, with
400 points in the negative class classified against 50 points in the
positive class. The training data is shown on the left in
Figure 5-12. We train a kernel SVM model on this data, and the
plots to the right of the training data illustrate the values of the decision
function as a heat map. You can see a black circle in the plot in the
top center, which denotes the threshold of the decision_function being
exactly zero. Points inside this circle will be classified as the
positive class, and points outside as the negative class:


In[49]:


from mglearn.datasets import make_blobs
X, y = make_blobs(n_samples=(400, 50), centers=2, cluster_std=[7.0, 2],
                  random_state=22)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
svc = SVC(gamma=.05).fit(X_train, y_train)


In[50]:


mglearn.plots.plot_decision_threshold()



[image: png]
Figure 5-12. Heatmap of the decision function and the impact of changing the decision threshold




We can use the classification_report function to evaluate precision and recall
for both classes:


In[51]:


print(classification_report(y_test, svc.predict(X_test)))


Out[51]:


             precision    recall  f1-score   support

          0       0.97      0.89      0.93       104
          1       0.35      0.67      0.46         9

avg / total       0.92      0.88      0.89       113


For class 1, we get a fairly small recall, and precision is mixed.
Because class 0 is so much larger, the classifier focuses on getting
class 0 right, and not the smaller class 1.


Let’s assume in our application it is more important to have a high
recall for class 1, as in the cancer screening example earlier. This
means we are willing to risk more false positives (false class 1) in
exchange for more true positives (which will increase the recall). The
predictions generated by svc.predict really do not fulfill this
requirement, but we can adjust the predictions to focus on a higher
recall of class 1 by changing the decision threshold away from 0. By
default, points with a decision_function value greater than 0 will be
classified as class 1. We want more points to be classified as class
1, so we need to decrease the threshold:


In[52]:


y_pred_lower_threshold = svc.decision_function(X_test) > -.8


Let’s look at the classification report for this prediction:


In[53]:


print(classification_report(y_test, y_pred_lower_threshold))


Out[53]:


             precision    recall  f1-score   support

          0       1.00      0.82      0.90       104
          1       0.32      1.00      0.49         9

avg / total       0.95      0.83      0.87       113


As expected, the recall of class 1 went up, and the precision went down.
We are now classifying a larger region of space as class 1, as
illustrated in the top-right panel of Figure 5-12. If you
value precision over recall or the other way around, or your data is
heavily imbalanced, changing the decision threshold is the easiest way
to obtain better results. As the decision_function can have arbitrary
ranges, it is hard to provide a rule of thumb regarding how to pick a
threshold.

Warning

If you do set a threshold, you need to be careful not to do
so using the test set. As with any other parameter, setting a decision
threshold on the test set is likely to yield overly optimistic results.
Use a validation set or cross-validation instead.




Picking a threshold for models that implement the predict_proba method
can be easier, as the output of predict_proba is on a fixed 0 to
1 scale, and models probabilities. By default, the threshold of 0.5
means that if the model is more than 50% “sure” that a point is of the
positive class, it will be classified as such. Increasing the threshold
means that the model needs to be more confident to make a positive
decision (and less confident to make a negative decision). While working
with probabilities may be more intuitive than working with arbitrary
thresholds, not all models provide realistic models of uncertainty (a
DecisionTree that is grown to its full depth is always 100% sure of
its decisions, even though it might often be wrong). This relates to
the concept of calibration: a calibrated model is a model that
provides an accurate measure of its uncertainty. Discussing calibration
in detail is beyond the scope of this book, but you can find
more details in the paper “Predicting Good Probabilities with Supervised
Learning” by Alexandru Niculescu-Mizil and Rich Caruana.

















Precision-recall curves and ROC curves


As we just discussed, changing the threshold that is used to make a
classification decision in a model is a way to adjust the trade-off of
precision and recall for a given classifier. Maybe you want to miss less
than 10% of positive samples, meaning a desired recall of 90%. This
decision depends on the application, and it should be driven by business
goals. Once a particular goal is set—say, a particular recall or
precision value for a class—a threshold can be set appropriately. It is
always possible to set a threshold to fulfill a particular target, like
90% recall. The hard part is to develop a model that still has
reasonable precision with this threshold—if you classify everything as
positive, you will have 100% recall, but your model will be useless.


Setting a requirement on a classifier like 90% recall is often called
setting the operating point. Fixing an operating point is often helpful in
business settings to make performance guarantees to customers or other
groups inside your organization.


Often, when developing a new model, it is not entirely clear what the
operating point will be. For this reason, and to understand a modeling
problem better, it is instructive to look at all possible thresholds, or
all possible trade-offs of precision and recalls at once. This is
possible using a tool called the precision-recall curve. You can find
the function to compute the precision-recall curve in the
sklearn.metrics module. It needs the ground truth labeling and
predicted uncertainties, created via either decision_function or
predict_proba:


In[54]:


from sklearn.metrics import precision_recall_curve
precision, recall, thresholds = precision_recall_curve(
    y_test, svc.decision_function(X_test))


The precision_recall_curve function returns a list of precision and
recall values for all possible thresholds (all values that appear in the
decision function) in sorted order, so we can plot a curve, as seen in Figure 5-13:


In[55]:


# Use more data points for a smoother curve
X, y = make_blobs(n_samples=(4000, 500), centers=2, cluster_std=[7.0, 2],
                  random_state=22)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
svc = SVC(gamma=.05).fit(X_train, y_train)
precision, recall, thresholds = precision_recall_curve(
    y_test, svc.decision_function(X_test))
# find threshold closest to zero
close_zero = np.argmin(np.abs(thresholds))
plt.plot(precision[close_zero], recall[close_zero], 'o', markersize=10,
         label="threshold zero", fillstyle="none", c='k', mew=2)

plt.plot(precision, recall, label="precision recall curve")
plt.xlabel("Precision")
plt.ylabel("Recall")



[image: png]
Figure 5-13. Precision recall curve for SVC(gamma=0.05)




Each point along the curve in Figure 5-13 corresponds to a
possible threshold of the decision_function. We can see, for example,
that we can achieve a recall of 0.4 at a precision of about 0.75. The
black circle marks the point that corresponds to a threshold of 0,
the default threshold for decision_function. This point is the
trade-off that is chosen when calling the predict method.


The closer a curve stays to the upper-right corner, the better the
classifier. A point at the upper right means high precision and high
recall for the same threshold. The curve starts at the top-left corner,
corresponding to a very low threshold, classifying everything as the
positive class. Raising the threshold moves the curve toward higher
precision, but also lower recall. Raising the threshold more and more,
we get to a situation where most of the points classified as being
positive are true positives, leading to a very high precision but lower
recall. The more the model keeps recall high as precision goes up, the
better.


Looking at this particular curve a bit more, we can see that with this
model it is possible to get a precision of up to around 0.5 with very high
recall. If we want a much higher precision, we have to sacrifice a lot
of recall. In other words, on the left the curve is relatively flat,
meaning that recall does not go down a lot when we require increased
precision. For precision greater than 0.5, each gain in precision costs
us a lot of recall.


Different classifiers can work well in different parts of the curve—that is, at different operating points. Let’s compare the SVM we trained
to a random forest trained on the same dataset. The
RandomForestClassifier doesn’t have a decision_function, only
predict_proba. The precision_recall_curve function expects as its second
argument a certainty measure for the positive class (class 1), so we
pass the probability of a sample being class 1—that is,
rf.predict_proba(X_test)[:, 1]. The default threshold for
predict_proba in binary classification is 0.5, so this is the point we
marked on the curve (see Figure 5-14):


In[56]:


from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(n_estimators=100, random_state=0, max_features=2)
rf.fit(X_train, y_train)

# RandomForestClassifier has predict_proba, but not decision_function
precision_rf, recall_rf, thresholds_rf = precision_recall_curve(
    y_test, rf.predict_proba(X_test)[:, 1])

plt.plot(precision, recall, label="svc")

plt.plot(precision[close_zero], recall[close_zero], 'o', markersize=10,
         label="threshold zero svc", fillstyle="none", c='k', mew=2)

plt.plot(precision_rf, recall_rf, label="rf")

close_default_rf = np.argmin(np.abs(thresholds_rf - 0.5))
plt.plot(precision_rf[close_default_rf], recall_rf[close_default_rf], '^', c='k',
         markersize=10, label="threshold 0.5 rf", fillstyle="none", mew=2)
plt.xlabel("Precision")
plt.ylabel("Recall")
plt.legend(loc="best")



[image: png]
Figure 5-14. Comparing precision recall curves of SVM and random forest




From the comparison plot we can see that the random forest performs
better at the extremes, for very high recall or very high precision
requirements. Around the middle (approximately precision=0.7), the SVM
performs better. If we only looked at the f1-score to compare overall
performance, we would have missed these subtleties. The f1-score only
captures one point on the precision-recall curve, the one given by the
default threshold:


In[57]:


print("f1_score of random forest: {:.3f}".format(
    f1_score(y_test, rf.predict(X_test))))
print("f1_score of svc: {:.3f}".format(f1_score(y_test, svc.predict(X_test))))


Out[57]:


f1_score of random forest: 0.610
f1_score of svc: 0.656


Comparing two precision-recall curves provides a lot of detailed
insight, but is a fairly manual process. For automatic model comparison,
we might want to summarize the information contained in the curve,
without limiting ourselves to a particular threshold or operating point.
One particular way to summarize the precision-recall curve is by
computing the integral or area under the curve of the precision-recall
curve, also known as the average precision.4 You can use the average_precision_score function to compute the average precision. Because we need to
compute the ROC curve and consider multiple thresholds, the result of decision_function or predict_proba needs to be passed to
average_precision_score, not the result of predict:


In[58]:


from sklearn.metrics import average_precision_score
ap_rf = average_precision_score(y_test, rf.predict_proba(X_test)[:, 1])
ap_svc = average_precision_score(y_test, svc.decision_function(X_test))
print("Average precision of random forest: {:.3f}".format(ap_rf))
print("Average precision of svc: {:.3f}".format(ap_svc))


Out[58]:


Average precision of random forest: 0.666
Average precision of svc: 0.663


When averaging over all possible thresholds, we see that the random forest
and SVC perform similarly well, with the random forest even slightly
ahead. This is quite different from the result we got from f1_score
earlier. Because average precision is the area under a curve that goes
from 0 to 1, average precision always returns a value between 0 (worst)
and 1 (best). The average precision of a classifier that assigns
decision_function at random is the fraction of positive samples in the
dataset.

















Receiver operating characteristics (ROC) and AUC


There is another tool that is commonly used to analyze the behavior of
classifiers at different thresholds: the receiver operating
characteristics curve, or ROC curve for short. Similar to the
precision-recall curve, the ROC curve considers all possible thresholds
for a given classifier, but instead of reporting precision and recall,
it shows the false positive rate (FPR) against the true positive rate
(TPR). Recall that the true positive rate is simply another name for
recall, while the false positive rate is the fraction of false positives
out of all negative samples:


[image: FPR equals StartFraction FP Over FP plus TN EndFraction]



The ROC curve can be computed using the roc_curve function (see Figure 5-15):


In[59]:


from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, svc.decision_function(X_test))

plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# find threshold closest to zero
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10,
         label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)



[image: png]
Figure 5-15. ROC curve for SVM




For the ROC curve, the ideal curve is close to the top left: you want a
classifier that produces a high recall while keeping a low false
positive rate. Compared to the default threshold of 0, the curve
shows that we can achieve a significantly higher recall (around 0.9)
while only increasing the FPR slightly. The point closest to the top
left might be a better operating point than the one chosen by default.
Again, be aware that choosing a threshold should not be done on the test
set, but on a separate validation set.


You can find a comparison of the random forest and the SVM using ROC
curves in Figure 5-16:


In[60]:


from sklearn.metrics import roc_curve
fpr_rf, tpr_rf, thresholds_rf = roc_curve(y_test, rf.predict_proba(X_test)[:, 1])

plt.plot(fpr, tpr, label="ROC Curve SVC")
plt.plot(fpr_rf, tpr_rf, label="ROC Curve RF")

plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10,
         label="threshold zero SVC", fillstyle="none", c='k', mew=2)
close_default_rf = np.argmin(np.abs(thresholds_rf - 0.5))
plt.plot(fpr_rf[close_default_rf], tpr[close_default_rf], '^', markersize=10,
         label="threshold 0.5 RF", fillstyle="none", c='k', mew=2)

plt.legend(loc=4)



[image: png]
Figure 5-16. Comparing ROC curves for SVM and random forest




As for the precision-recall curve, we often want to summarize the ROC
curve using a single number, the area under the curve (this is commonly just referred to as the AUC, and it is understood that the curve in question is the ROC curve). We can
compute the area under the ROC curve using the roc_auc_score function:


In[61]:


from sklearn.metrics import roc_auc_score
rf_auc = roc_auc_score(y_test, rf.predict_proba(X_test)[:, 1])
svc_auc = roc_auc_score(y_test, svc.decision_function(X_test))
print("AUC for Random Forest: {:.3f}".format(rf_auc))
print("AUC for SVC: {:.3f}".format(svc_auc))


Out[61]:


AUC for Random Forest: 0.937
AUC for SVC: 0.916


Comparing the random forest and SVM using the AUC score, we find that the random
forest performs quite a bit better than the SVM. Recall that because average precision
is the area under a curve that goes from 0 to 1, average precision
always returns a value between 0 (worst) and 1 (best). Predicting
randomly always produces an AUC of 0.5, no matter how imbalanced the
classes in a dataset are. This makes AUC a much better metric for
imbalanced classification problems than accuracy. The AUC can be
interpreted as evaluating the ranking of positive samples. It’s
equivalent to the probability that a randomly picked point of the
positive class will have a higher score according to the classifier than
a randomly picked point from the negative class. So, a perfect AUC of 1
means that all positive points have a higher score than all negative
points. For classification problems with imbalanced classes, using AUC
for model selection is often much more meaningful than using accuracy.


Let’s go back to the problem we studied earlier of classifying all nines
in the digits dataset versus all other digits. We will classify the
dataset with an SVM with three different settings of the kernel
bandwidth, gamma (see Figure 5-17):


In[62]:


y = digits.target == 9

X_train, X_test, y_train, y_test = train_test_split(
    digits.data, y, random_state=0)

plt.figure()

for gamma in [1, 0.05, 0.01]:
    svc = SVC(gamma=gamma).fit(X_train, y_train)
    accuracy = svc.score(X_test, y_test)
    auc = roc_auc_score(y_test, svc.decision_function(X_test))
    fpr, tpr, _ = roc_curve(y_test , svc.decision_function(X_test))
    print("gamma = {:.2f}  accuracy = {:.2f}  AUC = {:.2f}".format(
    gamma, accuracy, auc))
    plt.plot(fpr, tpr, label="gamma={:.3f}".format(gamma))
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.xlim(-0.01, 1)
plt.ylim(0, 1.02)
plt.legend(loc="best")


Out[62]:


gamma = 1.00  accuracy = 0.90  AUC = 0.50
gamma = 0.05  accuracy = 0.90  AUC = 0.90
gamma = 0.01  accuracy = 0.90  AUC = 1.00



[image: png]
Figure 5-17. Comparing ROC curves of SVMs with different settings of gamma




The accuracy of all three settings of gamma is the same, 90%. This might be the same as chance performance, or it might not. Looking at the AUC and
the corresponding curve, however, we see a clear distinction between the
three models. With gamma=1.0, the AUC is actually at chance level,
meaning that the output of the decision_function is as good as random.
With gamma=0.05, performance drastically improves to an AUC of 0.5.
Finally, with gamma=0.01, we get a perfect AUC of 1.0. That means that
all positive points are ranked higher than all negative points according
to the decision function. In other words, with the right threshold, this
model can classify the data perfectly!5 Knowing this,
we can adjust the threshold on this model and obtain great predictions.
If we had only used accuracy, we would never have discovered this.


For this reason, we highly recommend using AUC when evaluating models on
imbalanced data. Keep in mind that AUC does not make use of the default
threshold, though, so adjusting the decision threshold might be necessary to
obtain useful classification results from a model with a high AUC.






















Metrics for Multiclass Classification


Now that we have discussed evaluation of binary classification tasks
in depth, let’s move on to metrics to evaluate multiclass
classification. Basically, all metrics for multiclass classification are
derived from binary classification metrics, but averaged over all
classes. Accuracy for multiclass classification is again defined as the
fraction of correctly classified examples. And again, when classes are
imbalanced, accuracy is not a great evaluation measure. Imagine a
three-class classification problem with 85% of points belonging to class
A, 10% belonging to class B, and 5% belonging to class C. What does being
85% accurate mean on this dataset? In general, multiclass
classification results are harder to understand than binary
classification results. Apart from accuracy, common tools are the
confusion matrix and the classification report we saw in the binary case in the previous section. Let’s apply these two detailed evaluation methods on the task of
classifying the 10 different handwritten digits in the digits
dataset:


In[63]:


from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(
    digits.data, digits.target, random_state=0)
lr = LogisticRegression().fit(X_train, y_train)
pred = lr.predict(X_test)
print("Accuracy: {:.3f}".format(accuracy_score(y_test, pred)))
print("Confusion matrix:\n{}".format(confusion_matrix(y_test, pred)))


Out[63]:


Accuracy: 0.953
Confusion matrix:
[[37  0  0  0  0  0  0  0  0  0]
 [ 0 39  0  0  0  0  2  0  2  0]
 [ 0  0 41  3  0  0  0  0  0  0]
 [ 0  0  1 43  0  0  0  0  0  1]
 [ 0  0  0  0 38  0  0  0  0  0]
 [ 0  1  0  0  0 47  0  0  0  0]
 [ 0  0  0  0  0  0 52  0  0  0]
 [ 0  1  0  1  1  0  0 45  0  0]
 [ 0  3  1  0  0  0  0  0 43  1]
 [ 0  0  0  1  0  1  0  0  1 44]]


The model has an accuracy of 95.3%, which already tells us that we are
doing pretty well. The confusion matrix provides us with some more
detail. As for the binary case, each row corresponds to a true label,
and each column corresponds to a predicted label. You can find a visually
more appealing plot in Figure 5-18:


In[64]:


scores_image = mglearn.tools.heatmap(
    confusion_matrix(y_test, pred), xlabel='Predicted label',
    ylabel='True label', xticklabels=digits.target_names,
    yticklabels=digits.target_names, cmap=plt.cm.gray_r, fmt="%d")
plt.title("Confusion matrix")
plt.gca().invert_yaxis()



[image: png]
Figure 5-18. Confusion matrix for the 10-digit classification task




For the first class, the digit 0, there
are 37 samples in the class, and all of these samples were classified as
class 0 (there are no false negatives for class 0). We can see that because
all other entries in the first row of the confusion matrix are 0. We
can also see that no other digits were mistakenly classified as 0,
because all other entries in the first column of the confusion matrix
are 0 (there are no false positives for class 0). Some digits were
confused with others, though—for example, the digit 2 (third row), three of which were
classified as the digit 3 (fourth column). There was also one digit
3 that was classified as 2 (third column, fourth row) and one
digit 8 that was classified as 2 (thrid column, fourth row).


With the classification_report function, we can compute the precision,
recall, and f-score for each class:


In[65]:


print(classification_report(y_test, pred))


Out[65]:


             precision    recall  f1-score   support

          0       1.00      1.00      1.00        37
          1       0.89      0.91      0.90        43
          2       0.95      0.93      0.94        44
          3       0.90      0.96      0.92        45
          4       0.97      1.00      0.99        38
          5       0.98      0.98      0.98        48
          6       0.96      1.00      0.98        52
          7       1.00      0.94      0.97        48
          8       0.93      0.90      0.91        48
          9       0.96      0.94      0.95        47

avg / total       0.95      0.95      0.95       450


Unsurprisingly, precision and recall are a perfect 1 for class 0, as
there are no confusions with this class. For class 7, on the other
hand, precision is 1 because no other class was mistakenly classified as
7, while for class 6, there are no false negatives, so the recall
is 1. We can also see that the model has particular difficulties with
classes 8 and 3.


The most commonly used metric for imbalanced datasets in the multiclass
setting is the multiclass version of the f-score. The idea behind the
multiclass f-score is to compute one binary f-score per class, with
that class being the positive class and the other classes making up the
negative classes. Then, these per-class f-scores are averaged using one
of the following strategies:



	
"macro" averaging computes the unweighted per-class f-scores. This gives equal weight to all classes, no
matter what their size is.



	
"weighted" averaging computes the mean of
the per-class f-scores, weighted by their support. This is what is
reported in the classification report.



	
"micro" averaging computes
the total number of false positives, false negatives, and true positives over
all classes, and then computes precision, recall, and f-score using these
counts.






If you care about each sample equally much, it is recommended to use the
"micro" average f1-score; if you care about each class equally much,
it is recommended to use the "macro" average f1-score:


In[66]:


print("Micro average f1 score: {:.3f}".format
       (f1_score(y_test, pred, average="micro")))
print("Macro average f1 score: {:.3f}".format
       (f1_score(y_test, pred, average="macro")))


Out[66]:


Micro average f1 score: 0.953
Macro average f1 score: 0.954

















Regression Metrics


Evaluation for regression can be done in similar detail as we did for
classification—for example, by analyzing overpredicting the
target versus underpredicting the target. However, in most applications
we’ve seen, using the default R2 used in the score
method of all regressors is enough. Sometimes business decisions are
made on the basis of mean squared error or mean absolute error, which
might give incentive to tune models using these metrics. In general,
though, we have found R2 to be a more intuitive metric to
evaluate regression models.

















Using Evaluation Metrics in Model Selection


We have discussed many evaluation methods in detail, and how to apply
them given the ground truth and a model. However, we often want to use
metrics like AUC in model selection using GridSearchCV or
cross_val_score. Luckily scikit-learn provides a very simple way to
achieve this, via the scoring argument that can be used in both
GridSearchCV and cross_val_score. You can simply provide a string
describing the evaluation metric you want to use. Say, for
example, we want to evaluate the SVM classifier on the “nine vs. rest”
task on the digits dataset, using the AUC score. Changing the score from
the default (accuracy) to AUC can be done by providing "roc_auc" as
the scoring parameter:


In[67]:


# default scoring for classification is accuracy
print("Default scoring: {}".format(
    cross_val_score(SVC(), digits.data, digits.target == 9)))
# providing scoring="accuracy" doesn't change the results
explicit_accuracy =  cross_val_score(SVC(), digits.data, digits.target == 9,
                                     scoring="accuracy")
print("Explicit accuracy scoring: {}".format(explicit_accuracy))
roc_auc =  cross_val_score(SVC(), digits.data, digits.target == 9,
                           scoring="roc_auc")
print("AUC scoring: {}".format(roc_auc))


Out[67]:


Default scoring: [ 0.9  0.9  0.9]
Explicit accuracy scoring: [ 0.9  0.9  0.9]
AUC scoring: [ 0.994  0.99   0.996]


Similarly, we can change the metric used to pick the best parameters in
GridSearchCV:


In[68]:


X_train, X_test, y_train, y_test = train_test_split(
    digits.data, digits.target == 9, random_state=0)

# we provide a somewhat bad grid to illustrate the point:
param_grid = {'gamma': [0.0001, 0.01, 0.1, 1, 10]}
# using the default scoring of accuracy:
grid = GridSearchCV(SVC(), param_grid=param_grid)
grid.fit(X_train, y_train)
print("Grid-Search with accuracy")
print("Best parameters:", grid.best_params_)
print("Best cross-validation score (accuracy)): {:.3f}".format(grid.best_score_))
print("Test set AUC: {:.3f}".format(
    roc_auc_score(y_test, grid.decision_function(X_test))))
print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))


Out[68]:


Grid-Search with accuracy
Best parameters: {'gamma': 0.0001}
Best cross-validation score (accuracy)): 0.970
Test set AUC: 0.992
Test set accuracy: 0.973


In[69]:


# using AUC scoring instead:
grid = GridSearchCV(SVC(), param_grid=param_grid, scoring="roc_auc")
grid.fit(X_train, y_train)
print("\nGrid-Search with AUC")
print("Best parameters:", grid.best_params_)
print("Best cross-validation score (AUC): {:.3f}".format(grid.best_score_))
print("Test set AUC: {:.3f}".format(
    roc_auc_score(y_test, grid.decision_function(X_test))))
print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))


Out[69]:


Grid-Search with AUC
Best parameters: {'gamma': 0.01}
Best cross-validation score (AUC): 0.997
Test set AUC: 1.000
Test set accuracy: 1.000


When using accuracy, the parameter gamma=0.0001 is selected, while
gamma=0.01 is selected when using AUC. The cross-validation accuracy
is consistent with the test set accuracy in both cases. However, using
AUC found a better parameter setting in terms of AUC and even in
terms of accuracy.6


The most important values for the scoring parameter for classification
are accuracy (the default); roc_auc for the area under the ROC
curve; average_precision for the area under the precision-recall
curve; f1, f1_macro, f1_micro, and f1_weighted for the binary f1-score and the different weighted variants. For regression, the most
commonly used values are r2 for the R2 score,
mean_squared_error for mean squared error, and mean_absolute_error
for mean absolute error. You can find a full list of supported arguments
in the documentation or by looking at the SCORER dictionary defined in
the metrics.scorer module:


In[70]:


from sklearn.metrics.scorer import SCORERS
print("Available scorers:\n{}".format(sorted(SCORERS.keys())))


Out[70]:


Available scorers:
['accuracy', 'adjusted_rand_score', 'average_precision', 'f1', 'f1_macro',
 'f1_micro', 'f1_samples', 'f1_weighted', 'log_loss', 'mean_absolute_error',
 'mean_squared_error', 'median_absolute_error', 'precision', 'precision_macro',
 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall',
 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc']
























Summary and Outlook


In this chapter we discussed cross-validation, grid search, and
evaluation metrics, the cornerstones of evaluating and improving
machine learning algorithms. The tools described in this chapter,
together with the algorithms described in Chapters 2 and 3, are the bread
and butter of every machine learning practitioner.


There are two particular points that we made in this chapter that
warrant repeating, because they are often overlooked by new
practitioners. The first has to do with cross-validation. Cross-validation or the use of a test set allow us to
evaluate a machine learning model as it will perform in the future.
However, if we use the test set or cross-validation to select a model or
select model parameters, we “use up” the test data, and using the same
data to evaluate how well our model will do in the future will lead to
overly optimistic estimates. We therefore need to resort to a split into
training data for model building, validation data for model and
parameter selection, and test data for model evaluation. Instead of a
simple split, we can replace each of these splits with cross-validation.
The most commonly used form (as described earlier) is a training/test split
for evaluation, and using cross-validation on the training set for model
and parameter selection.


The second point has to do with the importance of the evaluation metric or
scoring function used for model selection and model evaluation. The
theory of how to make business decisions from the predictions of a
machine learning model is somewhat beyond the scope of this book.7 However, it is rarely
the case that the end goal of a machine learning task is building a
model with a high accuracy. Make sure that the metric you choose to
evaluate and select a model for is a good stand-in for what the model will
actually be used for. In reality, classification problems rarely have
balanced classes, and often false positives and false negatives have
very different consequences. Make sure you understand what these
consequences are, and pick an evaluation metric accordingly.


The model evaluation and selection techniques we have described so
far are the most important tools in a data scientist’s toolbox. Grid search and cross-validation as we’ve described them in this chapter can
only be applied to a single supervised model. We have seen before,
however, that many models require preprocessing, and that in some
applications, like the face recognition example in Chapter 3, extracting
a different representation of the data can be useful. In the next
chapter, we will introduce the Pipeline class, which allows us to use
grid search and cross-validation on these complex chains of algorithms.










1 A scikit-learn estimator that is created using another estimator is called a meta-estimator. GridSearchCV is the most commonly used meta-estimator, but we will see more later.
2 We ask scientifically minded readers to excuse the commercial language in this section. Not losing track of the end goal is equally important in science, though the authors are not aware of a similar phrase to “business impact” being used in that realm.
3 The main diagonal of a two-dimensional array or matrix A is A[i, i].
4 There are some minor technical differences between the area under the precision-recall curve and average precision. However, this explanation conveys the general idea.
5 Looking at the curve for gamma=0.01 in detail, you can see a small kink close to the top left. That means that at least one point was not ranked correctly. The AUC of 1.0 is a consequence of rounding to the second decimal point.
6 Finding a higher-accuracy solution using AUC is likely a consequence of accuracy being a bad measure of model performance on imbalanced data.
7 We highly recommend Foster Provost and Tom Fawcett’s book Data Science for
Business (O’Reilly) for more information on this topic.



Chapter 6. Algorithm Chains and Pipelines



For many machine learning algorithms, the particular representation of
the data that you provide is very important, as we discussed in Chapter 4. This starts with scaling the data and combining features by hand and
goes all the way to learning features using unsupervised machine
learning, as we saw in Chapter 3. Consequently, most machine learning
applications require not only the application of a single algorithm, but
the chaining together of many different processing steps and machine
learning models. In this chapter, we will cover how to use the Pipeline
class to simplify the process of building chains of transformations and
models. In particular, we will see how we can combine Pipeline and
GridSearchCV to search over parameters for all processing steps at
once.


As an example of the importance of chaining models, we noticed that we
can greatly improve the performance of a kernel SVM on the cancer
dataset by using the MinMaxScaler for preprocessing. Here’s code for
splitting the data, computing the minimum and maximum, scaling the data, and
training the SVM:


In[1]:


from sklearn.svm import SVC
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

# load and split the data
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)

# compute minimum and maximum on the training data
scaler = MinMaxScaler().fit(X_train)


In[2]:


# rescale the training data
X_train_scaled = scaler.transform(X_train)

svm = SVC()
# learn an SVM on the scaled training data
svm.fit(X_train_scaled, y_train)
# scale the test data and score the scaled data
X_test_scaled = scaler.transform(X_test)
print("Test score: {:.2f}".format(svm.score(X_test_scaled, y_test)))


Out[2]:


Test score: 0.95








Parameter Selection with Preprocessing


Now let’s say we want to find better parameters for SVC using
GridSearchCV, as discussed in Chapter 5. How should we go about doing
this? A naive approach might look like this:


In[3]:


from sklearn.model_selection import GridSearchCV
# for illustration purposes only, don't use this code!
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100],
              'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=5)
grid.fit(X_train_scaled, y_train)
print("Best cross-validation accuracy: {:.2f}".format(grid.best_score_))
print("Best set score: {:.2f}".format(grid.score(X_test_scaled, y_test)))
print("Best parameters: ", grid.best_params_)


Out[3]:


Best cross-validation accuracy: 0.98
Best set score: 0.97
Best parameters:  {'gamma': 1, 'C': 1}


Here, we ran the grid search over the parameters of SVC using the
scaled data. However, there is a subtle catch in what we just did. When
scaling the data, we used all the data in the training set to find out how
to train it. We then use the scaled training data to run our
grid search using cross-validation. For each split in the
cross-validation, some part of the original training set will be
declared the training part of the split, and some the test part of the
split. The test part is used to measure what new data will look like to
a model trained on the training part. However, we already used the
information contained in the test part of the split, when scaling the
data. Remember that the test part in each split in the cross-validation
is part of the training set, and we used the information from the entire
training set to find the right scaling of the data. This is
fundamentally different from how new data looks to the model. If we
observe new data (say, in form of our test set), this data will not have
been used to scale the training data, and it might have a different
minimum and maximum than the training data. The following example (Figure 6-1) shows
how the data processing during cross-validation and the final evaluation
differ:


In[4]:


mglearn.plots.plot_improper_processing()



[image: png]
Figure 6-1. Data usage when preprocessing outside the cross-validation loop




So, the splits in the cross-validation no longer correctly mirror how new
data will look to the modeling process. We already leaked information
from these parts of the data into our modeling process. This will lead
to overly optimistic results during cross-validation, and possibly the
selection of suboptimal parameters.


To get around this problem, the splitting of the dataset during
cross-validation should be done before doing any preprocessing. Any
process that extracts knowledge from the dataset should only ever be
applied to the training portion of the dataset, so any cross-validation
should be the “outermost loop” in your processing.


To achieve this in scikit-learn with the cross_val_score function and
the GridSearchCV function, we can use the Pipeline class. The
Pipeline class is a class that allows “gluing” together multiple
processing steps into a single scikit-learn estimator. The Pipeline
class itself has fit, predict, and score methods and behaves just
like any other model in scikit-learn. The most common use case of the
Pipeline class is in chaining preprocessing steps (like scaling of the
data) together with a supervised model like a classifier.

















Building Pipelines


Let’s look at how we can use the Pipeline class to express the
workflow for training an SVM after scaling the data with MinMaxScaler (for
now without the grid search). First, we build a pipeline object by
providing it with a list of steps. Each step is a tuple containing a
name (any string of your choosing1) and an instance of an
estimator:


In[5]:


from sklearn.pipeline import Pipeline
pipe = Pipeline([("scaler", MinMaxScaler()), ("svm", SVC())])


Here, we created two steps: the first, called "scaler", is an instance of
MinMaxScaler, and the second, called "svm", is an instance of SVC. Now, we can fit
the pipeline, like any other scikit-learn estimator:


In[6]:


pipe.fit(X_train, y_train)


Here, pipe.fit first calls fit on the first step (the scaler), then
transforms the training data using the scaler, and finally fits the SVM
with the scaled data. To evaluate on the test data, we simply call
pipe.score:


In[7]:


print("Test score: {:.2f}".format(pipe.score(X_test, y_test)))


Out[7]:


Test score: 0.95


Calling the score method on the pipeline first transforms the test
data using the scaler, and then calls the score method on the SVM
using the scaled test data. As you can see, the result is identical to
the one we got from the code at the beginning of the chapter, when doing the transformations by hand.
Using the pipeline, we reduced the code needed for our “preprocessing + classification” process. The main benefit of using the pipeline,
however, is that we can now use this single estimator in
cross_val_score or GridSearchCV.

















Using Pipelines in Grid Searches


Using a pipeline in a grid search works the same way as using any other
estimator. We define a parameter grid to search over, and construct a
GridSearchCV from the pipeline and the parameter grid. When specifying
the parameter grid, there is a slight change, though. We need to specify
for each parameter which step of the pipeline it belongs to. Both
parameters that we want to adjust, C and gamma, are parameters of
SVC, the second step. We gave this step the name "svm". The syntax
to define a parameter grid for a pipeline is to specify for each
parameter the step name, followed by __ (a double underscore),
followed by the parameter name. To search over the C parameter of SVC we therefore have to use "svm__C" as the key in the parameter
grid dictionary, and similarly for gamma:


In[8]:


param_grid = {'svm__C': [0.001, 0.01, 0.1, 1, 10, 100],
              'svm__gamma': [0.001, 0.01, 0.1, 1, 10, 100]}


With this parameter grid we can use GridSearchCV as usual:


In[9]:


grid = GridSearchCV(pipe, param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation accuracy: {:.2f}".format(grid.best_score_))
print("Test set score: {:.2f}".format(grid.score(X_test, y_test)))
print("Best parameters: {}".format(grid.best_params_))


Out[9]:


Best cross-validation accuracy: 0.98
Test set score: 0.97
Best parameters: {'svm__C': 1, 'svm__gamma': 1}


In contrast to the grid search we did before, now for each split in the
cross-validation, the MinMaxScaler is refit with only the training
splits and no information is leaked from the test split into the parameter
search. Compare this (Figure 6-2) with
Figure 6-1 earlier in this chapter:


In[10]:


mglearn.plots.plot_proper_processing()



[image: png]
Figure 6-2. Data usage when preprocessing inside the cross-validation loop with a pipeline




The impact of leaking information in the cross-validation varies
depending on the nature of the preprocessing step. Estimating the scale
of the data using the test fold usually doesn’t have a terrible impact,
while using the test fold in feature extraction and feature selection
can lead to substantial differences in outcomes.


Illustrating Information Leakage

A great example of leaking information in cross-validation is given in
Hastie, Tibshirani, and Friedman’s book The Elements of Statistical
Learning, and we reproduce an adapted version here. Let’s consider a
synthetic regression task with 100 samples and 1,000 features that are
sampled independently from a Gaussian distribution. We also sample the
response from a Gaussian distribution:


In[11]:


rnd = np.random.RandomState(seed=0)
X = rnd.normal(size=(100, 10000))
y = rnd.normal(size=(100,))


Given the way we created the dataset, there is no relation between the
data, X, and the target, y (they are independent), so it should not be
possible to learn anything from this dataset. We will now do the
following. First, select the most informative of the 10 features using
SelectPercentile feature selection, and then we evaluate a Ridge
regressor using cross-validation:


In[12]:


from sklearn.feature_selection import SelectPercentile, f_regression

select = SelectPercentile(score_func=f_regression, percentile=5).fit(X, y)
X_selected = select.transform(X)
print("X_selected.shape: {}".format(X_selected.shape))


Out[12]:


X_selected.shape: (100, 500)


In[13]:


from sklearn.model_selection import cross_val_score
from sklearn.linear_model import Ridge
print("Cross-validation accuracy (cv only on ridge): {:.2f}".format(
      np.mean(cross_val_score(Ridge(), X_selected, y, cv=5))))


Out[13]:


Cross-validation accuracy (cv only on ridge): 0.91


The mean R2 computed by cross-validation is 0.91,
indicating a very good model. This clearly cannot be right, as our data
is entirely random. What happened here is that our feature selection
picked out some features among the 10,000 random features that are (by
chance) very well correlated with the target. Because we fit the feature
selection outside of the cross-validation, it could find features that
are correlated both on the training and the test folds. The information
we leaked from the test folds was very informative, leading to highly
unrealistic results. Let’s compare this to a proper cross-validation
using a pipeline:


In[14]:


pipe = Pipeline([("select", SelectPercentile(score_func=f_regression,
                                             percentile=5)),
                 ("ridge", Ridge())])
print("Cross-validation accuracy (pipeline): {:.2f}".format(
      np.mean(cross_val_score(pipe, X, y, cv=5))))


Out[14]:


Cross-validation accuracy (pipeline): -0.25


This time, we get a negative R2 score, indicating a
very poor model. Using the pipeline, the feature selection is now
inside the cross-validation loop. This means features can only be
selected using the training folds of the data, not the test fold. The
feature selection finds features that are correlated with the target on
the training set, but because the data is entirely random, these
features are not correlated with the target on the test set. In this
example, rectifying the data leakage issue in the feature selection
makes the difference between concluding that a model works very well and
concluding that a model works not at all.



















The General Pipeline Interface


The Pipeline class is not restricted to preprocessing and
classification, but can in fact join any number of estimators together.
For example, you could build a pipeline containing feature extraction,
feature selection, scaling, and classification, for a total of four
steps. Similarly, the last step could be regression or clustering instead
of classification.


The only requirement for estimators in a pipeline is that all but the
last step need to have a transform method, so they can produce a new
representation of the data that can be used in the next step.


Internally, during the call to Pipeline.fit, the pipeline calls
fit and then transform on each step in turn,2 with the input given by the output of the transform
method of the previous step. For the last step in the pipeline, just
fit is called.


Brushing over some finer details, this is implemented
as follows. Remember that pipeline.steps is a list of tuples, so
pipeline.steps[0][1] is the first estimator, pipeline.steps[1][1] is
the second estimator, and so on:


In[15]:


def fit(self, X, y):
    X_transformed = X
    for name, estimator in self.steps[:-1]:
        # iterate over all but the final step
        # fit and transform the data
        X_transformed = estimator.fit_transform(X_transformed, y)
    # fit the last step
    self.steps[-1][1].fit(X_transformed, y)
    return self


When predicting using Pipeline, we similarly transform the data
using all but the last step, and then call predict on the last step:


In[16]:


def predict(self, X):
    X_transformed = X
    for step in self.steps[:-1]:
        # iterate over all but the final step
        # transform the data
        X_transformed = step[1].transform(X_transformed)
    # fit the last step
    return self.steps[-1][1].predict(X_transformed)


The process is illustrated in Figure 6-3 for two transformers, T1 and T2, and a
classifier (called Classifier).



[image: pipeline_illustration]
Figure 6-3. Overview of the pipeline training and prediction process




The pipeline is actually even more general than this. There is no
requirement for the last step in a pipeline to have a predict
function, and we could create a pipeline just containing, for example, a
scaler and PCA. Then, because the last step (PCA) has a transform
method, we could call transform on the pipeline to get the output of
PCA.transform applied to the data that was processed by the previous
step. The last step of a pipeline is only required to have a fit
method.










Convenient Pipeline Creation with make_pipeline


Creating a pipeline using the syntax described earlier is sometimes a
bit cumbersome, and we often don’t need user-specified names for each
step. There is a convenience function, make_pipeline, that will create a
pipeline for us and automatically name each step based on its class. The
syntax for make_pipeline is as follows:


In[17]:


from sklearn.pipeline import make_pipeline
# standard syntax
pipe_long = Pipeline([("scaler", MinMaxScaler()), ("svm", SVC(C=100))])
# abbreviated syntax
pipe_short = make_pipeline(MinMaxScaler(), SVC(C=100))


The pipeline objects pipe_long and pipe_short do exactly the same
thing, but pipe_short has steps that were automatically named.
We can see the names of the steps by looking at the steps attribute:


In[18]:


print("Pipeline steps:\n{}".format(pipe_short.steps))


Out[18]:


Pipeline steps:
[('minmaxscaler', MinMaxScaler(copy=True, feature_range=(0, 1))),
 ('svc', SVC(C=100, cache_size=200, class_weight=None, coef0=0.0,
	     decision_function_shape=None, degree=3, gamma='auto',
             kernel='rbf', max_iter=-1, probability=False,
             random_state=None, shrinking=True, tol=0.001,
             verbose=False))]


The steps are named minmaxscaler and svc. In general, the step names
are just lowercase versions of the class names. If multiple steps have
the same class, a number is appended:


In[19]:


from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

pipe = make_pipeline(StandardScaler(), PCA(n_components=2), StandardScaler())
print("Pipeline steps:\n{}".format(pipe.steps))


Out[19]:


Pipeline steps:
[('standardscaler-1', StandardScaler(copy=True, with_mean=True, with_std=True)),
 ('pca', PCA(copy=True, iterated_power=4, n_components=2, random_state=None,
             svd_solver='auto', tol=0.0, whiten=False)),
 ('standardscaler-2', StandardScaler(copy=True, with_mean=True, with_std=True))]


As you can see, the first StandardScaler step was named
standardscaler-1 and the second standardscaler-2. However, in
such settings it might be better to use the Pipeline construction with
explicit names, to give more semantic names to each step.

















Accessing Step Attributes


Often you will want to inspect attributes of one of the steps of the
pipeline—say, the coefficients of a linear model or the components
extracted by PCA. The easiest way to access the steps in a pipeline is via
the named_steps attribute, which is a dictionary from the step names to
the estimators:


In[20]:


# fit the pipeline defined before to the cancer dataset
pipe.fit(cancer.data)
# extract the first two principal components from the "pca" step
components = pipe.named_steps["pca"].components_
print("components.shape: {}".format(components.shape))


Out[20]:


components.shape: (2, 30)

















Accessing Attributes in a Grid-Searched Pipeline


As we discussed earlier in this chapter, one of the main reasons to use pipelines is for
doing grid searches. A common task is to access some of the steps of a
pipeline inside a grid search. Let’s grid search a LogisticRegression
classifier on the cancer dataset, using Pipeline and
StandardScaler to scale the data before passing it to the
LogisticRegression classifier. First we create a pipeline using the
make_pipeline function:


In[21]:


from sklearn.linear_model import LogisticRegression

pipe = make_pipeline(StandardScaler(), LogisticRegression())


Next, we create a parameter grid. As explained in Chapter 2, the regularization parameter to tune for LogisticRegression is the parameter C. We use a logarithmic grid for this parameter, searching between 0.01 and
100. Because we used the make_pipeline function, the name of the
LogisticRegression step in the pipeline is the lowercased class name,
logisticregression. To tune the parameter C, we therefore have to
specify a parameter grid for logisticregression__C:


In[22]:


param_grid = {'logisticregression__C': [0.01, 0.1, 1, 10, 100]}


As usual, we split the cancer dataset into training and test sets, and
fit a grid search:


In[23]:


X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=4)
grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(X_train, y_train)


So how do we access the coefficients of the best LogisticRegression
model that was found by GridSearchCV? From Chapter 5 we know that the
best model found by GridSearchCV, trained on all the training data, is
stored in grid.best_estimator_:


In[24]:


print("Best estimator:\n{}".format(grid.best_estimator_))


Out[24]:


Best estimator:
Pipeline(steps=[
    ('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)),
    ('logisticregression', LogisticRegression(C=0.1, class_weight=None,
    dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100,
    multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
    solver='liblinear', tol=0.0001, verbose=0, warm_start=False))])


This best_estimator_ in our case is a pipeline with two steps,
standardscaler and logisticregression. To access the
logisticregression step, we can use the named_steps attribute of the
pipeline, as explained earlier:


In[25]:


print("Logistic regression step:\n{}".format(
      grid.best_estimator_.named_steps["logisticregression"]))


Out[25]:


Logistic regression step:
LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
                  intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
                  penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
                  verbose=0, warm_start=False)


Now that we have the trained LogisticRegression instance, we can
access the coefficients (weights) associated with each input feature:


In[26]:


print("Logistic regression coefficients:\n{}".format(
      grid.best_estimator_.named_steps["logisticregression"].coef_))


Out[26]:


Logistic regression coefficients:
[[-0.389 -0.375 -0.376 -0.396 -0.115  0.017 -0.355 -0.39  -0.058  0.209
  -0.495 -0.004 -0.371 -0.383 -0.045  0.198  0.004 -0.049  0.21   0.224
  -0.547 -0.525 -0.499 -0.515 -0.393 -0.123 -0.388 -0.417 -0.325 -0.139]]


This might be a somewhat lengthy expression, but often it comes in handy in
understanding your models.
























Grid-Searching Preprocessing Steps and Model Parameters


Using pipelines, we can encapsulate all the processing steps in our machine
learning workflow in a single scikit-learn estimator. Another benefit
of doing this is that we can now adjust the parameters of the
preprocessing using the outcome of a supervised task like regression or
classification. In previous chapters, we used polynomial features on the
boston dataset before applying the ridge regressor. Let’s model that
using a pipeline instead. The pipeline contains three steps—scaling the
data, computing polynomial features, and ridge regression:


In[27]:


from sklearn.datasets import load_boston
boston = load_boston()
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target,
                                                    random_state=0)

from sklearn.preprocessing import PolynomialFeatures
pipe = make_pipeline(
    StandardScaler(),
    PolynomialFeatures(),
    Ridge())


How do we know which degrees of polynomials to choose, or whether to
choose any polynomials or interactions at all? Ideally we want to select
the degree parameter based on the outcome of the classification. Using
our pipeline, we can search over the degree parameter together with
the parameter alpha of Ridge. To do this, we define a param_grid
that contains both, appropriately prefixed by the step names:


In[28]:


param_grid = {'polynomialfeatures__degree': [1, 2, 3],
              'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]}


Now we can run our grid search again:


In[29]:


grid = GridSearchCV(pipe, param_grid=param_grid, cv=5, n_jobs=-1)
grid.fit(X_train, y_train)


We can visualize the outcome of the cross-validation using a heat map (Figure 6-4), as
we did in Chapter 5:


In[30]:


plt.matshow(grid.cv_results_['mean_test_score'].reshape(3, -1),
            vmin=0, cmap="viridis")
plt.xlabel("ridge__alpha")
plt.ylabel("polynomialfeatures__degree")
plt.xticks(range(len(param_grid['ridge__alpha'])), param_grid['ridge__alpha'])
plt.yticks(range(len(param_grid['polynomialfeatures__degree'])),
           param_grid['polynomialfeatures__degree'])

plt.colorbar()



[image: png]
Figure 6-4. Heat map of mean cross-validation score as a function of the degree of the polynomial features and alpha parameter of Ridge




Looking at the results produced by the cross-validation, we can see that
using polynomials of degree two helps, but that degree-three polynomials
are much worse than either degree one or two. This is reflected in the
best parameters that were found:


In[31]:


print("Best parameters: {}".format(grid.best_params_))


Out[31]:


Best parameters: {'polynomialfeatures__degree': 2, 'ridge__alpha': 10}


Which lead to the following score:


In[32]:


print("Test-set score: {:.2f}".format(grid.score(X_test, y_test)))


Out[32]:


Test-set score: 0.77


Let’s run a grid search without polynomial features for comparison:


In[33]:


param_grid = {'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]}
pipe = make_pipeline(StandardScaler(), Ridge())
grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(X_train, y_train)
print("Score without poly features: {:.2f}".format(grid.score(X_test, y_test)))


Out[33]:


Score without poly features: 0.63


As we would expect looking at the grid search results visualized in Figure 6-4, using
no polynomial features leads to decidedly worse results.


Searching over
preprocessing parameters together with model parameters is a very
powerful strategy. However, keep in mind that GridSearchCV tries all
possible combinations of the specified parameters. Therefore, adding
more parameters to your grid exponentially increases the number of
models that need to be built.

















Grid-Searching Which Model To Use


You can even go further in combining GridSearchCV and Pipeline: it
is also possible to search over the actual steps being performed in the
pipeline (say whether to use StandardScaler or MinMaxScaler). This
leads to an even bigger search space and should be considered carefully.
Trying all possible solutions is usually not a viable machine learning
strategy. However, here is an example comparing a
RandomForestClassifier and an SVC on the iris dataset. We know
that the SVC might need the data to be scaled, so we also search over
whether to use StandardScaler or no preprocessing. For the
RandomForestClassifier, we know that no preprocessing is necessary. We
start by defining the pipeline. Here, we explicitly name the steps. We
want two steps, one for the preprocessing and then a classifier. We can
instantiate this using SVC and StandardScaler:


In[34]:


pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())])


Now we can define the parameter_grid to search over. We want the
classifier to be either RandomForestClassifier or SVC. Because
they have different parameters to tune, and need different
preprocessing, we can make use of the list of search grids we discussed
in “Search over spaces that are not grids”. To assign an estimator to a step, we use the name of the
step as the parameter name. When we wanted to skip a step in the
pipeline (for example, because we don’t need preprocessing for the
RandomForest), we can set that step to None:


In[35]:


from sklearn.ensemble import RandomForestClassifier

param_grid = [
    {'classifier': [SVC()], 'preprocessing': [StandardScaler(), None],
     'classifier__gamma': [0.001, 0.01, 0.1, 1, 10, 100],
     'classifier__C': [0.001, 0.01, 0.1, 1, 10, 100]},
    {'classifier': [RandomForestClassifier(n_estimators=100)],
     'preprocessing': [None], 'classifier__max_features': [1, 2, 3]}]


Now we can instantiate and run the grid search as usual, here on the
cancer dataset:


In[36]:


X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, random_state=0)

grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(X_train, y_train)

print("Best params:\n{}\n".format(grid.best_params_))
print("Best cross-validation score: {:.2f}".format(grid.best_score_))
print("Test-set score: {:.2f}".format(grid.score(X_test, y_test)))


Out[36]:


Best params:
{'classifier':
 SVC(C=10, cache_size=200, class_weight=None, coef0=0.0,
     decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf',
     max_iter=-1, probability=False, random_state=None, shrinking=True,
     tol=0.001, verbose=False),
 'preprocessing':
 StandardScaler(copy=True, with_mean=True, with_std=True),
 'classifier__C': 10, 'classifier__gamma': 0.01}

Best cross-validation score: 0.99
Test-set score: 0.98


The outcome of the grid search is that SVC with StandardScaler
preprocessing, C=10, and gamma=0.01 gave the best result.

















Summary and Outlook


In this chapter we introduced the Pipeline class, a general-purpose
tool to chain together multiple processing steps in a machine learning
workflow. Real-world applications of machine learning rarely involve an
isolated use of a model, and instead are a sequence of processing steps.
Using pipelines allows us to encapsulate multiple steps into a single
Python object that adheres to the familiar scikit-learn interface of
fit, predict, and transform. In particular when doing model
evaluation using cross-validation and parameter selection using
grid search, using the Pipeline class to capture all the processing steps
is essential for proper evaluation. The Pipeline class also allows
writing more succinct code, and reduces the likelihood of mistakes that
can happen when building processing chains without the pipeline class
(like forgetting to apply all transformers on the test set, or not
applying them in the right order). Choosing the right combination of
feature extraction, preprocessing, and models is somewhat of an art, and often requires some trial and error. However, using pipelines, this
“trying out” of many different processing steps is quite simple. When
experimenting, be careful not to overcomplicate your processes, and
make sure to evaluate whether every component you are including in your
model is necessary.


With this chapter, we have completed our survey of general-purpose tools
and algorithms provided by scikit-learn. You now possess all the
required skills and know the necessary mechanisms to apply machine
learning in practice. In the next chapter, we will dive in more detail
into one particular type of data that is commonly seen in practice, and
that requires some special expertise to handle correctly: text data.










1 With one exception: the name can’t contain a double underscore, __.
2 Or just fit_transform.



Chapter 7. Working with Text Data



In Chapter 4, we talked about two kinds of features that can represent
properties of the data: continuous features that describe a quantity,
and categorical features that are items from a fixed list. There is a
third kind of feature that can be found in many applications, which is
text. For example, if we want to classify an email message as either a
legitimate email or spam, the content of the email will certainly
contain important information for this classification task. Or maybe we
want to learn about the opinion of a politician on the topic of
immigration. Here, that individual’s speeches or tweets might provide useful
information. In customer service, we often want to find out if a
message is a complaint or an inquiry. We can use the subject line and content of a message to automatically determine the customer’s intent, which allows us to send the message to the appropriate department, or even send a fully automatic reply.


Text data is usually represented as strings, made up of characters. In
any of the examples just given, the length of the text data will vary.
This feature is clearly very different from the numeric features that we’ve
discussed so far, and we will need to process the data before we can
apply our machine learning algorithms to it.








Types of Data Represented as Strings


Before we dive into the processing steps that go into representing text
data for machine learning, we want to briefly discuss different kinds of
text data that you might encounter. Text is usually just a string in
your dataset, but not all string features should be treated as text. A
string feature can sometimes represent categorical variables, as we
discussed in Chapter 5. There is no way to know how to treat a string
feature before looking at the data.


There are four kinds of string data you might see:



	
Categorical data



	
Free strings that can be semantically mapped to categories



	
Structured string data



	
Text data






Categorical data is data that comes from a fixed list. Say you collect
data via a survey where you ask people their favorite color, with a
drop-down menu that allows them to select from “red,” “green,” “blue,”
“yellow,” “black,” “white,” “purple,” and “pink.” This will result in a
dataset with exactly eight different possible values, which clearly encode a
categorical variable. You can check whether this is the case for your
data by eyeballing it (if you see very many different strings it is
unlikely that this is a categorical variable) and confirm it by
computing the unique values over the dataset, and possibly a histogram
over how often each appears. You also might want to check whether each
variable actually corresponds to a category that makes sense for your
application. Maybe halfway through the existence of your survey,
someone found that “black” was misspelled as “blak” and subsequently
fixed the survey. As a result, your dataset contains both “blak” and
“black,” which correspond to the same semantic meaning and should be
consolidated.


Now imagine instead of providing a drop-down menu, you provide a text
field for the users to provide their own favorite colors. Many people
might respond with a color name like “black” or “blue.” Others might
make typographical errors, use different spellings like
“gray” and “grey,” or use more evocative and specific names like “midnight blue.” You will also have some very strange entries. Some good examples come
from the xkcd Color Survey, where people
had to name colors and came up with names like “velociraptor cloaka”
and “my dentist’s office orange. I still remember his dandruff slowly
wafting into my gaping yaw,” which are hard to map to colors
automatically (or at all). The responses you can obtain from a text
field belong to the second category in the list, free strings that can be semantically mapped to categories. It will probably be best to encode this data as a
categorical variable, where you can select the categories either by using
the most common entries, or by defining categories that will capture
responses in a way that makes sense for your application. You might then
have some categories for standard colors, maybe a category
“multicolored” for people that gave answers like “green and red
stripes,” and an “other” category for things that cannot be encoded
otherwise. This kind of preprocessing of strings can take a lot of
manual effort and is not easily automated. If you are in a position
where you can influence data collection, we highly recommend avoiding
manually entered values for concepts that are better captured using
categorical variables.


Often, manually entered values do not correspond to fixed categories,
but still have some underlying structure, like addresses, names of
places or people, dates, telephone numbers, or other identifiers. These
kinds of strings are often very hard to parse, and their treatment is
highly dependent on context and domain. A systematic treatment of these
cases is beyond the scope of this book.


The final category of string data is freeform text data that consists of
phrases or sentences. Examples include tweets, chat logs,
and hotel reviews, as well as the collected works of Shakespeare, the content
of Wikipedia, or the Project Gutenberg collection of 50,000 ebooks. All
of these collections contain information mostly as sentences composed of
words.1 For simplicity’s
sake, let’s assume all our documents are in one language, English.2 In the
context of text analysis, the dataset is often called the corpus, and
each data point, represented as a single text, is called a document.
These terms come from the information retrieval (IR) and natural
language processing (NLP) community, which both deal mostly in text
data.

















Example Application: Sentiment Analysis of Movie Reviews


As a running example in this chapter, we will use a dataset of movie
reviews from the IMDb (Internet Movie Database) website
collected by Stanford researcher Andrew Maas.3 This
dataset contains the text of the reviews, together with a label that
indicates whether a review is “positive” or “negative.” The IMDb website itself
contains ratings from 1 to 10. To simplify the modeling, this
annotation is summarized as a two-class classification dataset where
reviews with a score of 6 or higher are labeled as positive, and the
rest as negative. We will leave the question of whether this is a good
representation of the data open, and simply use the data as provided by
Andrew Maas.


After unpacking the data, the dataset is provided as text files in two
separate folders, one for the training data and one for the test data.
Each of these in turn has two subfolders, one called pos and one
called neg:


In[2]:


!tree -L 2 data/aclImdb


Out[2]:


data/aclImdb
├── test
│   ├── neg
│   └── pos
└── train
    ├── neg
    └── pos

6 directories, 0 files


The pos folder contains all the positive reviews, each as a
separate text file, and similarly for the neg folder. There is a
helper function in scikit-learn to load files stored in such a
folder structure, where each subfolder corresponds to a label, called
load_files. We apply the load_files function first to the training
data:


In[3]:


from sklearn.datasets import load_files

reviews_train = load_files("data/aclImdb/train/")
# load_files returns a bunch, containing training texts and training labels
text_train, y_train = reviews_train.data, reviews_train.target
print("type of text_train: {}".format(type(text_train)))
print("length of text_train: {}".format(len(text_train)))
print("text_train[1]:\n{}".format(text_train[1]))


Out[3]:


type of text_train:  <class 'list'>
length of text_train:  25000
text_train[1]:
b'Words can\'t describe how bad this movie is. I can\'t explain it by writing
  only. You have too see it for yourself to get at grip of how horrible a movie
  really can be. Not that I recommend you to do that. There are so many
  clich\xc3\xa9s, mistakes (and all other negative things you can imagine) here
  that will just make you cry. To start with the technical first, there are a
  LOT of mistakes regarding the airplane. I won\'t list them here, but just
  mention the coloring of the plane. They didn\'t even manage to show an
  airliner in the colors of a fictional airline, but instead used a 747
  painted in the original Boeing livery. Very bad. The plot is stupid and has
  been done many times before, only much, much better. There are so many
  ridiculous moments here that i lost count of it really early. Also, I was on
  the bad guys\' side all the time in the movie, because the good guys were so
  stupid. "Executive Decision" should without a doubt be you\'re choice over
  this one, even the "Turbulence"-movies are better. In fact, every other
  movie in the world is better than this one.'


You can see that text_train is a list of length 25,000, where each
entry is a string containing a review. We printed the review with index
1. You can also see that the review contains some HTML line breaks
(<br />). While these are unlikely to have a large impact on our
machine learning models, it is better to clean the data and remove this
formatting before we proceed:


In[4]:


text_train = [doc.replace(b"<br />", b" ") for doc in text_train]


The type of the entries of text_train will depend on your Python version.
In Python 3, they will be of type bytes which represents a binary
encoding of the string data. In Python 2, text_train contains strings.
We won’t go into the details of the different string types in Python
here, but we recommend that you read the Python 2 and/or Python 3 documentation regarding strings and Unicode.


The dataset was collected such that the positive class and the negative
class balanced, so that there are as many positive as negative strings:


In[5]:


print("Samples per class (training): {}".format(np.bincount(y_train)))


Out[5]:


Samples per class (training): [12500 12500]


We load the test dataset in the same manner:


In[6]:


reviews_test = load_files("data/aclImdb/test/")
text_test, y_test = reviews_test.data, reviews_test.target
print("Number of documents in test data: {}".format(len(text_test)))
print("Samples per class (test): {}".format(np.bincount(y_test)))
text_test = [doc.replace(b"<br />", b" ") for doc in text_test]


Out[6]:


Number of documents in test data: 25000
Samples per class (test): [12500 12500]


The task we want to solve is as follows: given a review, we want to assign the
label “positive” or “negative” based on the text content of the
review. This is a standard binary classification task. However, the text
data is not in a format that a machine learning model can handle. We
need to convert the string representation of the text into a numeric
representation that we can apply our machine learning algorithms to.

















Representing Text Data as a Bag of Words


One of the most simple but effective and commonly used ways to
represent text for machine learning is using the bag-of-words
representation. When using this representation, we discard most of the
structure of the input text, like chapters, paragraphs, sentences, and
formatting, and only count how often each word appears in each text in the corpus.
Discarding the structure and counting only word occurrences leads to the
mental image of representing text as a “bag.”


Computing the bag-of-words representation for a corpus of documents
consists of the following three steps:


	
Tokenization. Split each document into the words that appear in it
(called tokens), for example by splitting them on whitespace and
punctuation.



	
Vocabulary building. Collect a vocabulary of all words that appear
in any of the documents, and number them (say, in alphabetical order).



	
Encoding. For each document, count how often each of the words in
the vocabulary appear in this document.







There are some subtleties involved in step 1 and step 2, which we will discuss in more detail later in this chapter. For now, let’s look at how
we can apply the bag-of-words processing using scikit-learn. Figure 7-1 illustrates the process on the string "This is how
you get ants.". The output is one vector of word counts
for each document. For each word in the vocabulary, we have a count of
how often it appears in each document. That means our numeric
representation has one feature for each unique word in the whole
dataset. Note how the order of the words in the original string is
completely irrelevant to the bag-of-words feature representation.



[image: bag_of_words]
Figure 7-1. Bag-of-words processing












Applying Bag-of-Words to a Toy Dataset


The bag-of-words representation is implemented in CountVectorizer,
which is a transformer. Let’s first apply it to a toy dataset,
consisting of two samples, to see it working:


In[7]:


bards_words =["The fool doth think he is wise,",
              "but the wise man knows himself to be a fool"]


We import and instantiate the CountVectorizer and fit it to our toy
data as follows:


In[8]:


from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer()
vect.fit(bards_words)


Fitting the CountVectorizer consists of the tokenization of the
training data and building of the vocabulary, which we can access as the
vocabulary_ attribute:


In[9]:


print("Vocabulary size: {}".format(len(vect.vocabulary_)))
print("Vocabulary content:\n {}".format(vect.vocabulary_))


Out[9]:


Vocabulary size: 13
Vocabulary content:
 {'the': 9, 'himself': 5, 'wise': 12, 'he': 4, 'doth': 2, 'to': 11, 'knows': 7,
  'man': 8, 'fool': 3, 'is': 6, 'be': 0, 'think': 10, 'but': 1}


The vocabulary consists of 13 words, from "be" to "wise".


To create the bag-of-words representation for the training data, we call
the transform method:


In[10]:


bag_of_words = vect.transform(bards_words)
print("bag_of_words: {}".format(repr(bag_of_words)))


Out[10]:


bag_of_words: <2x13 sparse matrix of type '<class 'numpy.int64'>'
    with 16 stored elements in Compressed Sparse Row format>


The bag-of-words representation is stored in a SciPy sparse matrix that
only stores the entries that are nonzero (see Chapter 1). The matrix is
of shape 2×13, with one row for each of the two data points and one
feature for each of the words in the vocabulary. A sparse matrix is used
as most documents only contain a small subset of the words in the
vocabulary, meaning most entries in the feature array are 0. Think
about how many different words might appear in a movie review compared
to all the words in the English language (which is what the vocabulary
models). Storing all those zeros would be prohibitive, and a waste of
memory. To look at the actual content of the sparse matrix, we can
convert it to a “dense” NumPy array (that also stores all the 0
entries) using the toarray method:4


In[11]:


print("Dense representation of bag_of_words:\n{}".format(
    bag_of_words.toarray()))


Out[11]:


Dense representation of bag_of_words:
[[0 0 1 1 1 0 1 0 0 1 1 0 1]
 [1 1 0 1 0 1 0 1 1 1 0 1 1]]


We can see that the word counts for each word are either 0 or 1;
neither of the two strings in bards_words contains a word twice. Let’s take a look at how to
read these feature vectors. The first string
("The fool doth think he is wise,") is represented as the first row in,
and it contains the first word in the vocabulary, "be", zero times. It
also contains the second word in the vocabulary, "but", zero times. It
contains the third word, "doth", once, and so on. Looking at both
rows, we can see that the fourth word, "fool", the tenth word, "the",
and the thirteenth word, "wise", appear in both strings.

















Bag-of-Words for Movie Reviews


Now that we’ve gone through the bag-of-words process in detail, let’s apply
it to our task of sentiment analysis for movie reviews. Earlier, we
loaded our training and test data from the IMDb reviews into
lists of strings (text_train and text_test), which we will now
process:


In[12]:


vect = CountVectorizer().fit(text_train)
X_train = vect.transform(text_train)
print("X_train:\n{}".format(repr(X_train)))


Out[12]:


X_train:
<25000x74849 sparse matrix of type '<class 'numpy.int64'>'
    with 3431196 stored elements in Compressed Sparse Row format>


The shape of X_train, the bag-of-words representation of the training
data, is 25,000×74,849, indicating that the vocabulary contains 74,849
entries. Again, the data is stored as a SciPy sparse matrix. Let’s look at the vocabulary in a bit more detail. Another way to access the
vocabulary is using the get_feature_name method of the vectorizer,
which returns a convenient list where each entry corresponds to one
feature:


In[13]:


feature_names = vect.get_feature_names()
print("Number of features: {}".format(len(feature_names)))
print("First 20 features:\n{}".format(feature_names[:20]))
print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))
print("Every 2000th feature:\n{}".format(feature_names[::2000]))


Out[13]:


Number of features: 74849
First 20 features:
['00', '000', '0000000000001', '00001', '00015', '000s', '001', '003830',
 '006', '007', '0079', '0080', '0083', '0093638', '00am', '00pm', '00s',
 '01', '01pm', '02']
Features 20010 to 20030:
['dratted', 'draub', 'draught', 'draughts', 'draughtswoman', 'draw', 'drawback',
 'drawbacks', 'drawer', 'drawers', 'drawing', 'drawings', 'drawl',
 'drawled', 'drawling', 'drawn', 'draws', 'draza', 'dre', 'drea']
Every 2000th feature:
['00', 'aesir', 'aquarian', 'barking', 'blustering', 'bête', 'chicanery',
 'condensing', 'cunning', 'detox', 'draper', 'enshrined', 'favorit', 'freezer',
 'goldman', 'hasan', 'huitieme', 'intelligible', 'kantrowitz', 'lawful',
 'maars', 'megalunged', 'mostey', 'norrland', 'padilla', 'pincher',
 'promisingly', 'receptionist', 'rivals', 'schnaas', 'shunning', 'sparse',
 'subset', 'temptations', 'treatises', 'unproven', 'walkman', 'xylophonist']


As you can see, possibly a bit surprisingly, the first 10
entries in the vocabulary are all numbers. All these numbers appear
somewhere in the reviews, and are therefore extracted as words. Most of
these numbers don’t have any immediate semantic meaning—apart from
"007", which in the particular context of movies is likely to refer
to the James Bond character.5
Weeding out the meaningful from the nonmeaningful “words” is sometimes
tricky. Looking further along in the vocabulary, we find a
collection of English words starting with “dra”. You might notice that
for "draught", "drawback", and "drawer" both the singular and plural forms
are contained in the vocabulary as distinct words. These words have very
closely related semantic meanings, and counting them as different words,
corresponding to different features, might not be ideal.


Before we try to improve our feature extraction, let’s obtain a
quantitative measure of performance by actually building a classifier.
We have the training labels stored in y_train and the bag-of-words
representation of the training data in X_train, so we can train a
classifier on this data. For high-dimensional, sparse data like this,
linear models like LogisticRegression often work best.


Let’s start by
evaluating LogisticRegresssion using cross-validation:6


In[14]:


from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
scores = cross_val_score(LogisticRegression(), X_train, y_train, cv=5)
print("Mean cross-validation accuracy: {:.2f}".format(np.mean(scores)))


Out[14]:


Mean cross-validation accuracy: 0.88


We obtain a mean cross-validation score of 88%, which indicates
reasonable performance for a balanced binary classification task. We
know that LogisticRegression has a regularization parameter, C, which
we can tune via cross-validation:


In[15]:


from sklearn.model_selection import GridSearchCV
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]}
grid = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))
print("Best parameters: ", grid.best_params_)


Out[15]:


Best cross-validation score: 0.89
Best parameters:  {'C': 0.1}


We obtain a cross-validation score of 89% using C=0.1. We can now
assess the generalization performance of this parameter setting on the
test set:


In[16]:


X_test = vect.transform(text_test)
print("{:.2f}".format(grid.score(X_test, y_test)))


Out[16]:


0.88


Now, let’s see if we can improve the extraction of words. The CountVectorizer extracts tokens using a regular expression. By
default, the regular expression that is used is "\b\w\w+\b". If you
are not familiar with regular expressions, this means it finds all
sequences of characters that consist of at least two letters or numbers
(\w) and that are separated by word boundaries (\b). It does not find single-letter words, and it splits up
contractions like “doesn’t” or “bit.ly”, but it matches “h8ter” as a single
word. The CountVectorizer then converts all words to lowercase
characters, so that “soon”, “Soon”, and “sOon” all correspond to the same
token (and therefore feature). This simple mechanism works quite well in
practice, but as we saw earlier, we get many uninformative features (like
the numbers). One way to cut back on these is to only use tokens that
appear in at least two documents (or at least five documents, and so on). A token
that appears only in a single document is unlikely to appear in the test
set and is therefore not helpful. We can set the minimum number of
documents a token needs to appear in with the min_df parameter:


In[17]:


vect = CountVectorizer(min_df=5).fit(text_train)
X_train = vect.transform(text_train)
print("X_train with min_df: {}".format(repr(X_train)))


Out[17]:


X_train with min_df: <25000x27271 sparse matrix of type '<class 'numpy.int64'>'
    with 3354014 stored elements in Compressed Sparse Row format>


By requiring at least five appearances of each token, we can bring down
the number of features to 27,271, as seen in the preceding output—only about a
third of the original features. Let’s look at some tokens again:


In[18]:


feature_names = vect.get_feature_names()

print("First 50 features:\n{}".format(feature_names[:50]))
print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))
print("Every 700th feature:\n{}".format(feature_names[::700]))


Out[18]:


First 50 features:
['00', '000', '007', '00s', '01', '02', '03', '04', '05', '06', '07', '08',
 '09', '10', '100', '1000', '100th', '101', '102', '103', '104', '105', '107',
 '108', '10s', '10th', '11', '110', '112', '116', '117', '11th', '12', '120',
 '12th', '13', '135', '13th', '14', '140', '14th', '15', '150', '15th', '16',
 '160', '1600', '16mm', '16s', '16th']
Features 20010 to 20030:
['repentance', 'repercussions', 'repertoire', 'repetition', 'repetitions',
 'repetitious', 'repetitive', 'rephrase', 'replace', 'replaced', 'replacement',
 'replaces', 'replacing', 'replay', 'replayable', 'replayed', 'replaying',
 'replays', 'replete', 'replica']
Every 700th feature:
['00', 'affections', 'appropriately', 'barbra', 'blurbs', 'butchered',
 'cheese', 'commitment', 'courts', 'deconstructed', 'disgraceful', 'dvds',
 'eschews', 'fell', 'freezer', 'goriest', 'hauser', 'hungary', 'insinuate',
 'juggle', 'leering', 'maelstrom', 'messiah', 'music', 'occasional', 'parking',
 'pleasantville', 'pronunciation', 'recipient', 'reviews', 'sas', 'shea',
 'sneers', 'steiger', 'swastika', 'thrusting', 'tvs', 'vampyre', 'westerns']


There are clearly many fewer numbers, and some of the more obscure words
or misspellings seem to have vanished. Let’s see how well our model
performs by doing a grid search again:


In[19]:


grid = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))


Out[19]:


Best cross-validation score: 0.89


The best validation accuracy of the grid search is still 89%,
unchanged from before. We didn’t improve our model, but having fewer
features to deal with speeds up processing and throwing away useless
features might make the model more interpretable.

Note

If the transform method of CountVectorizer is called on a document
that contains words that were not contained in the training data, these
words will be ignored as they are not part of the dictionary. This is not
really an issue for classification, as it’s not possible to learn
anything about words that are not in the training data. For some
applications, like spam detection, it might be helpful to add a feature
that encodes how many so-called “out of vocabulary” words there are in a
particular document, though. For this to work, you need to set min_df;
otherwise, this feature will never be active during training.


























Stopwords


Another way that we can get rid of uninformative words is by discarding
words that are too frequent to be informative. There are two main
approaches: using a language-specific list of stopwords, or discarding
words that appear too frequently. scikit-learn has a built-in list of
English stopwords in the feature_extraction.text module:


In[20]:


from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
print("Number of stop words: {}".format(len(ENGLISH_STOP_WORDS)))
print("Every 10th stopword:\n{}".format(list(ENGLISH_STOP_WORDS)[::10]))


Out[20]:


Number of stop words: 318
Every 10th stopword:
['above', 'elsewhere', 'into', 'well', 'rather', 'fifteen', 'had', 'enough',
 'herein', 'should', 'third', 'although', 'more', 'this', 'none', 'seemed',
 'nobody', 'seems', 'he', 'also', 'fill', 'anyone', 'anything', 'me', 'the',
 'yet', 'go', 'seeming', 'front', 'beforehand', 'forty', 'i']


Clearly, removing the stopwords in the list can only decrease the
number of features by the length of the list—here, 318—but it might
lead to an improvement in performance. Let’s give it a try:


In[21]:


# Specifying stop_words="english" uses the built-in list.
# We could also augment it and pass our own.
vect = CountVectorizer(min_df=5, stop_words="english").fit(text_train)
X_train = vect.transform(text_train)
print("X_train with stop words:\n{}".format(repr(X_train)))


Out[21]:


X_train with stop words:
<25000x26966 sparse matrix of type '<class 'numpy.int64'>'
    with 2149958 stored elements in Compressed Sparse Row format>


There are now 305 (27,271–26,966) fewer features in the dataset, which
means that most, but not all, of the stopwords appeared. Let’s run the
grid search again:


In[22]:


grid = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))


Out[22]:


Best cross-validation score: 0.88


The grid search performance decreased slightly using the stopwords—not enough to worry about, but given that excluding 305 features out of over 27,000 is unlikely
to change performance or interpretability a lot, it doesn’t seem worth
using this list. Fixed lists are mostly helpful for small datasets, which
might not contain enough information for the model to determine which
words are stopwords from the data itself. As an exercise, you can try
out the other approach, discarding frequently appearing words, by
setting the max_df option of CountVectorizer and see how it
influences the number of features and the performance.

















Rescaling the Data with tf–idf


Instead of dropping features that are deemed unimportant, another
approach is to rescale features by how informative we expect them to be.
One of the most common ways to do this is using the term frequency–inverse document frequency (tf–idf) method. The intuition of
this method is to give high weight to any term that appears often in a
particular document, but not in many documents in the corpus. If a word
appears often in a particular document, but not in very many documents,
it is likely to be very descriptive of the content of that document.
scikit-learn implements the tf–idf method in two classes:
TfidfTransformer, which takes in the sparse matrix output produced by
CountVectorizer and transforms it, and TfidfVectorizer, which takes
in the text data and does both the bag-of-words feature extraction and
the tf–idf transformation. There are several variants of the tf–idf
rescaling scheme, which you can read about on Wikipedia. The tf–idf score for word
w in document d as implemented in both the
TfidfTransformer and TfidfVectorizer classes is given by:7
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where N is the number of documents in the training set,
Nw is the number of documents in the training set that
the word w appears in, and tf (the
term frequency) is the number of times that the word w
appears in the query document d (the document you want to
transform or encode). Both classes also apply L2 normalization after
computing the tf–idf representation; in other words, they rescale the
representation of each document to have Euclidean norm 1. Rescaling in
this way means that the length of a document (the number of words) does
not change the vectorized representation.


Because tf–idf actually makes use of the statistical properties of the
training data, we will use a pipeline, as described in Chapter 6, to
ensure the results of our grid search are valid. This leads to the
following code:


In[23]:


from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import make_pipeline
pipe = make_pipeline(TfidfVectorizer(min_df=5, norm=None),
                     LogisticRegression())
param_grid = {'logisticregression__C': [0.001, 0.01, 0.1, 1, 10]}

grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(text_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))


Out[23]:


Best cross-validation score: 0.89


As you can see, there is some improvement when using tf–idf instead of
just word counts. We can also inspect which words tf–idf found
most important. Keep in mind that the tf–idf scaling is meant to find
words that distinguish documents, but it is a purely unsupervised
technique. So, “important” here does not necessarily relate to the
“positive review” and “negative review” labels we are interested in.
First, we extract the TfidfVectorizer from the pipeline:


In[24]:


vectorizer = grid.best_estimator_.named_steps["tfidfvectorizer"]
# transform the training dataset
X_train = vectorizer.transform(text_train)
# find maximum value for each of the features over the dataset
max_value = X_train.max(axis=0).toarray().ravel()
sorted_by_tfidf = max_value.argsort()
# get feature names
feature_names = np.array(vectorizer.get_feature_names())

print("Features with lowest tfidf:\n{}".format(
    feature_names[sorted_by_tfidf[:20]]))

print("Features with highest tfidf: \n{}".format(
    feature_names[sorted_by_tfidf[-20:]]))


Out[24]:


Features with lowest tfidf:
['poignant' 'disagree' 'instantly' 'importantly' 'lacked' 'occurred'
 'currently' 'altogether' 'nearby' 'undoubtedly' 'directs' 'fond' 'stinker'
 'avoided' 'emphasis' 'commented' 'disappoint' 'realizing' 'downhill'
 'inane']
Features with highest tfidf:
['coop' 'homer' 'dillinger' 'hackenstein' 'gadget' 'taker' 'macarthur'
 'vargas' 'jesse' 'basket' 'dominick' 'the' 'victor' 'bridget' 'victoria'
 'khouri' 'zizek' 'rob' 'timon' 'titanic']


Features with low tf–idf are those that either are very commonly used
across documents or are only used sparingly, and only in very long
documents. Interestingly, many of the high-tf–idf features actually
identify certain shows or movies. These terms only appear in reviews for
this particular show or franchise, but tend to appear very often in
these particular reviews. This is very clear, for example, for "pokemon",
"smallville", and "doodlebops", but "scanners" here actually also refers
to a movie title. These words are unlikely to help us in our sentiment
classification task (unless maybe some franchises are universally
reviewed positively or negatively) but certainly contain a lot of
specific information about the reviews.


We can also find the words that have low inverse document frequency—that is, those that appear frequently and are therefore deemed less
important. The inverse document frequency values found on the training
set are stored in the idf_ attribute:


In[25]:


sorted_by_idf = np.argsort(vectorizer.idf_)
print("Features with lowest idf:\n{}".format(
    feature_names[sorted_by_idf[:100]]))


Out[25]:


Features with lowest idf:
['the' 'and' 'of' 'to' 'this' 'is' 'it' 'in' 'that' 'but' 'for' 'with'
 'was' 'as' 'on' 'movie' 'not' 'have' 'one' 'be' 'film' 'are' 'you' 'all'
 'at' 'an' 'by' 'so' 'from' 'like' 'who' 'they' 'there' 'if' 'his' 'out'
 'just' 'about' 'he' 'or' 'has' 'what' 'some' 'good' 'can' 'more' 'when'
 'time' 'up' 'very' 'even' 'only' 'no' 'would' 'my' 'see' 'really' 'story'
 'which' 'well' 'had' 'me' 'than' 'much' 'their' 'get' 'were' 'other'
 'been' 'do' 'most' 'don' 'her' 'also' 'into' 'first' 'made' 'how' 'great'
 'because' 'will' 'people' 'make' 'way' 'could' 'we' 'bad' 'after' 'any'
 'too' 'then' 'them' 'she' 'watch' 'think' 'acting' 'movies' 'seen' 'its'
 'him']


As expected, these are mostly English stopwords like "the" and "no".
But some are clearly domain-specific to the movie reviews, like "movie",
"film", "time", "story", and so on. Interestingly, "good", "great", and
"bad" are also among the most frequent and therefore “least relevant”
words according to the tf–idf measure, even though we might expect these
to be very important for our sentiment analysis task.

















Investigating Model Coefficients


Finally, let’s look in a bit more detail into what our logistic
regression model actually learned from the data. Because there are so
many features—27,271 after removing the infrequent ones—we clearly
cannot look at all of the coefficients at the same time. However, we can
look at the largest coefficients, and see which words these correspond
to. We will use the last model that we trained, based on the tf–idf
features.


The following bar chart (Figure 7-2) shows the 25 largest and 25
smallest coefficients of the logistic regression model, with the bars
showing the size of each coefficient:


In[26]:


mglearn.tools.visualize_coefficients(
    grid.best_estimator_.named_steps["logisticregression"].coef_,
    feature_names, n_top_features=40)
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Figure 7-2. Largest and smallest coefficients of logistic regression trained on tf-idf features




The negative coefficients on the
left belong to words that according to the model are indicative of
negative reviews, while the positive coefficients on the right belong to
words that according to the model indicate positive reviews. Most of the
terms are quite intuitive, like "worst", "waste", "disappointment", and
"laughable" indicating bad movie reviews, while "excellent",
"wonderful", "enjoyable", and "refreshing" indicate positive movie
reviews. Some words are slightly less clear, like "bit", "job", and
"today", but these might be part of phrases like “good job” or “best
today.”

















Bag-of-Words with More Than One Word (n-Grams)


One of the main disadvantages of using a bag-of-words representation is
that word order is completely discarded. Therefore, the two strings “it’s
bad, not good at all” and “it’s good, not bad at all” have exactly the
same representation, even though the meanings are inverted. Putting
“not” in front of a word is only one example (if an extreme one) of how context
matters. Fortunately, there is a way of capturing context when using a bag-of-words
representation, by not only considering the counts of single tokens, but
also the counts of pairs or triplets of tokens that appear next to each
other. Pairs of tokens are known as bigrams, triplets of tokens are
known as trigrams, and more generally sequences of tokens are known as
n-grams. We can change the range of tokens that are considered as
features by changing the ngram_range parameter of CountVectorizer
or TfidfVectorizer. The ngram_range parameter is a tuple, consisting
of the minimum length and the maximum length of the sequences of tokens
that are considered. Here is an example on the toy data we used earlier:


In[27]:


print("bards_words:\n{}".format(bards_words))


Out[27]:


bards_words:
['The fool doth think he is wise,',
 'but the wise man knows himself to be a fool']


The default is to create one feature per sequence of tokens that is at
least one token long and at most one token long, or in other words exactly
one token long (single tokens are also called unigrams):


In[28]:


cv = CountVectorizer(ngram_range=(1, 1)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))


Out[28]:


Vocabulary size: 13
Vocabulary:
['be', 'but', 'doth', 'fool', 'he', 'himself', 'is', 'knows', 'man', 'the',
 'think', 'to', 'wise']


To look only at bigrams—that is, only at sequences of two tokens
following each other—we can set ngram_range to (2, 2):


In[29]:


cv = CountVectorizer(ngram_range=(2, 2)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))


Out[29]:


Vocabulary size: 14
Vocabulary:
['be fool', 'but the', 'doth think', 'fool doth', 'he is', 'himself to',
 'is wise', 'knows himself', 'man knows', 'the fool', 'the wise',
 'think he', 'to be', 'wise man']


Using longer sequences of tokens usually results in many more features,
and in more specific features. There is no common bigram between the two
phrases in bard_words:


In[30]:


print("Transformed data (dense):\n{}".format(cv.transform(bards_words).toarray()))


Out[30]:


Transformed data (dense):
[[0 0 1 1 1 0 1 0 0 1 0 1 0 0]
 [1 1 0 0 0 1 0 1 1 0 1 0 1 1]]


For most applications, the minimum number of tokens should be one, as
single words often capture a lot of meaning. Adding bigrams helps in
most cases. Adding longer sequences—up to 5-grams—might help too, but this
will lead to an explosion of the number of features and might lead to
overfitting, as there will be many very specific features. In principle, the
number of bigrams could be the number of unigrams squared and the
number of trigrams could be the number of unigrams to the power of
three, leading to very large feature spaces. In practice, the number of
higher n-grams that actually appear in the data is much smaller, because
of the structure of the (English) language, though it is still large.


Here is what using unigrams, bigrams, and trigrams on bards_words looks
like:


In[31]:


cv = CountVectorizer(ngram_range=(1, 3)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))


Out[31]:


Vocabulary size: 39
Vocabulary:
['be', 'be fool', 'but', 'but the', 'but the wise', 'doth', 'doth think',
 'doth think he', 'fool', 'fool doth', 'fool doth think', 'he', 'he is',
 'he is wise', 'himself', 'himself to', 'himself to be', 'is', 'is wise',
 'knows', 'knows himself', 'knows himself to', 'man', 'man knows',
 'man knows himself', 'the', 'the fool', 'the fool doth', 'the wise',
 'the wise man', 'think', 'think he', 'think he is', 'to', 'to be',
 'to be fool', 'wise', 'wise man', 'wise man knows']


Let’s try out the TfidfVectorizer on the IMDb movie review data and find
the best setting of n-gram range using a grid search:


In[32]:


pipe = make_pipeline(TfidfVectorizer(min_df=5), LogisticRegression())
# running the grid search takes a long time because of the
# relatively large grid and the inclusion of trigrams
param_grid = {"logisticregression__C": [0.001, 0.01, 0.1, 1, 10, 100],
              "tfidfvectorizer__ngram_range": [(1, 1), (1, 2), (1, 3)]}

grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(text_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))
print("Best parameters:\n{}".format(grid.best_params_))


Out[32]:


Best cross-validation score: 0.91
Best parameters:
{'tfidfvectorizer__ngram_range': (1, 3), 'logisticregression__C': 100}


As you can see from the results, we improved performance by a bit more than
a percent by adding bigram and trigram features. We can visualize the
cross-validation accuracy as a function of the ngram_range and C
parameter as a heat map, as we did in Chapter 5 (see Figure 7-3):


In[33]:


# extract scores from grid_search
scores = grid.cv_results_['mean_test_score'].reshape(-1, 3).T
# visualize heat map
heatmap = mglearn.tools.heatmap(
    scores, xlabel="C", ylabel="ngram_range", cmap="viridis", fmt="%.3f",
    xticklabels=param_grid['logisticregression__C'],
    yticklabels=param_grid['tfidfvectorizer__ngram_range'])
plt.colorbar(heatmap)



[image: malp 0703]
Figure 7-3. Heat map visualization of mean cross-validation accuracy as a function of the parameters ngram_range and C




From the heat map we can see that using bigrams increases performance
quite a bit, while adding trigrams only provides a very small benefit
in terms of accuracy. To understand better how the model improved, we can
visualize the important coefficient for the best model, which includes
unigrams, bigrams, and trigrams (see Figure 7-4):


In[34]:


# extract feature names and coefficients
vect = grid.best_estimator_.named_steps['tfidfvectorizer']
feature_names = np.array(vect.get_feature_names())
coef = grid.best_estimator_.named_steps['logisticregression'].coef_
mglearn.tools.visualize_coefficients(coef, feature_names, n_top_features=40)



[image: malp 0704]
Figure 7-4. Most important features when using unigrams, bigrams, and trigrams with tf-idf rescaling




There are particularly interesting features containing the word “worth”
that were not present in the unigram model: "not worth" is indicative of
a negative review, while "definitely worth" and "well worth" are
indicative of a positive review. This is a prime example of context
influencing the meaning of the word “worth.”


Next, we’ll visualize only trigrams, to provide further
insight into why these features are helpful. Many of the useful bigrams
and trigrams consist of common words that would not be informative on
their own, as in the phrases "none of the", "the only good", "on and on", "this is one", "of the most", and so on. However, the impact of
these features is quite limited compared to the importance of the
unigram features, as you can see in Figure 7-5:


In[35]:


# find 3-gram features
mask = np.array([len(feature.split(" ")) for feature in feature_names]) == 3
# visualize only 3-gram features
mglearn.tools.visualize_coefficients(coef.ravel()[mask],
                                     feature_names[mask], n_top_features=40)



[image: malp 0705]
Figure 7-5. Visualization of only the important trigram features of the model



















Advanced Tokenization, Stemming, and Lemmatization


As mentioned previously, the feature extraction in the CountVectorizer
and TfidfVectorizer is relatively simple, and much more elaborate
methods are possible. One particular step that is often improved in more
sophisticated text-processing applications is the first step in the
bag-of-words model: tokenization. This step defines what constitutes a
word for the purpose of feature extraction.


We saw earlier that the vocabulary often contains singular and plural
versions of some words, as in
"drawback" and "drawbacks", "drawer" and "drawers", and "drawing" and "drawings".
For the purposes of a bag-of-words model, the semantics of "drawback" and
"drawbacks" are so close that distinguishing them will only increase
overfitting, and not allow the model to fully exploit the training data.
Similarly, we found the vocabulary includes words like
"replace", "replaced", "replacement", "replaces", and "replacing", which
are different verb forms and a noun relating to the verb “to replace.”
Similarly to having singular and plural forms of a noun, treating different
verb forms and related words as distinct tokens is disadvantageous for
building a model that generalizes well.


This problem can be overcome by representing each word using its word
stem, which involves identifying (or conflating) all the words that have the same
word stem. If this is done by using a rule-based heuristic, like
dropping common suffixes, it is usually referred to as stemming. If
instead a dictionary of known word forms is used (an explicit and
human-verified system), and the role of the word in the sentence is taken
into account, the process is referred to as lemmatization and the
standardized form of the word is referred to as the lemma. Both processing
methods, lemmatization and stemming, are forms of normalization that
try to extract some normal form of a word. Another interesting case of
normalization is spelling correction, which can be helpful in practice but
is outside of the scope of this book.


To get a better understanding of normalization, let’s compare a method for
stemming—the Porter stemmer, a widely used collection of heuristics
(here imported from the nltk package)—to lemmatization as implemented
in the spacy package:8


In[36]:


import spacy
import nltk

# load spacy's English-language models
en_nlp = spacy.load('en')
# instantiate nltk's Porter stemmer
stemmer = nltk.stem.PorterStemmer()

# define function to compare lemmatization in spacy with stemming in nltk
def compare_normalization(doc):
    # tokenize document in spacy
    doc_spacy = en_nlp(doc)
    # print lemmas found by spacy
    print("Lemmatization:")
    print([token.lemma_ for token in doc_spacy])
    # print tokens found by Porter stemmer
    print("Stemming:")
    print([stemmer.stem(token.norm_.lower()) for token in doc_spacy])


We will compare lemmatization and the Porter stemmer on a sentence
designed to show some of the differences:


In[37]:


compare_normalization(u"Our meeting today was worse than yesterday, "
                       "I'm scared of meeting the clients tomorrow.")


Out[37]:


Lemmatization:
['our', 'meeting', 'today', 'be', 'bad', 'than', 'yesterday', ',', 'i', 'be',
 'scared', 'of', 'meet', 'the', 'client', 'tomorrow', '.']
Stemming:
['our', 'meet', 'today', 'wa', 'wors', 'than', 'yesterday', ',', 'i', "'m",
 'scare', 'of', 'meet', 'the', 'client', 'tomorrow', '.']


Stemming is always restricted to trimming the word to a stem, so "was"
becomes "wa", while lemmatization can retrieve the correct base verb
form, "be". Similarly, lemmatization can normalize "worse" to "bad",
while stemming produces "wors". Another major difference is that
stemming reduces both occurrences of "meeting" to "meet". Using
lemmatization, the first occurrence of "meeting" is recognized as a
noun and left as is, while the second occurrence is recognized as a verb
and reduced to "meet". In general, lemmatization is a much more involved
process than stemming, but it usually produces better results than stemming
when used for normalizing tokens for machine learning.


While scikit-learn implements neither form of normalization,
CountVectorizer allows specifying your own tokenizer to convert each
document into a list of tokens using the tokenizer parameter. We can
use the lemmatization from spacy to create a callable that will take a
string and produce a list of lemmas:


In[38]:


# Technicality: we want to use the regexp-based tokenizer
# that is used by CountVectorizer and only use the lemmatization
# from spacy. To this end, we replace en_nlp.tokenizer (the spacy tokenizer)
# with the regexp-based tokenization.
import re
# regexp used in CountVectorizer
regexp = re.compile('(?u)\\b\\w\\w+\\b')

# load spacy language model and save old tokenizer
en_nlp = spacy.load('en')
old_tokenizer = en_nlp.tokenizer
# replace the tokenizer with the preceding regexp
en_nlp.tokenizer = lambda string: old_tokenizer.tokens_from_list(
    regexp.findall(string))

# create a custom tokenizer using the spacy document processing pipeline
# (now using our own tokenizer)
def custom_tokenizer(document):
    doc_spacy = en_nlp(document, entity=False, parse=False)
    return [token.lemma_ for token in doc_spacy]

# define a count vectorizer with the custom tokenizer
lemma_vect = CountVectorizer(tokenizer=custom_tokenizer, min_df=5)


Let’s transform the data and inspect the vocabulary size:


In[39]:


# transform text_train using CountVectorizer with lemmatization
X_train_lemma = lemma_vect.fit_transform(text_train)
print("X_train_lemma.shape: {}".format(X_train_lemma.shape))

# standard CountVectorizer for reference
vect = CountVectorizer(min_df=5).fit(text_train)
X_train = vect.transform(text_train)
print("X_train.shape: {}".format(X_train.shape))


Out[39]:


X_train_lemma.shape:  (25000, 21596)
X_train.shape:  (25000, 27271)


As you can see from the output, lemmatization reduced the number
of features from 27,271 (with the standard CountVectorizer processing)
to 21,596. Lemmatization can be seen as a kind of regularization, as it
conflates certain features. Therefore, we expect lemmatization to
improve performance most when the dataset is small. To illustrate how
lemmatization can help, we will use StratifiedShuffleSplit for
cross-validation, using only 1% of the data as training data and the
rest as test data:


In[40]:


# build a grid search using only 1% of the data as the training set
from sklearn.model_selection import StratifiedShuffleSplit

param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]}
cv = StratifiedShuffleSplit(n_iter=5, test_size=0.99,
                            train_size=0.01, random_state=0)
grid = GridSearchCV(LogisticRegression(), param_grid, cv=cv)
# perform grid search with standard CountVectorizer
grid.fit(X_train, y_train)
print("Best cross-validation score "
      "(standard CountVectorizer): {:.3f}".format(grid.best_score_))
# perform grid search with lemmatization
grid.fit(X_train_lemma, y_train)
print("Best cross-validation score "
      "(lemmatization): {:.3f}".format(grid.best_score_))


Out[40]:


Best cross-validation score (standard CountVectorizer): 0.721
Best cross-validation score (lemmatization): 0.731


In this case, lemmatization provided a modest improvement in
performance. As with many of the different feature extraction
techniques, the result varies depending on the dataset. Lemmatization
and stemming can sometimes help in building better (or at least more
compact) models, so we suggest you give these techniques a try when
trying to squeeze out the last bit of performance on a particular task.

















Topic Modeling and Document Clustering


One particular technique that is often applied to text data is topic
modeling, which is an umbrella term describing the task of assigning
each document to one or multiple topics, usually without supervision.
A good example for this is news data, which might be categorized into
topics like “politics,” “sports,” “finance,” and so on. If each document
is assigned a single topic, this is the task of clustering the
documents, as discussed in Chapter 3. If each document can have more
than one topic, the task relates to the decomposition methods from Chapter 3. Each of the components we learn then corresponds to one topic, and
the coefficients of the components in the representation of a document
tell us how strongly related that document is to a particular topic. Often, when
people talk about topic modeling, they refer to one particular
decomposition method called Latent Dirichlet Allocation (often LDA for
short).9










Latent Dirichlet Allocation


Intuitively, the LDA model tries to find groups of words (the topics)
that appear together frequently. LDA also requires that each document
can be understood as a “mixture” of a subset of the topics. It is
important to understand that for the machine learning model a “topic”
might not be what we would normally call a topic in everyday speech, but
that it resembles more the components extracted by PCA or NMF (which we
discussed in Chapter 3), which might or might not have a semantic
meaning. Even if there is a semantic meaning for an LDA “topic”, it
might not be something we’d usually call a topic. Going back to the
example of news articles, we might have a collection of articles about
sports, politics, and finance, written by two specific authors. In a
politics article, we might expect to see words like “governor,” “vote,” “party,”
etc., while in a sports article we might expect words like “team,”
“score,” and “season.” Words in each of these groups will likely appear together,
while it’s less likely that, for example, “team” and “governor” will appear together.
However, these are not the only groups of words we might expect to
appear together. The two reporters might prefer different phrases or
different choices of words. Maybe one of them likes to use the word
“demarcate” and one likes the word “polarize.” Other “topics” would
then be “words often used by reporter A” and “words often used by
reporter B,” though these are not topics in the usual sense of the word.


Let’s apply LDA to our movie review dataset to see how it works in
practice. For unsupervised text document models, it is often good to
remove very common words, as they might otherwise dominate the analysis.
We’ll remove words that appear in at least 20 percent of the documents, and
we’ll limit the bag-of-words model to the 10,000 words that are most common after
removing the top 20 percent:


In[41]:


vect = CountVectorizer(max_features=10000, max_df=.15)
X = vect.fit_transform(text_train)


We will learn a topic model with 10 topics, which is few enough that we can
look at all of them. Similarly to the components in NMF, topics don’t
have an inherent ordering, and changing the number of topics will change
all of the topics.10 We’ll use the
"batch" learning method, which is somewhat slower than the default
("online") but usually provides better results, and increase
"max_iter", which can also lead to better models:


In[42]:


from sklearn.decomposition import LatentDirichletAllocation
lda = LatentDirichletAllocation(n_topics=10, learning_method="batch",
                                max_iter=25, random_state=0)
# We build the model and transform the data in one step
# Computing transform takes some time,
# and we can save time by doing both at once
document_topics = lda.fit_transform(X)


Like the decomposition methods we saw in Chapter 3, LatentDirichletAllocation has a
components_ attribute that stores how important each word is for each
topic. The size of components_ is (n_topics, n_words):


In[43]:


lda.components_.shape


Out[43]:


(10, 10000)


To understand better what the different topics mean, we will look at the
most important words for each of the topics. The print_topics function provides a nice formatting for these features:


In[44]:


# For each topic (a row in the components_), sort the features (ascending)
# Invert rows with [:, ::-1] to make sorting descending
sorting = np.argsort(lda.components_, axis=1)[:, ::-1]
# Get the feature names from the vectorizer
feature_names = np.array(vect.get_feature_names())


In[45]:


# Print out the 10 topics:
mglearn.tools.print_topics(topics=range(10), feature_names=feature_names,
                           sorting=sorting, topics_per_chunk=5, n_words=10)


Out[45]:


topic 0       topic 1       topic 2       topic 3       topic 4
--------      --------      --------      --------      --------
between       war           funny         show          didn
young         world         worst         series        saw
family        us            comedy        episode       am
real          our           thing         tv            thought
performance   american      guy           episodes      years
beautiful     documentary   re            shows         book
work          history       stupid        season        watched
each          new           actually      new           now
both          own           nothing       television    dvd
director      point         want          years         got


topic 5       topic 6       topic 7       topic 8       topic 9
--------      --------      --------      --------      --------
horror        kids          cast          performance   house
action        action        role          role          woman
effects       animation     john          john          gets
budget        game          version       actor         killer
nothing       fun           novel         oscar         girl
original      disney        both          cast          wife
director      children      director      plays         horror
minutes       10            played        jack          young
pretty        kid           performance   joe           goes
doesn         old           mr            performances  around


Judging from the important words, topic 1 seems to be about historical
and war movies, topic 2 might be about bad comedies, topic 3 might be
about TV series. Topic 4 seems to capture some very common words, while topic
6 appears to be about children’s movies and topic 8 seems to capture
award-related reviews. Using only 10 topics, each of the topics needs
to be very broad, so that they can together cover all the different
kinds of reviews in our dataset.


Next, we will learn another model, this time with 100 topics. Using more
topics makes the analysis much harder, but makes it more likely that
topics can specialize to interesting subsets of the data:


In[46]:


lda100 = LatentDirichletAllocation(n_topics=100, learning_method="batch",
                                   max_iter=25, random_state=0)
document_topics100 = lda100.fit_transform(X)


Looking at all 100 topics would be a bit overwhelming, so we selected
some interesting and representative topics:


In[47]:


topics = np.array([7, 16, 24, 25, 28, 36, 37, 45, 51, 53, 54, 63, 89, 97])

sorting = np.argsort(lda100.components_, axis=1)[:, ::-1]
feature_names = np.array(vect.get_feature_names())
mglearn.tools.print_topics(topics=topics, feature_names=feature_names,
                           sorting=sorting, topics_per_chunk=7, n_words=20)


Out[48]:


topic 7       topic 16      topic 24      topic 25      topic 28
--------      --------      --------      --------      --------
thriller      worst         german        car           beautiful
suspense      awful         hitler        gets          young
horror        boring        nazi          guy           old
atmosphere    horrible      midnight      around        romantic
mystery       stupid        joe           down          between
house         thing         germany       kill          romance
director      terrible      years         goes          wonderful
quite         script        history       killed        heart
bit           nothing       new           going         feel
de            worse         modesty       house         year
performances  waste         cowboy        away          each
dark          pretty        jewish        head          french
twist         minutes       past          take          sweet
hitchcock     didn          kirk          another       boy
tension       actors        young         getting       loved
interesting   actually      spanish       doesn         girl
mysterious    re            enterprise    now           relationship
murder        supposed      von           night         saw
ending        mean          nazis         right         both
creepy        want          spock         woman         simple


topic 36      topic 37      topic 41      topic 45      topic 51
--------      --------      --------      --------      --------
performance   excellent     war           music         earth
role          highly        american      song          space
actor         amazing       world         songs         planet
cast          wonderful     soldiers      rock          superman
play          truly         military      band          alien
actors        superb        army          soundtrack    world
performances  actors        tarzan        singing       evil
played        brilliant     soldier       voice         humans
supporting    recommend     america       singer        aliens
director      quite         country       sing          human
oscar         performance   americans     musical       creatures
roles         performances  during        roll          miike
actress       perfect       men           fan           monsters
excellent     drama         us            metal         apes
screen        without       government    concert       clark
plays         beautiful     jungle        playing       burton
award         human         vietnam       hear          tim
work          moving        ii            fans          outer
playing       world         political     prince        men
gives         recommended   against       especially    moon


topic 53      topic 54      topic 63      topic 89      topic 97
--------      --------      --------      --------      --------
scott         money         funny         dead          didn
gary          budget        comedy        zombie        thought
streisand     actors        laugh         gore          wasn
star          low           jokes         zombies       ending
hart          worst         humor         blood         minutes
lundgren      waste         hilarious     horror        got
dolph         10            laughs        flesh         felt
career        give          fun           minutes       part
sabrina       want          re            body          going
role          nothing       funniest      living        seemed
temple        terrible      laughing      eating        bit
phantom       crap          joke          flick         found
judy          must          few           budget        though
melissa       reviews       moments       head          nothing
zorro         imdb          guy           gory          lot
gets          director      unfunny       evil          saw
barbra        thing         times         shot          long
cast          believe       laughed       low           interesting
short         am            comedies      fulci         few
serial        actually      isn           re            half


The topics we extracted this time seem to be more specific, though many
are hard to interpret. Topic 7 seems to be about horror movies and
thrillers; topics 16 and 54 seem to capture bad reviews, while topic 63
mostly seems to be capturing positive reviews of comedies. If we want
to make further inferences using the topics that were discovered, we should confirm the intuition we gained from looking at the highest-ranking
words for each topic by looking at the documents that are assigned to
these topics. For example, topic 45 seems to be about music. Let’s check
which kinds of reviews are assigned to this topic:


In[49]:


# sort by weight of "music" topic 45
music = np.argsort(document_topics100[:, 45])[::-1]
# print the five documents where the topic is most important
for i in music[:10]:
    # pshow first two sentences
    print(b".".join(text_train[i].split(b".")[:2]) + b".\n")


Out[49]:


b'I love this movie and never get tired of watching. The music in it is great.\n'
b"I enjoyed Still Crazy more than any film I have seen in years. A successful
  band from the 70's decide to give it another try.\n"
b'Hollywood Hotel was the last movie musical that Busby Berkeley directed for
  Warner Bros. His directing style had changed or evolved to the point that
  this film does not contain his signature overhead shots or huge production
  numbers with thousands of extras.\n'
b"What happens to washed up rock-n-roll stars in the late 1990's?
  They launch a comeback / reunion tour. At least, that's what the members of
  Strange Fruit, a (fictional) 70's stadium rock group do.\n"
b'As a big-time Prince fan of the last three to four years, I really can\'t
  believe I\'ve only just got round to watching "Purple Rain". The brand new
  2-disc anniversary Special Edition led me to buy it.\n'
b"This film is worth seeing alone for Jared Harris' outstanding portrayal
  of John Lennon. It doesn't matter that Harris doesn't exactly resemble
  Lennon; his mannerisms, expressions, posture, accent and attitude are
  pure Lennon.\n"
b"The funky, yet strictly second-tier British glam-rock band Strange Fruit
  breaks up at the end of the wild'n'wacky excess-ridden 70's. The individual
  band members go their separate ways and uncomfortably settle into lackluster
  middle age in the dull and uneventful 90's: morose keyboardist Stephen Rea
  winds up penniless and down on his luck, vain, neurotic, pretentious lead
  singer Bill Nighy tries (and fails) to pursue a floundering solo career,
  paranoid drummer Timothy Spall resides in obscurity on a remote farm so he
  can avoid paying a hefty back taxes debt, and surly bass player Jimmy Nail
  installs roofs for a living.\n"
b"I just finished reading a book on Anita Loos' work and the photo in TCM
  Magazine of MacDonald in her angel costume looked great (impressive wings),
  so I thought I'd watch this movie. I'd never heard of the film before, so I
  had no preconceived notions about it whatsoever.\n"
b'I love this movie!!! Purple Rain came out the year I was born and it has had
  my heart since I can remember. Prince is so tight in this movie.\n'
b"This movie is sort of a Carrie meets Heavy Metal. It's about a highschool
  guy who gets picked on alot and he totally gets revenge with the help of a
  Heavy Metal ghost.\n"


As we can see, this topic covers a wide variety of music-centered
reviews, from musicals, to biographical movies, to some hard-to-specify
genre in the last review. Another interesting way to inspect the topics
is to see how much weight each topic gets overall, by summing the
document_topics over all reviews. We name each topic by the two most
common words. Figure 7-6 shows the topic weights learned:


In[50]:


fig, ax = plt.subplots(1, 2, figsize=(10, 10))
topic_names = ["{:>2} ".format(i) + " ".join(words)
               for i, words in enumerate(feature_names[sorting[:, :2]])]
# two column bar chart:
for col in [0, 1]:
    start = col * 50
    end = (col + 1) * 50
    ax[col].barh(np.arange(50), np.sum(document_topics100, axis=0)[start:end])
    ax[col].set_yticks(np.arange(50))
    ax[col].set_yticklabels(topic_names[start:end], ha="left", va="top")
    ax[col].invert_yaxis()
    ax[col].set_xlim(0, 2000)
    yax = ax[col].get_yaxis()
    yax.set_tick_params(pad=130)
plt.tight_layout()
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Figure 7-6. Topic weights learned by LDA




The most important topics are 97, which seems to consist mostly of
stopwords, possibly with a slight negative direction; topic 16, which
is clearly about bad reviews; followed by some genre-specific topics and 36 and
37, both of which seem to contain laudatory words.


It seems like LDA mostly discovered two kind of topics, genre-specific
and rating-specific, in addition to several more unspecific topics. This
is an interesting discovery, as most reviews are made up of some
movie-specific comments and some comments that justify or emphasize the
rating.


Topic models like LDA are interesting methods to understand large
text corpora in the absence of labels—or, as here, even if labels
are available. The LDA algorithm is randomized, though, and changing
the random_state parameter can lead to quite different outcomes. While
identifying topics can be helpful, any conclusions you draw from an
unsupervised model should be taken with a grain of salt, and we
recommend verifying your intuition by looking at the documents in a
specific topic. The topics produced by the LDA.transform method can
also sometimes be used as a compact representation for supervised
learning. This is particularly helpful when few training examples are
available.
























Summary and Outlook


In this chapter we talked about the basics of processing text, also
known as natural language processing (NLP), with an example application
classifying movie reviews. The tools discussed here should serve as a
great starting point when trying to process text data. In particular for
text classification tasks such as spam and fraud detection or sentiment
analysis, bag-of-words representations provide a simple and powerful
solution. As is often the case in machine learning, the representation of the
data is key in NLP applications, and inspecting the tokens and n-grams
that are extracted can give powerful insights into the modeling process.
In text-processing applications, it is often possible to introspect
models in a meaningful way, as we saw in this chapter, for both supervised and
unsupervised tasks. You should take full advantage of this ability when
using NLP-based methods in practice.


Natural language and text processing is a large research field, and discussing the
details of advanced methods is far beyond the scope of this book. If you
want to learn more, we recommend the O’Reilly book Natural Language Processing with Python by Steven Bird, Ewan Klein, and Edward Loper, which provides an
overview of NLP together with an introduction to the nltk Python
package for NLP. Another great and more conceptual book is the standard
reference Introduction to Information Retrieval by Christopher Manning, Prabhakar Raghavan, and
Hinrich Schütze, which describes
fundamental algorithms in information retrieval, NLP, and machine
learning. Both books have online versions that can be accessed free of
charge. As we discussed earlier, the classes CountVectorizer and
TfidfVectorizer only implement relatively simple text-processing
methods. For more advanced text-processing methods, we recommend the
Python packages spacy (a relatively new but very efficient and
well-designed package), nltk (a very well-established and complete but
somewhat dated library), and gensim (an NLP package with an emphasis on
topic modeling).


There have been several very exciting new developments in text
processing in recent years, which are outside of the scope of this book
and relate to neural networks. The first is the use of continuous vector
representations, also known as word vectors or distributed word
representations, as implemented in the word2vec library. The original
paper “Distributed Representations of Words and Phrases and Their Compositionality” by Thomas Mikolov et al. is a great introduction
to the subject. Both spacy and gensim provide functionality for the
techniques discussed in this paper and its follow-ups.


Another direction in NLP that has picked up momentum in recent years is the use of
recurrent neural networks (RNNs) for text processing. RNNs are a
particularly powerful type of neural network that can produce output
that is again text, in contrast to classification models that can only
assign class labels. The ability to produce text as output makes RNNs
well suited for automatic translation and summarization. An introduction
to the topic can be found in the relatively technical paper “Sequence to Sequence Learning with Neural Networks” by Ilya Suskever, Oriol Vinyals, and Quoc Le.
A more practical tutorial using the tensorflow framework can be found on the
TensorFlow website.










1 Arguably, the content of websites linked to in tweets contains more information than the text of the tweets themselves.
2 Most of what we will talk about in the rest of the chapter also applies to other languages that use the Roman alphabet, and partially to other languages with word boundary delimiters. Chinese, for example, does not delimit word boundaries, and has other challenges that make applying the techniques in this chapter difficult.
3 The dataset is available at http://ai.stanford.edu/~amaas/data/sentiment/.
4 This is possible because we are using a small toy dataset that contains only 13 words. For any real dataset, this would result in a MemoryError.
5 A quick analysis of the data confirms that this is indeed the case. Try confirming it yourself.
6 The attentive reader might notice that we violate our lesson from Chapter 6 on cross-validation with preprocessing here. Using the default settings of CountVectorizer, it actually does not collect any statistics, so our results are valid. Using Pipeline from the start would be a better choice for applications, but we defer it for ease of exposure.
7 We provide this formula here mostly for completeness; you don’t need to remember it to use the tf–idf encoding.
8 For details of the interface, consult the nltk and spacy documentation. We are more interested in the general principles here.
9 There is another machine learning model that is also often abbreviated LDA: Linear Discriminant Analysis, a linear classification model. This leads to quite some confusion. In this book, LDA refers to Latent Dirichlet Allocation.
10 In fact, NMF and LDA solve quite related problems, and we could also use NMF to extract topics.



Chapter 8. Wrapping Up



You now know how to apply the important machine learning algorithms for
supervised and unsupervised learning, which allow you to solve a wide
variety of machine learning problems. Before we leave you to explore all
the possibilities that machine learning offers, we want to give you some
final words of advice, point you toward some additional resources, and give
you suggestions on how you can further improve your machine learning and
data science skills.








Approaching a Machine Learning Problem


With all the great methods that we introduced in this book now at your
fingertips, it may be tempting to jump in and start solving your data-related
problem by just running your favorite algorithm. However, this is not
usually a good way to begin your analysis. The machine learning
algorithm is usually only a small part of a larger data analysis and
decision-making process. To make effective use of machine learning, we
need to take a step back and consider the problem at large. First, you
should think about what kind of question you want to answer. Do you want
to do exploratory analysis and just see if you find something
interesting in the data? Or do you already have a particular goal in
mind? Often you will start with a goal, like detecting fraudulent user
transactions, making movie recommendations, or finding unknown planets.
If you have such a goal, before building a system to achieve it, you
should first think about how to define and measure success, and what the
impact of a successful solution would be to your overall business or
research goals. Let’s say your goal is fraud detection.


Then the following questions open up:



	
How do I measure if my fraud prediction is actually working?



	
Do I have the right data to evaluate an algorithm?



	
If I am successful, what will be the business impact of my solution?






As we discussed in Chapter 5, it is best if you can measure the
performance of your algorithm directly using a business metric, like
increased profit or decreased losses. This is often hard to do, though. A
question that can be easier to answer is “What if I built the perfect
model?” If perfectly detecting any fraud will save your company $100 a
month, these possible savings will probably not be enough to warrant the
effort of you even starting to develop an algorithm. On the other hand,
if the model might save your company tens of thousands of dollars every
month, the problem might be worth exploring.


Say you’ve defined the problem to solve, you know a solution might have a
significant impact for your project, and you’ve ensured that you have the
right information to evaluate success. The next steps are usually
acquiring the data and building a working prototype. In this book we
have talked about many models you can employ, and how to properly evaluate
and tune these models. While trying out models, though, keep in mind that this
is only a small part of a larger data science workflow, and model
building is often part of a feedback circle of collecting new data,
cleaning data, building models, and analyzing the models. Analyzing the
mistakes a model makes can often be informative about what is missing in
the data, what additional data could be collected, or how the task
could be reformulated to make machine learning more effective.
Collecting more or different data or changing the task formulation
slightly might provide a much higher payoff than running endless grid
searches to tune parameters.










Humans in the Loop


You should also consider if and how you should have humans in the loop.
Some processes (like pedestrian detection in a self-driving car) need to
make immediate decisions. Others might not need immediate responses, and
so it can be possible to have humans confirm uncertain decisions.
Medical applications, for example, might need very high levels of
precision that possibly cannot be achieved by a machine learning
algorithm alone. But if an algorithm can make 90 percent, 50 percent, or
maybe even just 10 percent of decisions automatically, that might
already increase response time or reduce cost. Many applications are
dominated by “simple cases,” for which an algorithm can make a decision,
with relatively few “complicated cases,” which can be rerouted to a human.
























From Prototype to Production


The tools we’ve discussed in this book are great for many machine learning
applications, and allow very quick analysis and prototyping. Python and
scikit-learn are also used in production systems in many organizations—even very large ones like international banks and global social media companies.
However, many companies have complex infrastructure, and it is not always
easy to include Python in these systems. That is not necessarily a
problem. In many companies, the data analytics teams work with languages
like Python and R that allow the quick testing of ideas, while
production teams work with languages like Go, Scala, C++, and Java to
build robust, scalable systems. Data analysis has different requirements
from building live services, and so using different languages for these
tasks makes sense. A relatively common solution is to reimplement the
solution that was found by the analytics team inside the larger
framework, using a high-performance language. This can be easier than
embedding a whole library or programming language and converting from
and to the different data formats.


Regardless of whether you can use scikit-learn in a production system or
not, it is important to keep in mind that production systems have
different requirements from one-off analysis scripts. If an algorithm is
deployed into a larger system, software engineering aspects like
reliability, predictability, runtime, and memory requirements gain
relevance. Simplicity is key in providing machine learning systems that
perform well in these areas. Critically inspect each part of your data
processing and prediction pipeline and ask yourself how much complexity
each step creates, how robust each component is to changes in the data
or compute infrastructure, and if the benefit of each component
warrants the complexity. If you are building involved machine learning
systems, we highly recommend reading the paper “Machine Learning: The High Interest Credit Card of Technical Debt”, published by researchers
in Google’s machine learning team. The paper highlights the trade-off
in creating and maintaining machine learning software in production at a
large scale. While the issue of technical debt is particularly pressing
in large-scale and long-term projects, the lessons learned can help
us build better software even for short-lived and smaller systems.

















Testing Production Systems


In this book, we covered how to evaluate algorithmic predictions based
on a test set that we collected beforehand. This is known as offline
evaluation. If your machine learning system is user-facing, this is
only the first step in evaluating an algorithm, though. The next step
is usually online testing or live testing, where the consequences of
employing the algorithm in the overall system are evaluated. Changing the
recommendations or search results users are shown by a website can
drastically change their behavior and lead to unexpected consequences.
To protect against these surprises, most user-facing services employ
A/B testing, a form of blind user study. In A/B testing, without their knowledge a selected
portion of users will be provided with a website or service using
algorithm A, while the rest of the users will be provided with algorithm
B. For both groups, relevant success
metrics will be recorded for a set period of time. Then, the metrics of
algorithm A and algorithm B will be compared, and a selection between
the two approaches will be made according to these metrics.
Using A/B testing enables us to evaluate the algorithms “in the wild,”
which might help us to discover unexpected consequences when users are
interacting with our model. Often A is a new model, while B is the
established system. There are more elaborate mechanisms for online
testing that go beyond A/B testing, such as bandit algorithms. A
great introduction to this subject can be found in the book  Bandit Algorithms for Website Optimization by John Myles White (O’Reilly).


















Building Your Own Estimator


This book has covered a variety of tools and algorithms implemented in scikit-learn
that can be used on a wide range of tasks. However, often there will be some
particular processing you need to do for your data that is not
implemented in scikit-learn. It may be enough to just preprocess your
data before passing it to your scikit-learn model or pipeline. However,
if your preprocessing is data dependent, and you want to apply a
grid search or cross-validation, things become trickier.


In Chapter 6 we discussed the importance of putting all data-dependent
processing inside the cross-validation loop. So how can you use your own
processing together with the scikit-learn tools? There is a simple
solution: build your own estimator! Implementing an estimator that is
compatible with the scikit-learn interface, so that it can be used with
Pipeline, GridSearchCV, and cross_val_score, is quite easy. You can
find detailed instructions in the scikit-learn documentation,
but here is the gist. The simplest way to implement a transformer class
is by inheriting from BaseEstimator and TransformerMixin,
and then implementing the __init__, fit, and predict functions like
this:


In[1]:


from sklearn.base import BaseEstimator, TransformerMixin

class MyTransformer(BaseEstimator, TransformerMixin):
    def __init__(self, first_parameter=1, second_parameter=2):
        # All parameters must be specified in the __init__ function
        self.first_parameter = 1
        self.second_parameter = 2

    def fit(self, X, y=None):
        # fit should only take X and y as parameters
        # Even if your model is unsupervised, you need to accept a y argument!

        # Model fitting code goes here
        print("fitting the model right here")
        # fit returns self
        return self

    def transform(self, X):
        # transform takes as parameter only X

        # Apply some transformation to X
        X_transformed = X + 1
        return X_transformed


Implementing a classifier or regressor works similarly, only instead of
TransformerMixin you need to inherit from ClassifierMixin or
RegressorMixin. Also, instead of implementing transform, you would
implement predict.


As you can see from the example given here, implementing your own estimator
requires very little code, and most scikit-learn users build up a
collection of custom models over time.

















Where to Go from Here


This book provides an introduction to machine learning and will make
you an effective practitioner. However, if you want to further your
machine learning skills, here are some suggestions of books and more
specialized resources to investigate to dive deeper.










Theory


In this book, we tried to provide an intuition of how the most common
machine learning algorithms work, without requiring a strong foundation
in mathematics or computer science. However, many of the models we
discussed use principles from probability theory, linear algebra, and
optimization. While it is not necessary to understand all the details of
how these algorithms are implemented, we think that knowing some of the
theory behind the algorithms will make you a better data scientist.
There have been many good books written about the theory of machine
learning, and if we were able to excite you about the possibilities that
machine learning opens up, we suggest you pick up at least one of them
and dig deeper. We already mentioned Hastie, Tibshirani, and Friedman’s book The Elements of Statistical Learning in the Preface, but it is worth repeating this
recommendation here. Another quite accessible book, with accompanying
Python code, is Machine Learning: An Algorithmic Perspective by
Stephen Marsland (Chapman and Hall/CRC). Two other highly recommended classics are Pattern Recognition and Machine Learning by Christopher Bishop (Springer), a book that
emphasizes a probabilistic framework, and Machine Learning: A Probabilistic Perspective by Kevin Murphy (MIT Press), a comprehensive (read:
1,000+ pages) dissertation on machine learning methods featuring in-depth
discussions of state-of-the-art approaches, far beyond what we could
cover in this book.

















Other Machine Learning Frameworks and Packages


While scikit-learn is our favorite package for machine learning1 and
Python is our favorite language for machine learning, there are many other
options out there. Depending on your needs, Python and scikit-learn
might not be the best fit for your particular situation. Often using
Python is great for trying out and evaluating models, but larger web
services and applications are more commonly written in Java or C++, and
integrating into these systems might be necessary for your model to be
deployed. Another reason you might want to look beyond scikit-learn is
if you are more interested in statistical modeling and inference than prediction. In this
case, you should consider the statsmodel package for Python, which
implements several linear models with a more statistically minded
interface. If you are not married to Python, you might also consider
using R, another lingua franca of data scientists. R is a language
designed specifically for statistical analysis and is famous for its
excellent visualization capabilities and the availability of many (often
highly specialized) statistical modeling packages.


Another popular machine learning package is vowpal wabbit (often
called vw to avoid possible tongue twisting), a highly optimized
machine learning package written in C++ with a command-line interface.
vw is particularly useful for large datasets and for
streaming data. For running machine learning algorithms distributed on a
cluster, one of the most popular solutions at the time of writing is
mllib, a Scala library built on top of the spark distributed
computing environment.

















Ranking, Recommender Systems, and Other Kinds of Learning


Because this is an introductory book, we focused on the most common
machine learning tasks: classification and regression in supervised
learning, and clustering and signal decomposition in unsupervised
learning. There are many more kinds of machine learning out there, with many important applications. There are two particularly important
topics that we did not cover in this book. The first is ranking, in
which we want to retrieve answers to a particular query, ordered by
their relevance. You’ve probably already used a ranking system today; this
is how search engines operate. You input a search query and obtain a
sorted list of answers, ranked by how relevant they are. A great
introduction to ranking is provided in Manning, Raghavan, and Schütze’s book Introduction to Information Retrieval. The second topic is recommender systems, which
provide suggestions to users based on their preferences. You’ve probably
encountered recommender systems under headings like “People You May
Know,” “Customers Who Bought This Item Also Bought,” or “Top Picks for
You.” There is plenty of literature on the topic, and if you want to
dive right in you might be interested in the now classic “Netflix prize challenge”, in which the Netflix video streaming site released a
large dataset of movie preferences and offered a prize of $1 million to
the team that could provide the best recommendations. Another common application is prediction
of time series (like stock prices), which also has a whole body of
literature devoted to it. There are many more machine learning tasks out there—much more than we can list here—and we encourage you to seek out
information from books, research papers, and online communities to find
the paradigms that best apply to your situation.

















Probabilistic Modeling, Inference, and Probabilistic Programming


Most machine learning packages provide predefined machine learning
models that apply one particular algorithm. However, many real-world
problems have a particular structure that, when properly incorporated
into the model, can yield much better-performing predictions. Often, the
structure of a particular problem can be expressed using the language of
probability theory. Such structure commonly arises from having a
mathematical model of the situation for which you want to predict. To
understand what we mean by a structured problem, consider the following
example.


Let’s say you want to build a mobile application that provides a very
detailed position estimate in an outdoor space, to help users navigate a
historical site. A mobile phone provides many sensors to help you get
precise location measurements, like the GPS, accelerometer, and compass. You also have an exact map of the area. This problem is highly
structured. You know where the paths and points of interest are from
your map. You also have rough positions from the GPS, and the accelerometer and
compass in the user’s device provide you with very precise relative measurements.
But throwing these all together into a black-box machine learning system to
predict positions might not be the best idea. This would throw away all
the information you already know about how the real world works. If the
compass and accelerometer tell you a user is going north, and the GPS is
telling you the user is going south, you probably can’t trust the GPS. If
your position estimate tells you the user just walked through a wall, you
should also be highly skeptical. It’s possible to express this situation
using a probabilistic model, and then use machine learning or
probabilistic inference to find out how much you should trust each
measurement, and to reason about what the best guess for the location of
a user is.


Once you’ve expressed the situation and your model of how the different
factors work together in the right way, there are methods to compute the predictions using these custom models directly. The most general of these methods are called
probabilistic programming languages, and they provide a very elegant and compact way to
express a learning problem. Examples of popular probabilistic
programming languages are PyMC (which can be used in Python) and
Stan (a framework that can be used from several languages, including
Python). While these packages require some understanding of probability
theory, they simplify the creation of new models significantly.

















Neural Networks


While we touched on the subject of neural networks briefly in Chapters 2 and 7, this is a rapidly evolving area of machine learning, with
innovations and new applications being announced on a weekly basis.
Recent breakthroughs in machine learning and artificial intelligence,
such as the victory of the Alpha Go program against human champions in
the game of Go, the constantly improving performance of speech
understanding, and the availability of near-instantaneous speech
translation, have all been driven by these advances. While the progress
in this field is so fast-paced that any current reference to the state
of the art will soon be outdated, the recent book Deep Learning by Ian
Goodfellow, Yoshua Bengio, and Aaron Courville (MIT Press) is a comprehensive
introduction into the subject.2

















Scaling to Larger Datasets


In this book, we always assumed that the data we were working with could be
stored in a NumPy array or SciPy sparse matrix in memory (RAM). Even
though modern servers often have hundreds of gigabytes (GB) of RAM, this
is a fundamental restriction on the size of data you can work with. Not
everybody can afford to buy such a large machine, or even to rent one
from a cloud provider. In most applications, the data that is used to
build a machine learning system is relatively small, though, and few
machine learning datasets consist of hundreds of gigabites of data or
more. This makes expanding your RAM or renting a machine from a cloud
provider a viable solution in many cases. If you need to work with terabytes of data, however, or you need to process
large amounts of data on a budget, there are two basic strategies:
out-of-core learning and parallelization over a cluster.


Out-of-core learning describes learning from data that cannot be stored
in main memory, but where the learning takes place on a single computer
(or even a single processor within a computer). The data is read from a
source like the hard disk or the network either one sample at a time or
in chunks of multiple samples, so that each chunk fits into RAM. This
subset of the data is then processed and the model is updated to reflect
what was learned from the data. Then, this chunk of the data is
discarded and the next bit of data is read. Out-of-core learning is
implemented for some of the models in scikit-learn, and you can find
details on it in the online user guide.
Because out-of-core learning requires all of the data to be processed by
a single computer, this can lead to long runtimes on very large
datasets. Also, not all machine learning algorithms can be implemented in
this way.


The other strategy for scaling is distributing the data over multiple
machines in a compute cluster, and letting each computer process part of the
data. This can be much faster for some models, and the size of the data
that can be processed is only limited by the size of the cluster.
However, such computations often require relatively complex
infrastructure. One of the most popular distributed computing platforms at the moment is the
spark platform built on top of Hadoop. spark includes
some machine learning functionality within the MLLib package. If your
data is already on a Hadoop filesystem, or you are already using
spark to preprocess your data, this might be the easiest option. If
you don’t already have such infrastructure in place, establishing and
integrating a spark cluster might be too large an effort, however. The
vw package mentioned earlier provides some distributed features and
might be a better solution in this case.

















Honing Your Skills


As with many things in life, only practice will allow you to become an
expert in the topics we covered in this book. Feature extraction,
preprocessing, visualization, and model building can vary widely between
different tasks and different datasets. Maybe you are lucky enough to
already have access to a variety of datasets and tasks. If you don’t
already have a task in mind, a good place to start is machine learning
competitions, in which a dataset with a given task is published, and
teams compete in creating the best possible predictions. Many companies,
nonprofit organizations, and universities host these competitions. One of the most popular places to find them is Kaggle,
a website that regularly holds data science competitions, some of which have
substantial prize money attached.


The Kaggle forums are also a good
source of information about the latest tools and tricks in machine
learning, and a wide range of datasets are available on the site. Even more datasets with associated tasks can be found on the
OpenML platform, which hosts over 20,000 datasets with over
50,000 associated machine learning tasks. Working with these datasets
can provide a great opportunity to practice your machine learning
skills. A disadvantage of competitions is that they already provide a
particular metric to optimize, and usually a fixed, preprocessed
dataset. Keep in mind that defining the problem and collecting the data
are also important aspects of real-world problems, and that representing
the problem in the right way might be much more important than squeezing
the last percent of accuracy out of a classifier.
























Conclusion


We hope we have convinced you of the usefulness of machine learning in a
wide variety of applications, and how easily machine learning can be
implemented in practice. Keep digging into the data, and don’t lose
sight of the larger picture.










1 Andreas might not be entirely objective in this matter.
2 A preprint of Deep Learning can be viewed at http://www.deeplearningbook.org/.
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